
DeepDGA: Adversarially-Tuned
Domain Generation and Detection

Hyrum S. Anderson, Jonathan Woodbridge, and Bobby Filar

{hyrum,jwoodbridge,bfilar}@endgame.com
Endgame, Inc.

Abstract—Many malware families utilize domain generation
algorithms (DGAs) to establish command and control (C&C)
connections. While there are many methods to pseudorandomly
generate domains, we focus in this paper on detecting (and
generating) domains on a per-domain basis which provides
a simple and flexible means to detect known DGA families.
Recent machine learning approaches to DGA detection have been
successful on fairly simplistic DGAs, many of which produce
names of fixed length. However, models trained on limited
datasets are somewhat blind to new DGA variants.

In this paper, we leverage the concept of generative adversarial
networks to construct a deep learning based DGA that is designed
to intentionally bypass a deep learning based detector. In a
series of adversarial rounds, the generator learns to generate
domain names that are increasingly more difficult to detect. In
turn, a detector model updates its parameters to compensate
for the adversarially generated domains. We test the hypothesis
of whether adversarially generated domains may be used to
augment training sets in order to harden other machine learning
models against yet-to-be-observed DGAs. We detail solutions to
several challenges in training this character-based generative
adversarial network (GAN). In particular, our deep learning
architecture begins as a domain name auto-encoder (encoder
+ decoder) trained on domains in the Alexa one million. Then
the encoder and decoder are reassembled competitively in a
generative adversarial network (detector + generator), with
novel neural architectures and training strategies to improve
convergence.

Results show that domains generated from a GAN to bypass
the GAN’s detector also bypass a random forest classifier that
leverages hand-crafted features. Conversely, by augmenting the
training set with these adversarial examples, the random forest
classifier is able to detect with greater efficacy DGA malware
families not seen during training.

I. INTRODUCTION

Like any defensive technology, machine learning models are
subject to false positives and false negatives. An important
step in delivering a model as part of a product consists of
assessing and (if possible) patching model vulnerabilities (e.g.,
certain malware families for a malware detector, etc.). While
this expert-guided process may always exist, we test a key
thesis of [1]: adversarial examples1—artificial samples which
a machine learning model misidentifies—can be discovered
automatically and used to augment a training dataset to harden

1In this paper, we employ a significantly broader meaning of adversarial
examples as originally used in [2], [1]. In our work, they are not restricted to
small perterbations to existing samples, but generally denote artificial samples
that “appear realistic” to confound either human or model or both.

(i.e., make more robust) machine learning models. While this
thesis has been confirmed generally [2], [1], we propose a
novel framework for generating these adversarial examples
using a generative adversarial network for a natural language-
based domain generation algorithm (DGA) detector.

DGAs are employed by many malware families to make pre-
emptive command-and-control (C&C) countermeasures diffi-
cult. Using DGAs, a malware sample may generate hundreds
to tens-of-thousands of domain names daily. The domains are
generated pseudo-randomly using a seed that is shared by both
the malware and the threat actor, so that the threat actor knows
a priori the sequence of connection attempts by the malware.
This represents an asymmetric attack since the defender must
sinkhole, pre-register or blacklist all of the domains to prevent
the C&C connection, while the malware need only connect to
a single domain that has been registered by the threat actor.

There are a variety of strategies to detect domain names
that are produced by a DGA. Previous works include using
a Hidden Markov Model (HMM) framework to model the
generating distribution of several DGA families as well as
“normal“ domains [3], and making bulk predictions on large
sets of domains using clustering as a filtering technique [4],
[5]. Many methods require contextual information separate
from the domain name itself [6]. However, in this paper we
restrict our focus to machine learning models that distinguish
DGA domains from “normal” domains based solely on the
domain name, without contextual information.

