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ABSTRACT
A Network Intrusion Detection System (NIDS) helps system
administrators to detect network security breaches in their
organization. However, many challenges arise while develop-
ing a flexible and effective NIDS for unforeseen and unpre-
dictable attacks. In this work, we propose a deep learning
based approach to implement such an effective and flexible
NIDS. We use Self-taught Learning (STL), a deep learning
based technique, on NSL-KDD - a benchmark dataset for
network intrusion. We present the performance of our ap-
proach and compare it with a few previous work. Compared
metrics include the accuracy, precision, recall, and f-measure
values.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous; C.2 [Computer-
Communication Networks]: Security

Keywords
Network security, NIDS, deep learning, sparse auto-encoder,
NSL-KDD

1. INTRODUCTION
Network Intrusion Detection Systems (NIDSs) are impor-

tant tools for the network system administrators to detect
various security breaches inside an organization’s network.
An NIDS monitors, analyzes, and raises alarms for the net-
work traffic entering into or exiting from the network devices
of an organization. Based on the methods of intrusion detec-
tion, the NIDSs are categorized into two classes: i) signature
(misuse) based NIDS (SNIDS), and ii) anomaly detection
based NIDS (ADNIDS). In SNIDS, e.g., Snort [1], rules for
the attacks are pre-installed in the NIDS. A pattern match-
ing is performed for the traffic against the installed rules to
detect an intrusion in the network. In contrast, an ADNIDS
classifies network traffic as an intrusion whenever a devia-
tion from the normal traffic pattern is observed. SNIDS is
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effective in the detection of known attacks and shows high
detection accuracy and less false-alarm rates. However, its
performance suffers during detection of unknown or new at-
tacks due to the limitation of rules that can be installed
beforehand in an IDS. ADNIDS, on the other hand, is well-
suited for the detection of unknown and new attacks. Al-
though ADNIDS produces high false-positive rates, its the-
oretical potential in the identification of novel attacks has
caused its wide acceptance among the research community.

There are primarily two challenges that arise while devel-
oping an effective and flexible NIDS for the unknown future
attacks. First, proper feature selections from the network
traffic dataset for anomaly detection is difficult. As attack
scenarios are continuously changing and evolving, the fea-
tures selected for one class of attack may not work well
for other classes of attacks. Second, unavailability of la-
beled traffic dataset from real networks for developing an
NIDS. Immense efforts are required to produce such a la-
beled dataset from the raw network traffic traces collected
over a period or in real-time and this serves as the reason
behind the second challenge. Additionally, to preserve the
confidentiality of the internal organizational network struc-
tures as well as the privacy of various users, network admin-
istrators are reluctant towards reporting any intrusion that
might have occurred in their networks [2].

Various machine learning techniques have been used to de-
velop ADNIDSs, such as Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Naive-Bayesian (NB), Ran-
dom Forests (RF), Self-Organized Maps (SOM), etc. The
NIDSs are developed as classifiers to differentiate the nor-
mal traffic from the anomalous traffic. Many NIDSs per-
form a feature selection task to extract a subset of relevant
features from the traffic dataset to enhance classification re-
sults. Feature selection helps in the elimination of the pos-
sibility of incorrect training through the removal of redun-
dant features and noises [3]. Recently, deep learning based
methods have been successfully applied in audio, image, and
speech processing applications. These methods aim to learn
a good feature representation from a large amount of un-
labeled data and subsequently apply these learned features
on a limited amount of labeled data in the supervised clas-
sification. The labeled and unlabeled data may come from
different distributions, however, they must be relevant to
each other [4].

It is envisioned that the deep learning based approaches
can help to overcome the challenges of developing an effec-
tive NIDS [2, 5]. We can collect unlabeled network traffic
data from different sources and a good feature representation



of these datasets using deep learning techniques can be ob-
tained. These features can, then, be applied for supervised
classification to a small, but labeled traffic dataset consisting
of normal as well as anomalous traffic records. The traffic
data for labeled dataset can be collected in a confined, iso-
lated and private network environment. With this motiva-
tion, we use self-taught learning, a deep learning technique
based on sparse auto-encoder and soft-max regression, to
develop an NIDS. We verify the usability of the self-taught
learning based NIDS by applying it on NSL-KDD intrusion
dataset, an improved version of the benchmark dataset for
various NIDS evaluations - KDD Cup 99. We also provide
a comparison of our current work with other techniques.

