
International Journal of Security and Its Applications

Vol. 9, No. 5 (2015), pp. 205-216

http://dx.doi.org/10.14257/ijsia.2015.9.5.21

ISSN: 1738-9984 IJSIA

Copyright ⓒ 2015 SERSC

A Hybrid Malicious Code Detection Method based on Deep
Learning

Yuancheng Li, Rong Ma and Runhai Jiao

School of Control and Computer Engineering,

North China Electric Power University, Beijing, China

ycli@ncepu.edu.cn, acelin007@163.com, runhaijiao@ncepu.edu.cn

Abstract

In this paper, we propose a hybrid malicious code detection scheme based on

AutoEncoder and DBN (Deep Belief Networks). Firstly, we use the AutoEncoder deep

learning method to reduce the dimensionality of data. This could convert complicated

high-dimensional data into low dimensional codes with the nonlinear mapping, thereby

reducing the dimensionality of data, extracting the main features of the data; then using

DBN learning method to detect malicious code. DBN is composed of multilayer Restricted

Boltzmann Machines (RBM, Restricted Boltzmann Machine) and a layer of BP neural

network. Based on unsupervised training of every layer of RBM, we make the output

vector of the last layer of RBM as the input vectors of BP neural network, then conduct

supervised training to the BP neural network, finally achieve the optimal hybrid model by

fine-tuning the entire network. After inputting testing samples into the hybrid model, the

experimental results show that the detection accuracy getting by the hybrid detection

method proposed in this paper is higher than that of single DBN. The proposed method

reduces the time complexity and has better detection performance.

Keywords: Malicious code Detection, AutoEncoder, DBN, RBM, deep learning

1. Introduction

Malicious code is the software which intentionally damage or destroy the function of

system through adding, changing, deleting some code by unauthorized users in normal

circumstances. In recent years, malicious code causing far-reaching influence mainly

includes: viruses, Worm, Trojan horse, etc. According to the statistical results in [1], in

2010, Symantec recorded more than 3,000,000,000 malicious code attacks, and

monitoring more than 280,000,000 independent variant malicious code samples.

Compared to 2009, there is growth of 93% for the attack based on the Web. With the

increase in the number of malicious code, this shows that the harm and loss is growing.

As an important technology of network security, intrusion detection discovers and

recognizes intrusion behaviors or attempts in the system through the collection and

analysis of key data in the network and computer system. Efficient, accurate identification

of malicious code can improve the efficiency of intrusion detection, therefore, malicious

code analysis and detection is a key problem in intrusion detection technology.

For detection of malicious code, according to the detected position it is currently

divided into two approaches host-based and network-based [2]: Network-based detection

methods, including Honeypot-based approach [3-4], and based on Deep packet Inspection

[5]; Host-based detection methods, including check sum-based approach [6],

signature-based approach [7-9], heuristic data mining approach [10]. The data mining

method adopted many machine learning methods, which had an effective detection of

unknown malicious code through learning the characteristics of malicious code and the

normal code [11] reviewed a variety of feature-extraction methods and machine learning

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

206 Copyright ⓒ 2015 SERSC

methods in a variety of malicious code detection applications, including naive Bayes,

decision trees, artificial neural networks, Support Vector Machine, etc., [12] proposed a

static system call sequences based on N-gram and two automatic feature-selection

methods, and adopted K-nearest neighbor algorithm, SVM, decision tree as the classifier.

The literature [13] presented a malicious code behavior feature extraction and detection

method based on semantics to obtain the behavior of malicious code which has great

anti-jamming capabilities.

Although the above methods have achieved certain results in the aspect of malicious

code detection, there are still some problems. Such as, feature-extraction is not

appropriate, the detection rate and the detection accuracy are not high, and the complexity

of the algorithm is high. This paper selects KDDCUP’99 data set as experimental data,

and proposes a hybrid malicious code detection model based on deep learning; Based on

the AutoEncoder for data dimensionality reduction, this paper proposes to set DBN as a

classifier. For the malicious code behavior, using multiple deep learning achieved better

effects than surface learning model. Finally, this method improves the malicious code

detection rate and detection accuracy, and reduces the time complexity of the hybrid

model.

