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Abstract 

In this paper, we propose a hybrid malicious code detection scheme based on 

AutoEncoder and DBN (Deep Belief Networks). Firstly, we use the AutoEncoder deep 

learning method to reduce the dimensionality of data. This could convert complicated 

high-dimensional data into low dimensional codes with the nonlinear mapping, thereby 

reducing the dimensionality of data, extracting the main features of the data; then using 

DBN learning method to detect malicious code. DBN is composed of multilayer Restricted 

Boltzmann Machines (RBM, Restricted Boltzmann Machine) and a layer of BP neural 

network. Based on unsupervised training of every layer of RBM, we make the output 

vector of the last layer of RBM as the input vectors of BP neural network, then conduct 

supervised training to the BP neural network, finally achieve the optimal hybrid model by 

fine-tuning the entire network. After inputting testing samples into the hybrid model, the 

experimental results show that the detection accuracy getting by the hybrid detection 

method proposed in this paper is higher than that of single DBN. The proposed method 

reduces the time complexity and has better detection performance. 
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1. Introduction

Malicious code is the software which intentionally damage or destroy the function of 

system through adding, changing, deleting some code by unauthorized users in normal 

circumstances. In recent years, malicious code causing far-reaching influence mainly 

includes: viruses, Worm, Trojan horse, etc. According to the statistical results in [1], in 

2010, Symantec recorded more than 3,000,000,000 malicious code attacks, and 

monitoring more than 280,000,000 independent variant malicious code samples. 

Compared to 2009, there is growth of 93% for the attack based on the Web. With the 

increase in the number of malicious code, this shows that the harm and loss is growing. 

As an important technology of network security, intrusion detection discovers and 

recognizes intrusion behaviors or attempts in the system through the collection and 

analysis of key data in the network and computer system. Efficient, accurate identification 

of malicious code can improve the efficiency of intrusion detection, therefore, malicious 

code analysis and detection is a key problem in intrusion detection technology. 

For detection of malicious code, according to the detected position it is currently 

divided into two approaches host-based and network-based [2]: Network-based detection 

methods, including Honeypot-based approach [3-4], and based on Deep packet Inspection 

[5]; Host-based detection methods, including check sum-based approach [6], 

signature-based approach [7-9], heuristic data mining approach [10]. The data mining 

method adopted many machine learning methods, which had an effective detection of 

unknown malicious code through learning the characteristics of malicious code and the 

normal code [11] reviewed a variety of feature-extraction methods and machine learning 
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methods in a variety of malicious code detection applications, including naive Bayes, 

decision trees, artificial neural networks, Support Vector Machine, etc., [12] proposed a 

static system call sequences based on N-gram and two automatic feature-selection 

methods, and adopted K-nearest neighbor algorithm, SVM, decision tree as the classifier. 

The literature [13] presented a malicious code behavior feature extraction and detection 

method based on semantics to obtain the behavior of malicious code which has great 

anti-jamming capabilities. 

Although the above methods have achieved certain results in the aspect of malicious 

code detection, there are still some problems. Such as, feature-extraction is not 

appropriate, the detection rate and the detection accuracy are not high, and the complexity 

of the algorithm is high. This paper selects KDDCUP’99 data set as experimental data, 

and proposes a hybrid malicious code detection model based on deep learning; Based on 

the AutoEncoder for data dimensionality reduction, this paper proposes to set DBN as a 

classifier. For the malicious code behavior, using multiple deep learning achieved better 

effects than surface learning model. Finally, this method improves the malicious code 

detection rate and detection accuracy, and reduces the time complexity of the hybrid 

model. 

 

2. Hybrid Malicious Code Detection Model based on Deep Learning 

Network data usually contains the normal data and the malicious data. Malicious code 

detection is to differentiate between the normal data and malicious code data separately, 

so essentially it belongs to binary classification problems. To get a good performance of 

the malicious code detection model, there are two aspects of work need to be done: Firstly, 

finding the essential characteristics of malicious code data; secondly, constructing a good 

performance of classifier model to accurately differentiate the malicious data from the 

normal data. In this paper, we make use of the advantages of deep learning, the organic 

integration of two deep learning methods, AutoEncoder and DBN. This hybrid model 

extracts the essence of malicious code data, reduces the complexity of the model, and 

improves the detection accuracy of malicious code. 

 

2. 1 AutoEncoder Dimensionality Reduction 

AutoEncoder [14] is a kind of deep learning method for learning efficient code which is 

proposed by G. E. Hinton in 2006. Through the study of the compression coding of 

specified set of data, it can achieve the purpose of data dimensionality reduction. 