Towards this end, our paper is organized in four sections.
In Section 2, we discuss a few closely related work. Sec-
tion 3 presents an overview of self-taught learning and the
NSL-KDD dataset. We discuss our results and comparative
analysis in Section 4 and finally conclude our paper with
future work direction in Section 5.

2. RELATED WORK
This section presents various recent accomplishments in

this area. It should be noted that we discuss only the work
which have used the NSL-KDD dataset for their perfor-
mance benchmarking, therefore, any dataset referred from
this point forward should be considered as NSL-KDD. This
allows a more accurate comparison of our work with other
found in literature. Another limitation is the use of training
data for both training and testing by most work. Finally,
we discuss a few deep learning based approaches that have
been tried so far in this area.

One of the earliest work found in literature used ANN
with enhanced resilient backpropogation for the design of
such an IDS [6]. This work used only the training dataset
for both training (70%), validation (15%) and testing (15%).
As expected, use of unlabeled data for testing resulted in a
reduction of performance. A more recent work used J48 de-
cision tree classifier, and again only the training dataset with
10-fold cross validation for testing was used [7]. This work
used a reduced feature set of 22 features instead of the full
set of 41 features. A similar work evaluated various popu-
lar supervised tree-based classifiers and found that Random
Tree model performed best with highest degree of accuracy
along with reduced false alarm rate [8].

Many 2-level classification approach have also been pro-
posed. One such work uses Discriminative Multinomial Naive
Bayes (DMNB) as base classifier and Nominal to Binary su-
pervised filtering at the second level, along with 10-fold cross
validation for testing [9]. This work was further extended
to use END (Ensembles of Balanced Nested Dichotomies)
at the first level and Random Forest at the second [10]. As
expected, this enhancement resulted in an improved detec-
tion rate and a lower false positive rate. Another 2-level
implementation using PCA (principal component analysis)
for feature set reduction and then SVM (using Radial Basis
Function) for final classification, resulted in a high detection
accuracy with only the training dataset and full 41 feature
set. A reduction in feature set to 23 resulted in even bet-
ter detection accuracy in some of the attack classes but the
overall performance was reduced [11]. The authors improved
their work by using information gain to rank the features and
then a behavior-based feature selection to reduce the feature
set to 20. This resulted in an improvement in reported ac-

Figure 1: The two-stage process of self-taught
learning: a) Unsupervised Feature Learning (UFL)
on unlabeled data. b) Classification on labeled
data. [18]

curacy using only the training dataset [12].
The second category to look at, used both the training

and testing dataset. An initial attempt in this category
used fuzzy classification with genetic algorithm and resulted
in a detection accuracy of 80%+ with a low false positive
rate [13]. Another important work in used unsupervised
clustering algorithms and found that the performance using
only the training data was reduced drastically when test-
ing data was also used [14]. A similar implementation us-
ing the k-point algorithm resulted in a slightly better de-
tection accuracy and false positive rate, using both train-
ing and test datasets [15]. Another less popular technique,
OPF (optimum-path forest) which uses graph partitioning
for feature classification, was used for IDS and was found to
demonstrate a high detection accuracy [16] within one-third
of the time compared to SVM-RBF method.

We observed a deep learning approach with Deep Belief
Network (DBN) as a feature selector and SVM as a classi-
fier in [5]. This approach resulted in an accuracy of 92.84%
when applied on training data. Our current work could be
easily compared to this work due to the enhancement in ap-
proach over this work and use of both the training and test-
ing dataset in our work. A similar, however, semi-supervised
learning approach has been used in [2]. The authors used
real-world trace for training, and evaluated their approach
on real-world and KDD Cup 99 traces. Our approach is dif-
ferent from them in the sense that we use NSL-KDD dataset
to find deep learning applicability in NIDS implementation.
Moreover, the feature learning task is completely unsuper-
vised and based on sparse auto-encoder in our approach. We
recently observed an sparse auto-encoder based deep learn-
ing approach for network traffic identification in [17]. The
authors performed TCP based unknown protocols identifi-
cation in their work instead of network intrusion detection.