2. Hybrid Malicious Code Detection Model based on Deep Learning

Network data usually contains the normal data and the malicious data. Malicious code

detection is to differentiate between the normal data and malicious code data separately,

so essentially it belongs to binary classification problems. To get a good performance of

the malicious code detection model, there are two aspects of work need to be done: Firstly,

finding the essential characteristics of malicious code data; secondly, constructing a good

performance of classifier model to accurately differentiate the malicious data from the

normal data. In this paper, we make use of the advantages of deep learning, the organic

integration of two deep learning methods, AutoEncoder and DBN. This hybrid model

extracts the essence of malicious code data, reduces the complexity of the model, and

improves the detection accuracy of malicious code.

2. 1 AutoEncoder Dimensionality Reduction

AutoEncoder [14] is a kind of deep learning method for learning efficient code which is

proposed by G. E. Hinton in 2006. Through the study of the compression coding of

specified set of data, it can achieve the purpose of data dimensionality reduction.

AutoEncoder structure is divided into part of encoder and decoder, including input layer,

hidden layer, output layer. The cross section between encoder and decoder named code

layer is the core of AutoEncoder that can reflect the essential characteristics of high

dimensional data set with nested structure, and to set the intrinsic dimensions of

high-dimensional data sets. When the number of hidden layer neurons are less than the

number of input layer and output layer neurons, we can get the compressed vector of input

layer called the data dimensionality reduction.

AutoEncoder consists of three steps, which are pretraining, Unrolling and fine-tuning

process [14], as shown in Figure 1.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 207

Figure 1. AutoEncoder Structure

In the pretraining process, we set the output of each RBM hidden layer neuron as the

input of the next RBM. RBM consists of the visible units and hidden units. We use the

vectorV and H represent the visible units and the hidden unit state respectively. The

structure is shown in Figure 2.

hi

vj

Hidden layer

unit h

Hidden layer

unit v

weights w

Figure 2. The Network Structure of RBM

Where iv
denotes the state of the i visible unit, jh

denotes the state of the j

hidden unit, visible and hidden units meet the energy formula (1):

 
,

, i i j j i j ij

i V j H i j

E v h b v b h v h w
 

      (1)

In the process of adjustment of weight training, firstly we update the state of the hidden

layer neuron, and then update the state of the visible layer, thus get the adjusting weights.

The weight updating rule as shown in formula (2):

       1ij ij ij ij i j i jw t w t w w t v h v h
 

     

(2)

Where
ijw denotes the weight adjustment, ()ijw t denotes the connection

weights(when in step t between the i, j neuron),  denotes the learning rate, i jv h


denotes the average
 forward correlation (Equal to the output of product of neurons in the

hidden and visible neurons), i jv h


denotes the average reverse correlation.

After the pre-training is completed, combining the current RBM output unit with the

next RBM input unit as the independent layer. Unrolling process is to connect these

independent RBM into a multi-layered AutoEncoder, the Unrolling process as shown in

Figure 3.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

208 Copyright ⓒ 2015 SERSC

3030

100100

w
4

RBM

500500

Initial dataInitial data

w
1

RBM

Pretraining

100100

200200

w
3

RBM

200200

500500

2
w

RBM

Encoder

Reconstructed dataReconstructed data

Decoder

500500

200200

100100

3030

Unrolling

100100

200200

500500

Initial dataInitial data

Code layer

1
w T

2
w T

4
w T

3
w T

1
w T

2
w T

4
w T

3
w T

Figure 3. The Unrolling Process of AutoEncoder

Fine-tuning process is the process that does the further adjustments to the initial

weights after pretraining process to get optimal weights. We mainly use the multiclass

cross-entropy error function [15] for evaluation.

The multiclass cross-entropy error function is the difference between the measurement

of target probability distribution and the actual probability distribution, that the smaller,

the two distributions are similar, and the better. AutoEncoder uses BP algorithm to adjust

the weights of the multiclass cross-entropy error function, as shown in formula (3):

ˆ ˆ[log (1)log(1)]i i i ii i
H y y y y     

(3)

Where iy

denotes the characteristics of the data sample values, ˆ
iy

denotes the

Characteristics of the data sample after reconstruction.