AutoEncoder structure is divided into part of encoder and decoder, including input layer, 

hidden layer, output layer. The cross section between encoder and decoder named code 

layer is the core of AutoEncoder that can reflect the essential characteristics of high 

dimensional data set with nested structure, and to set the intrinsic dimensions of 

high-dimensional data sets. When the number of hidden layer neurons are less than the 

number of input layer and output layer neurons, we can get the compressed vector of input 

layer called the data dimensionality reduction. 

AutoEncoder consists of three steps, which are pretraining, Unrolling and fine-tuning 

process [14], as shown in Figure 1. 
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Figure 1. AutoEncoder Structure 

In the pretraining process, we set the output of each RBM hidden layer neuron as the 

input of the next RBM. RBM consists of the visible units and hidden units. We use the 

vectorV and H represent the visible units and the hidden unit state respectively. The 

structure is shown in Figure 2. 
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Figure 2. The Network Structure of RBM 

Where iv  
denotes the state of the i  visible unit, jh

 
denotes the state of the j  

hidden unit, visible and hidden units meet the energy formula (1): 

 
,

, i i j j i j ij

i V j H i j

E v h b v b h v h w
 

                            (1)

 

In the process of adjustment of weight training, firstly we update the state of the hidden 

layer neuron, and then update the state of the visible layer, thus get the adjusting weights. 

The weight updating rule as shown in formula (2): 

       1ij ij ij ij i j i jw t w t w w t v h v h
 

     
                  

(2) 
 

Where 
ijw denotes the weight adjustment, ( )ijw t  denotes the connection 

weights(when in step t between the i, j neuron),  denotes the learning rate, i jv h


 

denotes the average
 forward correlation (Equal to the output of product of neurons in the 

hidden and visible neurons), i jv h
  

denotes the average reverse correlation. 

After the pre-training is completed, combining the current RBM output unit with the 

next RBM input unit as the independent layer. Unrolling process is to connect these 

independent RBM into a multi-layered AutoEncoder, the Unrolling process as shown in 

Figure 3. 
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Figure 3. The Unrolling Process of AutoEncoder 

Fine-tuning process is the process that does the further adjustments to the initial 

weights after pretraining process to get optimal weights. We mainly use the multiclass 

cross-entropy error function [15] for evaluation. 

The multiclass cross-entropy error function is the difference between the measurement 

of target probability distribution and the actual probability distribution, that the smaller, 

the two distributions are similar, and the better. AutoEncoder uses BP algorithm to adjust 

the weights of the multiclass cross-entropy error function, as shown in formula (3): 

ˆ ˆ[ log (1 )log(1 )]i i i ii i
H y y y y                              

(3) 

Where iy
 

denotes the characteristics of the data sample values, ˆ
iy
 
denotes the 

Characteristics of the data sample after reconstruction. 

AutoEncoder adjusts the weights in the fine-tuning process, out layer weight 

adjustment rules shown as formula (4): 

 m

ij i i j

ij

H
w t y O

w
 


    


                               

(4) 

Hidden layer weights adjustment rules shown as formula (5): 
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                        (5) 

Where   denotes the adjustment step, 
jO
 
denotes the upper output neurons. 

 

2. 2 DBN Deep Learning Structure 

DBN is a deep learning machine which consists of an unsupervised multi-layer RBM 

network and a supervised BP network. Each layer unit captures highly relevant implicit 

correlations from the hidden units of the front layer. The adjacent layers of the DBN can 

be decomposed into a single limited RBM, shown as Figure 4. In Figure 4, deep belief 

networks shown as Figure (1), and Figure (2) indicated that the use of each low layer RBM 

as input data for the training of the next RBM, get a set of RBM by the greedy learning. 
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Figure 4. The RBM Structure and the Corresponding DBN Network 

DBN training process is divided into two steps: The first step, train each layer of RBM 

separately by the unsupervised way; The second step, BP neural network in the last layer 

of DBN, we set the output vector of the last RBM as the input vector of BP neural 

network, then do the supervised training to entity relation classifier. 

The paper [15] believes that, in the typical DBN which has one hidden layer the 

relationship between visual layer v  and hidden layer h  can be expressed as formula 

(6): 

     
2

1 2 2

1

, , , | ,
l

l k k l l

k

P v h h P h h P h h


 



 
  
 


                     

(6) 

As Figure 2 shown, RBM are mutually connected by the visible and the hidden layers. 