This paper explores the use of a generative adversarial
network (GAN) to pseudo-randomly produce domain names
that are difficult for modern DGA classifiers to detect. The
proposed technique generates domains on a character-by-
character basis and greatly exceeds the stealth of typical DGA
techniques which use simpler algorithms to draw random
characters to compose novel domain names. In contrast to
simpler DGAs, we propose a DGA architecture that provides
a more direct objective: optimize psuedo-random generation
of domain names that are by construction difficult for a DGA
classifier to detect. This explicit optimization is done using a
DGA language model generator coupled with a DGA detector
in a GAN [7]. A similar adversarial approach was previously
explored by [8] to generate synthetic samples for malware
classification based on the DREBIN Android malware dataset.
The authors successfully retrained a binary classifier using
adversarially crafted input to harden the original classifier.

ar
X

iv
:1

61
0.

01
96

9v
1

 [
cs

.C
R

]
 6

 O
ct

 2
01

6

In turn, we show increased robustness of a DGA detector
to never-before-seen DGA families when trained on an aug-
mented dataset that includes adversarial examples.

Contributions of this paper include the following:
• We present the first known use of a deep learning archi-

tecture to pseudo-randomly generate domain names that
are by construction difficult for a classifier to distinguish
from real domain names.

• We demonstrate that adversarially-generated domain
names discovered for a deep learning model are also ad-
versarial to a totally different model architecture (random
forest with human-engineered features).

• We demonstrate experimentally that the same adversar-
ial examples can be used to harden the random forest
classifier to never-before-seen DGA families.

II. BACKGROUND

We first provide a brief review in this section of common
DGA algorithms, machine learning detection approaches, and
follow with background on neural network architectures that
we employ in our neural language model for domain genera-
tion.

A. Domain Generation Algorithms

Domain generation algorithms are used by many
strains of malware for C&C, including ransomware like
cryptolocker [9], [10] and cryptowall [11], banking
trojans, such as hesperbot [12], and information stealers,
such as ramnit [13]. In part, this paper compares
DeepDGA to character-based DGA algorithms reproduced
from published literature.

Traditional DGA techniques vary in complexity from simple
approaches that draw characters uniformly at random, to those
that attempt to mimic character or word distributions found
in real domains. The ramnit DGA, for example, creates
domain names using a combination of multiplies, divides and
modulos starting from a random seed [13]. On the other hand,
suppobox creates domains by concatenating two pseudo-
randomly chosen English dictionary words [14].

Some example domains from each of the families we
consider in this paper are shown in Table I, which are all
character-level DGA algorithms. Other common DGAs, like
beebone have a rigid structure, producing domains like
ns1.backdates13.biz and ns1.backdates0.biz.
The symmi DGA produces nearly-pronounceable domain
names like hakueshoubar.ddns.net by drawing a ran-
dom vowel or a random consonant at each even-numbered
index, drawing a random character of the opposite class
(vowel/consonant) in the subsequent index location, and ap-
pending a second and top-level string like .ddns.net.

The unigram distributions for four DGA families and Alexa
are shown in Fig. 1. The distributions for cryptolocker
and ramnit are both nearly uniform over the same range.
This is expected as they are both generated using a series
of multiplies, divisions and modulos based on a single seed
[13], [10]. On the other hand, suppobox is interesting as it

TABLE I
EXAMPLES OF DOMAIN NAMES FROM DGA ALGORITHMS CONSIDERED IN

THIS PAPER

corebot ep16g6gjwfixyhs8gfy.ddns.net
ev5texifc43nebil3pk.ddns.net
gf7bm4163fmjkje.ddns.net

cryptolocker agryjvdaabkyt.ru
pwitjnqgjfaqm.org
dhhubfepcdgfv.co.uk

dircrypt hedhryendqlss.com
lgnggnlufbtyjpnvct.com
tzrbdmhoumoy.com

kraken_v2 fwulvdmdytm.com
gybuisybe.cc
gyinkvye.net

lockyv2 btlwubflhfllshn.info
cpgcjsysfwuwa.click
jlbroeji.biz

pykspa gqjgflhop.net
gqumcwaa.org
jpivjh.net

qakbot fgfifkyfut.info
flzuzsaekkipatbtet.biz
owpbsjekk.com

ramdo kugmywaaiymaegiq.org
ocywskaagmmqscoc.org
uomywsaaqggiwouo.org

ramnit byqdmekgd.com
dpmdbwwcmpk.com
gkkcoufektvhiqr.com

simda gatyfusyfi.com
lyvyxoryco.com
puvyxilomo.com

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
Cryptolocker

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
ramnit

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
dyre

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
suppobox

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
Alexa Top 1M

Fig. 1. Unigram distributions for cryptolocker, ramnit, dyre (all three
of which are simple character DGAs), suppobox (dictionary-based DGA)
and the Alexa top one million.