AutoEncoder adjusts the weights in the fine-tuning process, out layer weight

adjustment rules shown as formula (4):

 m

ij i i j

ij

H
w t y O

w
 


    


(4)

Hidden layer weights adjustment rules shown as formula (5):

j j j(1 O)O

m m i m

ij j

ij i ij i

m i m

j

i i i

H H net H
w O

w net w net

H O H
O O

O net O

  

 

   
      

   

  
    

  

 (5)

Where  denotes the adjustment step,
jO

denotes the upper output neurons.

2. 2 DBN Deep Learning Structure

DBN is a deep learning machine which consists of an unsupervised multi-layer RBM

network and a supervised BP network. Each layer unit captures highly relevant implicit

correlations from the hidden units of the front layer. The adjacent layers of the DBN can

be decomposed into a single limited RBM, shown as Figure 4. In Figure 4, deep belief

networks shown as Figure (1), and Figure (2) indicated that the use of each low layer RBM

as input data for the training of the next RBM, get a set of RBM by the greedy learning.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 209

RBM

RBM

RBM

Figure 4. The RBM Structure and the Corresponding DBN Network

DBN training process is divided into two steps: The first step, train each layer of RBM

separately by the unsupervised way; The second step, BP neural network in the last layer

of DBN, we set the output vector of the last RBM as the input vector of BP neural

network, then do the supervised training to entity relation classifier.

The paper [15] believes that, in the typical DBN which has one hidden layer the

relationship between visual layer v and hidden layer h can be expressed as formula

(6):

     
2

1 2 2

1

, , , | ,
l

l k k l l

k

P v h h P h h P h h


 



 
  
 


(6)

As Figure 2 shown, RBM are mutually connected by the visible and the hidden layers.

The connection matrix and the biases between the layers are get by unsupervised greedy

algorithm. In specific training process, firstly, mapping the visual unit
iv to the hidden

layer unit
jh ; then, reversely reconstructing the

iv using
jh ; Repeating this process, and

updating the values of the connection matrix and the biases unless the reconstruction error

is acceptable. Associated difference between hidden layer units and visual layer units will

form the basis for each weight update. Mapping probability of hidden layer units and

visual layer units shown as formula (7) and (8):

 
1

1| ;
I

j ij i j

i

p h v w v a 


 
   

 
 (7)

 
1

1| ;
I

i ij i j

j

p v h w h b 


 
   

 
 (8)

Where ijw

denotes the connection weights between the visual layer units and hidden

layer units,
ib

and ja

denotes biases respectively, sigmoid function denotes the

incentive function. By using the gradient of the log likelihood probability  log , ;p v h  ,

we derive the RBM weight update rule, as shown in formula (9):

   mod-ij data i j el i jw E v h E v h  (9)

Where

denotes the expectation value,  data i jE v h denotes the expectation value

defined in the model. Because  mod el i jE v h is difficult to calculate, we always use the

Gibbs sampling replace  mod el i jE v h by using the contrast gradient divergence

algorithm which is similar to the gradient. Through a combination of bottom-up RBMs

which have carried out massive learnings layer by layer can construct an initial DBN.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

210 Copyright ⓒ 2015 SERSC

Then fine tune the whole DBN from the back to the front by the supervised learning

method which is similar to the traditional BP neural network. Finally, we can establish the

trained DBN model.

2. 3 Hybrid Malicious Code Detection based on DBN and AutoEncoder

Deep learning has nonlinear mapping of the deep structure with the multilayer which

has the benefits complex function can be expressed with fewer parameters. Compared

with surface learning, it can realize complex function approximation, and has strong

ability for the massed learning of the essential characteristics of data set from a few

samples. Based on the above considerations, this paper proposes a hybrid malicious code

detection model based on deep learning; Reducing dimensionality of the data by using the

AutoEncoder’s space mapping ability of different dimensionality, then abstracting the

main characteristics. Based on this, setting DBN as the classifier for several times deep

learnings. Then improving the detection accuracy, and reducing the time complexity of

the hybrid model. Figure 5 depicts the process of mixing pre-trained detection algorithm.
Begin