The connection matrix and the biases between the layers are get by unsupervised greedy 

algorithm. In specific training process, firstly, mapping the visual unit 
iv  to the hidden 

layer unit 
jh ; then, reversely reconstructing the 

iv  using 
jh ; Repeating this process, and 

updating the values of the connection matrix and the biases unless the reconstruction error 

is acceptable. Associated difference between hidden layer units and visual layer units will 

form the basis for each weight update. Mapping probability of hidden layer units and 

visual layer units shown as formula (7) and (8): 

 
1
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I

j ij i j

i

p h v w v a 


 
   

 
                             (7) 
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

 
   

 
                             (8) 

Where ijw
 

denotes the connection weights between the visual layer units and hidden 

layer units, 
ib  

and ja
 
denotes biases respectively, sigmoid function denotes the 

incentive function. By using the gradient of the log likelihood probability  log , ;p v h  , 

we derive the RBM weight update rule, as shown in formula (9): 

   mod-ij data i j el i jw E v h E v h                            (9) 

Where 
 

denotes the expectation value,  data i jE v h  denotes the expectation value 

defined in the model. Because  mod el i jE v h  is difficult to calculate, we always use the 

Gibbs sampling replace  mod el i jE v h  by using the contrast gradient divergence 

algorithm which is similar to the gradient. Through a combination of bottom-up RBMs 

which have carried out massive learnings layer by layer can construct an initial DBN. 
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Then fine tune the whole DBN from the back to the front by the supervised learning 

method which is similar to the traditional BP neural network. Finally, we can establish the 

trained DBN model. 

 

2. 3 Hybrid Malicious Code Detection based on DBN and AutoEncoder 

Deep learning has nonlinear mapping of the deep structure with the multilayer which 

has the benefits complex function can be expressed with fewer parameters. Compared 

with surface learning, it can realize complex function approximation, and has strong 

ability for the massed learning of the essential characteristics of data set from a few 

samples. Based on the above considerations, this paper proposes a hybrid malicious code 

detection model based on deep learning; Reducing dimensionality of the data by using the 

AutoEncoder’s space mapping ability of different dimensionality, then abstracting the 

main characteristics. Based on this, setting DBN as the classifier for several times deep 

learnings. Then improving the detection accuracy, and reducing the time complexity of 

the hybrid model. Figure 5 depicts the process of mixing pre-trained detection algorithm. 
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Figure 5. A DBN Malicious Code Detection Method based on AutoEncoder 
Dimensionality Reduction 

The hybrid detection algorithm is described as follows: 

(1) Initialization, input training samples; then digitizing and normalizing the input data; 

(2) Reducing the dimension, AutoEncoder was used to realize the feature mapping; 

(3) Input eigenvector with dimensionality reduction, network parameter to initialize 

DBN classifier; 

(4) Set the layer i=1; 

(5) Train the network layer by layer according to RBM learning rules, then save the 

result including the weights and biases; 

(6) If i<=max layer, set i=i+1; when i>max layer, do the supervised learning for BP 

network; 

(7) Input the test samples into the trained classifier to detect malicious code and the 

normal code. 

 

3. Experimental Results and Analysis 
 

3.1 Analysis and Pretreatment of Experimental Data  

In this paper, KDDCUP'99 dataset [16] was used to detect malicious code data. They 

include five categories: probe, UZR (User to Root), RZL (Remote to Local), DoS 

(Denial-of-Service) as well as Normal data. This paper adopted 10% of the samples of 

KDDCUP'99 as a dataset, containing a total of 494,021 training data and 311,029 testing 
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data. In the dataset of KDDCUP'99, each data contains 41 properties. There are two types 

of data: numerical and character type. For numerical data, we can treat it directly as number; 

for the character of character data, we can achieve numeric in the standard method of 

keywords. To eliminate the effects caused by differences of the magnitude, and to reduce 

the excessive reliance on individual characteristics in the process of classification, we need 

to normalize data. 

Firstly, each feature was standardized according to the formula (10) 

'
ij j

ij

j

x AVERAGE
x

STAND




                                   

(10)
 

   
 1 2

1
j j j njAVERAGE x x x

n
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0jAVERAGE  ， ' 0ijx  ； 0jSTAND  ，' 0ijx  。 

Secondly, the standardized features need to be normalized, as shown in the formula (13): 

' min
'

max '

ij

ij

ij

x x
x

x x





                                       

(13)
 

Where x  denotes the value of the original training sample, max (or min) denotes the 

maximum value for the sample data in the condition of same indicator (or minimum). 

 

3.2 Evaluation Index Experimental Results 

This paper uses the following indexes to evaluate experimental results, which are TPR 

(True Positive Rate), FPR (False Positive Rate), Accuracy, CPU time consumption. They 

are defined as follows: 

TPR = the number of correct results of normal code samples/the actual number of 

normal code samples, 

FPR = the number of malicious code samples which are predicted to be normal code/the 

actual number of malicious code samples. 