generates unigrams similar to distributions seen by the Alexa
top one million domains. The suppobox DGA constructs
domain names by concatenating multiple randomly chosen
words from the English dictionary, and thus follows a similar
character distribution to the Alexa top one million. In this
paper, we demonstrate a character-based generator composed
of a deep learning model that also mimics the distribution of
Alexa domain names.

B. DGA detection algorithms

Previous works in DGA classification approach the problem
by either classifying domains in groups to take advantage of
bulk statistical properties or common contextual information;
or by classifying domains individually with no additional
contextual information. We briefly discuss examples of both
here, but note that our work falls in the latter category, which
may be used in concert with other approaches for DGA
detection.

Authors in [4], [5] detect DGAs by using both unigram and
bigram statistics of domain clusters. A training set is separated
into two subsets: those generated by a DGA and those not
generated by a DGA. The distributions of both unigrams and
bigrams are calculated for both the subsets. Classification
occurs in batches. Each batch of unknown domains (DNS
responds with NXDOMAIN) is clustered by shared second
level domain and domains sharing the same IP address. The
unigram and bigram distributions are calculated for each
cluster and compared to the two known (labeled) subsets using
the Kullback-Leibler (KL) distance. In addition, the authors
use the Jaccard distance to compare bigrams between clusters
and the known (labeled) sets as well.

Authors in [3] apply a similar clustering process to clas-
sify domains with unsuccessful DNS resolutions. To train,
statistical features are calculated for each subset of labeled
DGA generated domains, such as Bobax, Torpig, and
Conficker.C. Unknown domains are clustered by statistical
characteristics such as length, entropy, and character frequency
distribution as well as shared hosts requesting the domain
(i.e., cluster two domains together if the same host made a
DNS query for both domains). Next, statistical features are
calculated for each cluster and compared to the training subsets
to classify the clusters as formed by a known DGA. If a cluster
is classified as belonging to a known DGA, the host is deemed
to be infected.

Once a host is deemed to be infected with a DGA-bot, the
authors attempt to identify the bot’s active C2 server. This
stage of the process uses a Hidden Markov Model trained on
each known family of DGA and applied to single domains
(i.e., this technique follows the same assumptions as the
LSTM technique proposed by this paper). Each domain with a
successful DNS request is fed through each HMM. If a domain
receives an adequate score (i.e., greater than some threshold
θ), the domain is labeled as a DGA. The threshold is learned
at training time and set to a maximum false positive rate of
1%. We use this HMM technique as one of our comparisons
to previous work.

Authors in [15] also present a DGA classifier with the inten-
tion of classifying individual domains. This classifier uses two
basic linguistic features named meaningful characters ratio
and n-gram normality score. The meaningful characters ratio
calculates the ratio of characters in a domain that comprise
of a meaningful word. For example, endgame has a ratio of
1 as all characters in the domain are covered by the words
end and game while game1234 has a ratio of 0.5 as only

half of its characters are covered by the word game. The n-
gram normality score is calculated by finding n-grams with
n ∈ 1, 2, 3 within a domain and calculating their count in
the English language. The mean and covariance of these four
features are calculated from a benign set (Alexa top 100,000).
Unknown domains are then classified by their Mahalanobis
distance to the benign set (i.e. a larger distance is indicative
of a DGA generated domain). The entire approach is used
as a filtering step. Once domains have been classified as a
DGA they are fed to a clustering technique (similar to those
described above) to further classify the domains.