Data

preprocessing

AutoEncoder

dimensionality

reduction

stop

dimensionality

reduction

Training sample

Dataset after dimensionality

reduction

Normal

code

Malicious

code

Set layer

i=1

Training network

according RBM

Learning rules

Reserve

weights and

biases

If i<=max layer

BP neural network

classification(supervised

learning)

Set layer

i=i+1

YES

NOOutputOutput

ClassificationClassification

Training sample

dataset

InputInput

Network

parameters

Figure 5. A DBN Malicious Code Detection Method based on AutoEncoder
Dimensionality Reduction

The hybrid detection algorithm is described as follows:

(1) Initialization, input training samples; then digitizing and normalizing the input data;

(2) Reducing the dimension, AutoEncoder was used to realize the feature mapping;

(3) Input eigenvector with dimensionality reduction, network parameter to initialize

DBN classifier;

(4) Set the layer i=1;

(5) Train the network layer by layer according to RBM learning rules, then save the

result including the weights and biases;

(6) If i<=max layer, set i=i+1; when i>max layer, do the supervised learning for BP

network;

(7) Input the test samples into the trained classifier to detect malicious code and the

normal code.

3. Experimental Results and Analysis

3.1 Analysis and Pretreatment of Experimental Data

In this paper, KDDCUP'99 dataset [16] was used to detect malicious code data. They

include five categories: probe, UZR (User to Root), RZL (Remote to Local), DoS

(Denial-of-Service) as well as Normal data. This paper adopted 10% of the samples of

KDDCUP'99 as a dataset, containing a total of 494,021 training data and 311,029 testing

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 211

data. In the dataset of KDDCUP'99, each data contains 41 properties. There are two types

of data: numerical and character type. For numerical data, we can treat it directly as number;

for the character of character data, we can achieve numeric in the standard method of

keywords. To eliminate the effects caused by differences of the magnitude, and to reduce

the excessive reliance on individual characteristics in the process of classification, we need

to normalize data.

Firstly, each feature was standardized according to the formula (10)

'
ij j

ij

j

x AVERAGE
x

STAND




(10)

 1 2

1
j j j njAVERAGE x x x

n
   

(11)

 1

1
j j j nj jSTAND x AVERAGE x AVERAGE

n
    

(12)

0jAVERAGE  ， ' 0ijx  ； 0jSTAND  ，' 0ijx  。

Secondly, the standardized features need to be normalized, as shown in the formula (13):

' min
'

max '

ij

ij

ij

x x
x

x x






(13)

Where x denotes the value of the original training sample, max (or min) denotes the

maximum value for the sample data in the condition of same indicator (or minimum).

3.2 Evaluation Index Experimental Results

This paper uses the following indexes to evaluate experimental results, which are TPR

(True Positive Rate), FPR (False Positive Rate), Accuracy, CPU time consumption. They

are defined as follows:

TPR = the number of correct results of normal code samples/the actual number of

normal code samples,

FPR = the number of malicious code samples which are predicted to be normal code/the

actual number of malicious code samples.

3.3 Comparison of Experimental Tesults

Experimental test environment: the platform of Intel Core Duo CPU 2.10GHz and 2.00G

RAM's, Matlab v7.11. This paper uses 2000 samples extracted from 10% samples in

proportion which contain the 141 attacks recorded test data and additional 14 types of

experiments. The experiment designed the AutoEncoder which consists of five layers. The

numbers of neurons in the previous four-layer network are 41, 300, 150, 75, respectively.

Furthermore, the number of neurons in the last layer is variable, which determine the

dimension of data number after dimensionality reduction.

After the pretraining process of the training and testing data, we use AutoEncoder for

data dimensionality reduction. Through changing the iterations of the pretraining and

fine-tuning, we could get different models, including AutoEncoder + DBN
5-5

(pretraining

iterations 5 times, fine-tuning5 times); AutoEncoder + DBN
10-10

(pre-training iterations 10

times, fine-tuning 10 times); AutoEncoder + DBN
10-5

(pre-training iterations 10 times,

fine-tuning five times). The detection results of malicious code as shown in Table 1.