 

3.3 Comparison of Experimental Tesults 

Experimental test environment: the platform of Intel Core Duo CPU 2.10GHz and 2.00G 

RAM's, Matlab v7.11. This paper uses 2000 samples extracted from 10% samples in 

proportion which contain the 141 attacks recorded test data and additional 14 types of 

experiments. The experiment designed the AutoEncoder which consists of five layers. The 

numbers of neurons in the previous four-layer network are 41, 300, 150, 75, respectively. 

Furthermore, the number of neurons in the last layer is variable, which determine the 

dimension of data number after dimensionality reduction. 

After the pretraining process of the training and testing data, we use AutoEncoder for 

data dimensionality reduction. Through changing the iterations of the pretraining and 

fine-tuning, we could get different models, including AutoEncoder + DBN
5-5 

(pretraining 

iterations 5 times, fine-tuning5 times); AutoEncoder + DBN
10-10 

(pre-training iterations 10 

times, fine-tuning 10 times); AutoEncoder + DBN
10-5 

(pre-training iterations 10 times, 

fine-tuning five times). The detection results of malicious code as shown in Table 1. 

 

Table 1. The Results of the Different Detection Methods 

Model TPR FPR Accuracy CPU time(s) 

DBN 95.34% 9.02% 91.4% 1.126 
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AutoEncoder+DBN
5-5 

96.79% 15.79% 89.75% 2.625 

AutoEncoder+DBN
10-5 

93.35 % 9.17% 88.95% 1.147 

AutoEncoder+DBN
10-10 

92.20% 1.58% 92.10% 1.243 

 

The experimental results show that with the increase in the number of iterations, in the 

respect of detection accuracy, the proposed method is superior to the method of single DBN, 

which was used in the first experiment. Apparently, using AutoEncoder to achieve data 

dimension reduction is effective, it can improve the detection accuracy, for using 

AutoEncoder can capture the essential characteristics of date efficiently. Meanwhile, the 

accuracy of detection (TP) is reduced. Overall, in the respect of prediction accuracy, the 

mentioned method described in the paper is superior to the single DBN method. It can 

adapt to the complex environment, achieve effective detection of malicious code, moreover, 

it consumes less time. Figures 6 and 7 show the error rate in the process of pretraining and 

fine-tuning.  After two iterations, the error rate is maintained at a lower level stably. 
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Figure 6. RBM Pretraining Reconstruction Error 
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Figure 7. Fine-tuning Reconstruction Error 
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Figure 8. Effect of Dimensions on the Correct Detecting Accuracy 
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Figure 9. Effect of Dimensions on the Time Consumption 

There are many parameters in the AutoEncoder, such as network structure, output 

dimension of data after dimensionality reduction, the number of iterations for pretraining 

and fine-tuning, etc. The output dimension of data after dimensionality reduction is one of 

the major parameters among them. This paper explores the impact of these parameters on 

these mentioned methods. Figures 8 and 9 respectively show the effect on the detection 

accuracy and the time consumption of the method. In figure 8, detection accuracy increases 

with increasing number of iterations. In Figure 9, with the increase of the number of 

iterations, CPU time consumption varies, but the dimension and training time consumption 

have no direct correlation, because AutoEncoder can restore data based on less information 

loss and error. 
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Figure 10. The Relations between the Correct Detecting Accuracy and 
Iterations 
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Figure 11. The Relations between the Time Consumption and Iterations 

Figure 10 and Figure 11 show the effect on the detection accuracy of the number of 

iterations and the time consuming. Figure 10 show that when pretraining iterations 

increased to 10 times, the detection accuracy reached the highest point. Figure 11 shows 

that when pretraining iterations increased to 10 times, most of the time consumption is 

maintained at a low level. Fine-tuning process is to adjust the weights using 

back-propagation, for low-dimensional data, the network is over-learning. The iterations of 

fine-tuning do not affect two assessed value directly. AutoEncoder reduces the data 

dimensions and extracts the main features of data through the nonlinear mapping for 

complex multidimensional data; this makes the effectiveness of the experiment increased 

when applying DBN to classify. In short, for the detection of malicious code, the hybrid 

method mentioned in this paper is apparently superior to the single DBN method in the first 

experiment on the whole. 

 

4. Conclusion 

Against the problem of detecting malicious code, we propose a hybrid method of 

detecting malicious code based on deep learning, which combines the advantages of 

AutoEncoder and DBN respectively. Firstly, the method used AutoEncoder for data 

dimensionality reduction to extract the main feature of data. Then the method uses DBN to 

detect malicious code. Finally, the experiment was verified by KDDCUP'99 dataset. 

Experimental results show that compared with the detection method using single DBN, the 

proposed method improves detection accuracy, while reducing the time complexity of the 

model. However, in practical application, according to actual situation, the method 

proposed in this paper needs to have further improvements in order to improve its 

performance. 
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