In our experiments, we leverage a random forest classifier
trained on features defined in [3], [4], [5], [15]. We do not
implement the full system as defined in [3], [4], [5] as it
is based on domain clustering and our intent is to classify
DGAs on a per-domain basis. The full system in [15] is not
evaluated as they use contextual features such as IP addresses.
We assume no contextual information in our experiments, but
note that adding contextual information may generally improve
a model’s ability to detect DGAs.

C. Adversarial Examples and Generative Adversarial Net-
works

Previous work discovered that many machine learning
models, including modern neural network architectures, are
vulnerable to adversarial examples[2], [1]. Notably, [1] intro-
duced the fast gradient sign method to systematically discover
adversarial examples by perturbing a known “good” sample
x by a small amount ∆x = ε sign (∇xJ (θ,x, y)), where θ
represents the model parameters, and J is the cost incurred
for classifying x as class y.

Separately, [7] proposed generative adversarial networks as
a framework for generating artificial samples that are drawn
from the same distribution as the training dataset. Generative
adversarial networks incorporate a pair of models—a generator
and a discriminator—that compete against each other in a
series of adversarial rounds. In the context of our application,
the generator learns to create new artificial domain names, and
the detector subsequently learns to distinguish the generator’s
artificial domains from the true domain data distribution.

Previous works apply adversarial examples and GANs to
natural images. In this work, we somewhat conflate the use of
GANs with the intent of adversarial examples, using a GAN to
produce artificial domains and subsequently harden a natural
language DGA detector via adversarial training.

D. Recurrent Neural Network

In a variety of natural language tasks, recurrent neural
networks (RNNs) have been used to capture meaningful tem-
poral relationships among tokens in a sequence [16], [17],
[18], [19]. The key benefit of RNNs is that they incorporate
contextual (state) information in their mapping from input
to output. That is, the output of a single RNN cell is a
function of the input layer and previous RNN activations.
Due to long chains of operations that are introduced by
including self-recurrent connections, the output of a traditional

RNN may decay exponentially over time (or, more rarely
but catastrophically explode) for a given input, leading to the
well-known vanishing gradients problem. This makes learning
long-term dependencies in an RNN difficult to achieve.

The problem of vanishing gradients is a key motivation be-
hind the application of the Long Short-Term Memory (LSTM)
cell [20], [21], [22], which consists of a state that can be
read, written or reset via a set of programmable gates. In the
following we consider a layer of LSTM cells using vector
notation (boldface), and denote the time index where necessary
with subscript t. Superscripted W and U correspond to
particular weight matrices on the input x or emission h,
respectively, and superscripted b denotes a particular bias
vector.

LSTM cells’ states c have self-recurrent connections that
allow each cell to retain state between time steps:

ct = f · ct−1 + it · gt,

where · denotes elementwise (Hadamard) multiplication. How-
ever, states may be updated in an additive manner by state
updates

gt = tanh (Wgxt + Ught−1 + bg)

via input gates i, which effectively multiply the state update to
each cell by a number that ranges between 0 and 1. Likewise,
forget gates f modulate the self-recurrent state connection to
each cell’s state by a number between 0 and 1. Thus, if the
input gate modulates the state update with 0, and the forget
gate modulates the recurrent connection with 1, the cell ignores
the input and perfectly retains state. On the other hand, a 1
(input) and a 0 (forget) causes a cell’s state to be overwritten
by the input. And in the case of a 0 (input) and 0 (forget),
the state is reset to 0. Finally, output gates o modulate the
contribution of each cell’s states to the cell’s emission (output)
as

ht = ot · tanh (ct) ,

which propagate to the input gates of LSTM cells across
the layer, as well as to subsequent layers of the network. In
particular, the input, forget, and output gates are defined as
functions of the input xt at time t and previous LSTM layer
emission ht at time t, respectively, as

it = σ
(
Wixt + Uiht−1 + bi

)

ft = σ
(
Wfxt + Ufht−1 + bf

)

ot = σ (Woxt + Uoht−1 + bo) .

The LSTM cell’s design with multiplicative gates allows
a network to store and access state over long sequences,
thereby mitigating the vanishing gradients problem. For our
use with domain names, the state space is intended to capture
combinations of tokens that are important to modeling domain
names.