Table 1. The Results of the Different Detection Methods

Model TPR FPR Accuracy CPU time(s)

DBN 95.34% 9.02% 91.4% 1.126

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

212 Copyright ⓒ 2015 SERSC

AutoEncoder+DBN
5-5

96.79% 15.79% 89.75% 2.625

AutoEncoder+DBN
10-5

93.35 % 9.17% 88.95% 1.147

AutoEncoder+DBN
10-10

92.20% 1.58% 92.10% 1.243

The experimental results show that with the increase in the number of iterations, in the

respect of detection accuracy, the proposed method is superior to the method of single DBN,

which was used in the first experiment. Apparently, using AutoEncoder to achieve data

dimension reduction is effective, it can improve the detection accuracy, for using

AutoEncoder can capture the essential characteristics of date efficiently. Meanwhile, the

accuracy of detection (TP) is reduced. Overall, in the respect of prediction accuracy, the

mentioned method described in the paper is superior to the single DBN method. It can

adapt to the complex environment, achieve effective detection of malicious code, moreover,

it consumes less time. Figures 6 and 7 show the error rate in the process of pretraining and

fine-tuning. After two iterations, the error rate is maintained at a lower level stably.

1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8
x 10

4

Iteration

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Reconstruction Error for RBM pre-training

RBM 41-300

RBM 300-150

RBM 150-75

RBM 75-9

Figure 6. RBM Pretraining Reconstruction Error

1 1.5 2 2.5 3 3.5 4 4.5 5
3

3.5

4

4.5

5

5.5

6

6.5

7

Iteration

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Reconstruction Error for fine-tuning

Training

Testing

Figure 7. Fine-tuning Reconstruction Error

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 213

2 4 6 8 10 12 14 16 18 20
0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

dimension

A
c
c
u
ra

c
y

Detecting accuracy with differet dimension

[5 5] iterations

[10 10] iterations

[10 5] iterations

Figure 8. Effect of Dimensions on the Correct Detecting Accuracy

2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5
Training time with differet dimension

Dimension

T
ra

in
in

g
 t

im
e
 (

in
 s

e
c
o
n
d
s
)

[5 5] iterations

[10 10] iterations

[10 5] iterations

Figure 9. Effect of Dimensions on the Time Consumption

There are many parameters in the AutoEncoder, such as network structure, output

dimension of data after dimensionality reduction, the number of iterations for pretraining

and fine-tuning, etc. The output dimension of data after dimensionality reduction is one of

the major parameters among them. This paper explores the impact of these parameters on

these mentioned methods. Figures 8 and 9 respectively show the effect on the detection

accuracy and the time consumption of the method. In figure 8, detection accuracy increases

with increasing number of iterations. In Figure 9, with the increase of the number of

iterations, CPU time consumption varies, but the dimension and training time consumption

have no direct correlation, because AutoEncoder can restore data based on less information

loss and error.

5 6 7 8 9 10 11 12 13 14 15
0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93
Detecting accuracy with different iteration

iteration

D
e
te

c
ti
n
g
 a

c
c
u
ra

c
y

Pretraining iterations

Fine-tuning iterations

Figure 10. The Relations between the Correct Detecting Accuracy and
Iterations

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

214 Copyright ⓒ 2015 SERSC

5 6 7 8 9 10 11 12 13 14 15
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
Training time with different iteration

iteration
T

ra
in

in
g
 t

im
e
 (

in
 s

e
c
o
n
d
s
)

Pretraining iterations

Fine-tuning iterations

Figure 11. The Relations between the Time Consumption and Iterations

Figure 10 and Figure 11 show the effect on the detection accuracy of the number of

iterations and the time consuming. Figure 10 show that when pretraining iterations

increased to 10 times, the detection accuracy reached the highest point. Figure 11 shows

that when pretraining iterations increased to 10 times, most of the time consumption is

maintained at a low level. Fine-tuning process is to adjust the weights using

back-propagation, for low-dimensional data, the network is over-learning. The iterations of

fine-tuning do not affect two assessed value directly. AutoEncoder reduces the data

dimensions and extracts the main features of data through the nonlinear mapping for

complex multidimensional data; this makes the effectiveness of the experiment increased

when applying DBN to classify. In short, for the detection of malicious code, the hybrid

method mentioned in this paper is apparently superior to the single DBN method in the first

experiment on the whole.