3. SELF-TAUGHT LEARNING & NSL-KDD
DATASET OVERVIEW

3.1 Self-Taught Learning



Self-taught Learning (STL) is a deep learning approach
that consists of two stages for the classification. First, a good
feature representation is learnt from a large collection of un-
labeled data, xu, termed as Unsupervised Feature Learning
(UFL). In the second stage, this learnt representation is ap-
plied to labeled data, xl, and used for the classification task.
Although the unlabeled and labeled data may come from dif-
ferent distributions, there must be relevance among them.
Figure 1 shows the architecture diagram of STL. There are
different approaches used for UFL, such as Sparse Auto-
Encoder, Restricted Boltzmann Machine (RBM), K-Means
Clustering, and Gaussian Mixtures [19]. We use sparse auto-
encoder based feature learning for our work due to its easy
implementation and good performance [4]. An sparse auto-
encoder is a neural network consists of an input, a hidden,
and an output layers. The input and output layers contain
N nodes and the hidden layer contains K nodes. The target
values in the output layer set to the input values, i.e., x̂i = xi
as shown in Figure 1(a). The sparse auto-encoder network
finds the optimal values for weight matrices, W ∈ <K×N and
V ∈ <N×K , and bias vectors, b1 ∈ <K×1 and b2 ∈ <N×1,
using back-propagation algorithm while trying to learn the
approximation of the identity function, i.e., output x̂ simi-
lar to x [18]. Sigmoid function, g(z) = 1

1+e−z , is used for
the activation, hW,b of the nodes in the hidden and output
layers:

hW,b(x) = g(Wx+ b) (1)
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The cost function to be minimized in sparse auto-encoder
using back-propagation is represented by Eqn. 2. The first
term is the average of sum-of-square errors term for the all
m input data. The second term is a weight decay term,
with λ as weight decay parameter, to avoid the over-fitting
in training. The last term in the equation is sparsity penalty
term that puts a constraint into the hidden layer to maintain
a low average activation values, and expressed as Kullback-
Leibler (KL) divergence shown in Eqn. 3:

KL(ρ‖ρ̂j) = ρlog
ρ

ρ̂j
+ (1− ρ)log

1− ρ
1− ρ̂j

(3)

Where ρ is a sparsity constraint parameter ranges from 0
to 1 and β controls the sparsity penalty term. TheKL(ρ‖ρ̂j)
attains a minimum value when ρ = ρ̂j , where ρ̂j denotes the
average activation value of hidden unit j over the all training
inputs, x. Once, we learn optimal values for W and b1 by ap-
plying the sparse auto-encoder on unlabeled data, xu, there-
after, we evaluate the feature representation a = hW,b1(xl)
for the labeled data, (xl, y). We use this new features repre-
sentation, a, with the labels vector, y, for the classification
task in the second stage. We use soft-max regression for the
classification task, shown in Figure 1(b) [21].

3.2 NSL-KDD Dataset
As discussed earlier, we use NSL-KDD dataset in our

work. The dataset is an improved and reduced version of
the KDD Cup 99 dataset [20]. The KDD Cup dataset was

Table 1: Traffic records distribution in the training
and test data for normal and attack traffic [20].

Traffic Training Test
Normal 67343 9711

Attack

DoS 45927 7458
U2R 52 67
R2L 995 2887

Probe 11656 2421

prepared using the network traffic captured by 1998 DARPA
IDS evaluation program [22]. The network traffic includes
normal and different kinds of attack traffic, such as DoS,
Probing. The network traffic for training was collected for
seven weeks followed by the two weeks collection of traffic
for testing purpose in the form of raw tcpdump format. The
test data contains many attacks that were not injected dur-
ing the training data collection phase to make the intrusion
detection task realistic. It is believed that most of the novel
attacks can be derived from the known attacks. Thereafter,
the training and test data were processed into the datasets
of five million and two million TCP/IP connection records,
respectively.