E. Highway Networks

Highway networks were recently proposed as a natural
extension of gated memory networks like the LSTM unit to
feedforward networks [23]. Highway layers allow for training
deep networks by adaptively carrying some dimensions of
the input directly to the output through the use of gates.
Concretely, the output y of a single highway layers is the
elementwise convex combination of the raw input x and
the transformed input g(Wx + b) with a vector parameter
t ∈ [0, 1]d:

y = t · g(Wx + b) + (1− t) · x,
with activation function g. In addition to learning the weights
W and bias b, a highway layer also learns the gating param-
eters t during training.

III. METHOD

In this section we describe our DGA neural language
architecture and training mechanism. In a first step, we learn
to represent valid domain names using an autoencoder archi-
tecture, shown in Figure 2(a) and detailed in Section III-A. We
then repurpose the encoder (which accepts a domain name and
outputs a domain embedding) as a discriminative model, and
the decoder (which accepts a domain embedding and outputs
a domain name) as a generative model, as show in Figure 2(b)
and detailed in Section III-B.

A. Autoencoder

An autoencoder is a type of data representation model that
consists of an encoder that transforms an input to a (usually)
lower-dimensional representation, and a decoder which aims
to reproduce the original input from the low-dimensional
embedding. The character-level encoder shown in Figure 2(a)
is loosely inspired by the neural language framework of [24],
and the decoder is loosely a mirror image of the encoder.

In what follows, let V denote the set of lowercase valid
domain characters. The encoder contains an embedding layer
which learns a linear mapping from V 7→ Rd, resulting in
a d-dimensional vector for each valid domain character. We
use d = 20 < |V| to keep the model size small, and because
we don’t need to perfectly reproduce the domain characters.
Small convolution filters are applied to the name embeddings,
which aim to capture simple character combinations present in
valid domains. In our implementation, we utilize 20 filters of
length 2 (bigrams) and 10 filters of length 3 (trigrams). The
next layer selects important features from the convolutional
filters via maxpooling and concatenates them into a compact
feature vector. Our max pooling actually consists of a max-
over-time pooling (i.e., max over the symbol sequence) for
each of the 30 filters—which measures the presence, but not
location, of the bigram and trigram features—as well as a
traditional max-over-filters pooling—which captures whether
a bigram/trigram was discovered at a location, but does not
preserve which bigram/trigram. Assembling the output of
maxpooling results in a tensor with 32 dimensions for each
time step. This is passed through a highway network (found

(a)

(b)
Fig. 2. (a) The domain autoencoder framework is repurposed into a (b) generative adversarial network. Input to the autoencoder in (a) begins in the upper
left, while the input to the generative adversarial network begins with the pseudo-random seed in the lower right. During adversarial training, we only train
the shaded layers: the generator layer of the generative model and the logistic regression layer of the discriminative model.

to improve performance for character-based neural language
modeling in [24]), where weights are shared across time-steps,
to the input of an LSTM, which accumulates state over the
sequence and returns the final emission from the accumulated
state as the domain name embedding.

The decoder is loosely the reverse of the encoder process.
The domain embedding is repeated over the maximum domain
name length (time steps), and the resulting sequence is passed
as input to an LSTM layer. The sequence of emissions from
the LSTM layer are each passed through a highway network
with weights shared over time to the same convolution filters
as used in the encoder. This results in a 32-dimensional vector
for each element in the sequence. The final step is a time-
distributed dense layer that acts as a multinomial regressor
with weights shared across time steps. Because of a softmax
activation on the dense layer, the output of the decoder
represents a multinomial distribution over domain characters
for each time step, which can be sampled to produce a new
domain name that is causally related to the input domain name.

B. Generative Adversarial Network

Generative Adversarial Networks, first introduced in [7] for
image classification, train two models: A generative model
that seeks to create synthetic data based on samples from the
true data distribution with added added noise as an input.
A discriminator model receives a sample and must predict
whether it is a synthetic or a true data sample. This process
continues in the form of an adversarial game where the
discriminator trains to predict the most accurate label for
a sample and the generator trains to construct samples to
confound the discriminator.