4. Conclusion

Against the problem of detecting malicious code, we propose a hybrid method of

detecting malicious code based on deep learning, which combines the advantages of

AutoEncoder and DBN respectively. Firstly, the method used AutoEncoder for data

dimensionality reduction to extract the main feature of data. Then the method uses DBN to

detect malicious code. Finally, the experiment was verified by KDDCUP'99 dataset.

Experimental results show that compared with the detection method using single DBN, the

proposed method improves detection accuracy, while reducing the time complexity of the

model. However, in practical application, according to actual situation, the method

proposed in this paper needs to have further improvements in order to improve its

performance.

Acknowledgements

This work was supported in part by The Fundamental Research Funds for the Central

Universities (No. 2014MS29).

References

[1] “Symantec Corporation”, Symantec Internet security threat report trends for 2010 [EB/OL] (2011-04)

[2012-07-01], (2011), http://msisac.cisecurity.org/resources/reports/documents/Symantec, Internet

Security Threat report 2010.pdf.

[2] N. Idika and A. P Mathur, “Survey of malware detection technical”, Technical Report, Department of

Computer Science, Purdue University, (2007).

[3] C. L. Tsai, C. C. Tseng and C. C. Han, Editors, “Intrusive behavior analysis based on honey pot tracking

and ant algorithm analysis”, 43rd Annual 2009 International Carnahan Conference, (2009) October 5-8,

Zurich, Switzerland.

[4] W. Wang and I. Murynets, J. Security and Communication Networks, vol. 6, no. 1, (2013).

[5] P. C. Lin, Y. D. Lin, Y. C. Laiand and T. H. Lee, J. Computer Practices, vol. 41, no. 4, (2008).

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

Copyright ⓒ 2015 SERSC 215

[6] Y. Sawaya, A. Kubota and Y. Miyake, Editors, “Detection of attackers in services using anomalous host

behavior based on traffic flow statistics”, IEEE/IPSJ 11th International Symposium, (2011) July 18-21,

Munich, Bavaria, Germany.

[7] M. Milenkovic, A. Milenkovic and E. Jovanov, J. ACM SIGARCH Computer Architecture News, vol. 33,

no. 1, (2005).

[8] M. Christodorescu, S. Jha, S. A. Seshia, D. Song and R. E. Bryant, Editors, Proceedings of the 2005 IEEE

Symposium Security and Privacy, (2005) May 8-11; Oakland, California.

[9] M. Christodorescu and S. Jha, “Static analysis of executables to detect malicious patterns”, Wisconsin:

University of Wisconsin, (2006).

[10] D. G. Kong, X. B. Tan, H. S. Xi, T. Gong and J. M. Shuai, J. Journal of Software, vol. 22, no. 3, (2011).

[11] A. Shabtai, R. Moskovitch, Y. Elovici and C. Glezer, J. Information Security Technical Report, vol. 14,

no. 1, (2009).

[12] Y. X. Ding, X. B. Yuan, D. Zhou, L. Dong and Z. C. An, J. Computers &Security, vol. 30, no. 6, (2011).

[13] R. Wang, D. G. Feng, Y. Yang and P. R. Su, J. Journal of Software, vol. 23, no. 2, (2012).

[14] G. E. Hinton and R. R. Salakhutdinov, J. Science, vol. 313, no. 5786, (2006).

[15] G. E. Hinton, “Distributed representations”, Tech. Report, University of Toronto, (1984).

[16] KDDCUP99, Available on, (2007), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Authors

Yuancheng Li, received the Ph.D. degree from University of

Science and Technology of China, Hefei, China, in 2003. From 2004

to 2005, he was a postdoctoral research fellow in the Digital Media

Lab, Beihang University, Beijing, China. Since 2005, he has been with

the North China Electric Power University, where he is a professor and

the Dean of the Institute of Smart Grid and Information Security. From

2009 to 2010, he was a postdoctoral research fellow in the Cyber

Security Lab, Pennsylvania State University, Pennsylvania, USA. His

current research interests include Smart Grid operation and control,

information security in Smart Grid.

International Journal of Security and Its Applications

Vol. 9, No. 5 (2015)

216 Copyright ⓒ 2015 SERSC