The KDD Cup dataset has been widely used as a bench-
mark dataset for many years in the evaluation of NIDS. One
of the major drawback with the dataset is that it contains an
enormous amount of redundant records both in the training
and test data. It was observed that almost 78% and 75%
records are redundant in the training and test data, respec-
tively [20]. This redundancy makes the learning algorithms
biased towards the frequent attack records and leads to poor
classification results for the infrequent, but harmful records.
The training and test data were classified with the minimum
accuracy of 98% and 86% respectively using a very simple
machine learning algorithm. It made the comparison task
difficult for various IDSs based on different learning algo-
rithms. NSL-KDD was proposed to overcome the limitation
of KDD Cup dataset. The dataset is derived from the KDD
Cup dataset. It improved the previous dataset in two ways.
First, it eliminated all the redundant records from the train-
ing and test data. Second, it partitioned all the records in
the KDD Cup dataset into various difficulty levels based on
the number of learning algorithms that can correctly classify
the records. After that, it selected the records by random
sampling of the distinct records from each difficulty level in a
fraction that is inversely proportional to their fraction in the
distinct records. These multi-steps processing of KDD Cup
dataset made the number of records in NSL-KDD dataset
reasonable for the training of any learning algorithm and
realistic as well.

Each record in the NSL-KDD dataset consists of 41 fea-
tures and is labeled with either normal or a particular kind
of attack. These features include basic features derived di-
rectly from a TCP/IP connection, traffic features accumu-
lated in a window interval, either time, e.g. two seconds or
number of connections, and content features extracted from
the application layer data of connections. Out of 41 features,
three are nominal, four are binary, and remaining 34 features
are continuous. The training data contains 23 traffic classes
that include 22 classes of attack and one normal class. The
test data contains 38 traffic classes that include 21 attacks



Figure 2: Various steps involved in our NIDS imple-
mentation

classes from the training data, 16 novel attacks, and one nor-
mal class. All these attacks are grouped into four categories
based on the purposes, such as DoS, Probing, U2R (user-to-
root), R2L (remote-to-local). Table-1 shows the statistics of
records for the training and test data for normal and differ-
ent attack classes.

4. RESULTS AND DISCUSSION
As discussed in Section 2, there are two approaches ap-

plied for the evaluation of NIDSs. In the most widely used
approach, the training data is used for both training and
testing either using n-fold cross-validation or splitting the
training data into training, cross-validation, and test sets.
NIDSs based on this approach achieved very high-accuracy
and less false-alarm rates. On the other hand, the second
approach uses the training and test data seperately for the
training and testing. Since the training and test data were
collected in different environments, the accuracy obtained
using the second approach is not as high as in the first
approach. Therefore, we emphasize on the results for the
second approach in our work for the accurate evaluation of
NIDS. However, for the sake of completeness, we present the
results for the first approach as well. We describe our NIDS
implementation before discussing the results.

4.1 NIDS Implementation
As discussed in the previous section, the dataset contains

different kinds of attributes with different values. We pre-
process the dataset before applying self-taught learning on
it. Nominal attributes are converted into discrete attributes
using 1-to-n encoding. In addition, there is one attribute
in the dataset whose value is always 0 for all the records
in the training and test data. We eliminated this attribute
from the dataset. The total number of attributes become
121 after performing the above mentioned steps. The values
in the output layer during the feature learning phase, shown
in Figure 1(a), is computed by the sigmoid function which
gives values from 0 to 1. Since, the output layer values are
identical to the input layer values in this phase, causes to
normalize the values in the input layer from 0 to 1. To

Figure 3: Classification accuracy using self-taught
learning (STL) and soft-max regression (SMR) for
2-Class, 5-Class, and 23-Class when applied on train-
ing data

Figure 4: Precision, Recall, and F-Measure values
using self-taught learning (STL) and soft-max re-
gression (SMR) for 2-Class when applied on training
data

Figure 5: Classification accuracy using self-taught
learning (STL) and soft-max regression (SMR) for
2-class and 5-class when applied on test data



Figure 6: Precision, Recall, and F-Measure values
using self-taught learning (STL) and soft-max re-
gression (SMR) for 2-class when applied on test data

obtain this, we perform max-min normalization on the new
attributes list.

With the new attributes, we use the NSL-KDD training
data without labels for the feature learning using sparse
auto-encoder for the first stage of self-taught learning. In
the second stage, we apply the new learned features rep-
resentation on the training data itself for the classification
using soft-max regression. In our implementation, both the
unlabeled and labeled data for feature learning and classifier
training come from the same source, i.e, NSL-KDD training
data. Figure 2 shows the steps involved in our NIDS imple-
mentation.

4.2 Accuracy Metrics
We evaluate the performance of self-taught learning based

on the following metrics:

• Accuracy: Defined as the percentage of correctly clas-
sified records over the total number of records.

• Precision (P): Defined as the % ratio of the number of
true positives (TP) records divided by the number of
true positives (TP) and false positives (FP) classified
records.

P =
TP

(TP + FP )
× 100% (4)

• Recall (R): Defined as the % ratio of number of true
positives records divided by the number of true posi-
tives and false negatives (FN) classified records.

R =
TP

(TP + FN)
× 100% (5)

• F-Measure (F): Defined as the harmonic mean of preci-
sion and recall and represents a balance between them.

F =
2.P.R

(P +R)
(6)

4.3 Performance Evaluation
We implemented the NIDS for three different types of clas-

sification: a) Normal and anamoly (2-class), b) Normal and
four different attack categories (5-class), and c) Normal and
22 different attacks (23-class). We have evaluated the preci-
sion, recall, and f-measure values for the attacks in the case

Figure 7: Precision, Recall, and F-Measure values
using self-taught learning (STL) and soft-max re-
gression (SMR) for 5-class when applied on test data

of 2-class and 5-class classification. For the 5-classification,
we have computed the weighted values for these metrics.

4.3.1 Evaluation based on Training data
We applied 10-fold cross-validation on the training data

to evaluate the classification accuracy of self-taught learn-
ing (STL) for 2-class, 5-class, and 23-class. We also com-
pared its performance with the soft-max regression (SMR)
when applied directly on the dataset without feature learn-
ing. From Figure 3, we observed that STL shows better
performance for 2-class classification as compared to SMR,
however, its performance is very similar in the case of 5-
class and 23-class classification. We also noticed from the
figure that STL achieved classification accuracy rate more
than 98% for all types of classification.

We measured the precision, recall, and f-measure values
for only 2-class classification. While performing 10-fold cross-
validation, a few kinds of records would miss during the
training or test phase for 5-class and 23-class classification.
Therefore, we only evaluated these metrics for 2-class. We
observed that STL achieved better values for all these met-
rics as compared to SMR. As shown in the Figure 4, STL
achieved 98.84% for f-measure, whereas SMR achieved 96.79%.

Based on the evaluation using training data, we found
that performance of STL is comparable to the best results
obtained in various previous work.

4.3.2 Evaluation based on Training and Test Data
We evaluated the performance of STL for 2-class and 5-

class using the test data. As observed from Figure 5 that
STL performs very well as compared to SMR. For the 2-class
classification, STL achieved 88.39% accuracy rate, whereas
SM achieved 78.06%. The accuracy achieved using STL for
2-class classification outperforms many of the previous work
results. In [20], the best accuracy rate achieved was 82%
with NB-Tree. For the 5-class classification, STL achieved
an accuracy of 79.10% whereas SM achieved 75.23%.

Figure 6 and Figure 7 show the precision, recall, and f-
measure values for 2-class and 5-class. For the 2-class, STL
achieved lesser precision as compared to SM. The precision
values for STL and SM are 85.44% and 96.56%, respectively.
However, STL achived better recall values as compared to
SM. The recall values for STL and SM are 95.95% and
63.73%, respectively. Due to a good recall value, STL out-



performed SM for the f-measure value. STL achieved 90.4%
f-measure value whereas SM achieved only 76.8%. Similar
observations were made for the 5-class as in the case of 2-
class shown in Figure 7. The f-measure values for STL and
SM are 75.76% and 72.14%, respectively.

5. CONCLUSION AND FUTURE WORK
We proposed a deep learning based approach to build an

effective and flexible NIDS. An sparse auto-encoder and soft-
max regression based NIDS was implemented. We used the
benchmark network intrusion dataset - NSL-KDD to evalu-
ate anomaly detection accuracy. We observed that the NIDS
performed very well compared to previously implemented
NIDSs for the normal/anomaly detection when evaluated
on the test data. The performance can be further enhanced
by applying techniques such as Stacked Auto-Encoder, an
extension of sparse auto-encoder in deep belief nets, for un-
supervised feature learning and NB-Tree, Random Tree, or
J48 for further classification. It was noted that the lat-
ter techniques performed well when applied directly on the
dataset [20]. In future, we plan to implement a real-time
NIDS for real networks using deep learning technique. Ad-
ditionally, on-the-go feature learning on raw network traffic
headers instead of derived features using raw headers can be
another high impact research in this area.
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