On its own, the autoencoder described in Section III-A
might adequately produce domain names that look as if they
might be a valid domain (e.g., in the Alexa top 1M), but are
actually pseudo-randomly generated by sampling multinomial
distributions at the output. However, the use of the autoencoder
as a DGA would require that a list of seed domains be stored
for use as inputs to the autoencoder. Instead, with only minor
modifications to the structure, we repurpose the autoencoder
as a GAN that accepts a random seed (number or numbers)
as input, and emits a domain name that appears much like a
valid domain name.

As shown in Figure 2(b), after the autoencoder has been
pretrained on valid domains (e.g., Alexa top 1M), the learned
layer weights are frozen. The decoder becomes the key ele-
ment in a generative model, which merely prepends a dense
layer that maps a random input to a domain embedding.
Likewise, the encoder becomes a discriminative model, where
we simply append a simple logistic regression layer to the
domain embedding.

In order to reduce the complexity of the learning task of
the generator, we restrict the output space of the generator
by a predefined box learned offline from training data. We
consider two models: a box layer that restricts the output to
live in an axis-aligned box defined by embedding vectors of
the training data and, a principal axis box layer that defines

a similar but potentially tighter box, with axes aligned to
principal dimensions that represent right singular vectors of
the training dataset. Like a traditional sigmoid-activated dense
layer, this box layer learns a weight matrix W and bias vector
b to produce a vector a = σ (Wx + b). However, rather than
passing this result a ∈ [0, 1]d to the output, we instead use a as
a parameterization of a vector that lives within an axis-aligned
box, and pass

y = a · vmax + (1− a)vmin,

as the output, where vmin and vmax are, respectively, the
minimum and maximum corners of a box in a d-dimensional
space. These vectors are set a priori simply as the elementwise
minimum and maximum over all embedded vectors in the
training set produced using the first half (encoder) of the
autoencoder. The principal axis box layer is nearly identical,
except that vmin and vmax represent the corners of the
principal components of the data in the rotated space, and y
is subsequently multiplied by the right singular vector matrix
V to transform back into the ambient space. We found in
preliminary experiments that the effect of both methods are
similar, and for simplicity, leverage the simple box layer
in experiments. The use of the box layer as the generator
allows the generator to learn embeddings within the domain
of embedded vectors without requiring it to learn the extent
of the domain. The hope is that the generator need only focus
on learning the manifold of Alexa-like domains within the
predefined box.

With the weights to the original autoencoder frozen, we
train the generator layer and the logistic regression layer by
linking the generator and discriminative model together as a
GAN. Then, we roughly follow the GAN training procedure
introduced in [7], in which the discriminative and generative
model compete in adversarial rounds. In our setup the logistic
regression weights are trained to separate valid domain names
from names produced by the generative model, then the
generative model learns weights for its generator layer by
targeting an output of 0 (valid domain) for any random input
to the combined GAN.

In a slight departure from [7], we regularize the discrimina-
tive model by training not only on the most recently-generated
samples from the generative model, but a sampled history of
domain names from both the current and previous adversarial
rounds. This allows the discriminator to “remember” deficien-
cies in model coverage, and subsequently the generator is
forced to learn novel domain embeddings and retreat from
a common failure mode of GANs: that without care, samples
produced by the generator can collapse to a single point. Sub-
sequent to our experiments, authors in [25] proposed minibatch
discrimination as another way to prevent this common failure
mode. Our approach relies on the regularized discriminator
to indirectly prevent the generator from entering the failure
mode, while the minibatch discrimination encourages diversity
of generated samples within a minibatch.

IV. EXPERIMENTAL SETUP

We implement our architecture in Python using Keras [26].
We train the autoencoder on the Alexa top 1M dataset.
Likewise, we train the GAN to distinguish the Alexa top 1M
domains from pseudorandomly generated domains generated
by the first half (encoder) of the autoencoder. We found
that only a few adversarial rounds were required to learn
appropriate generator weights when default Keras learning
rates (adam optimizer) and batch sizes of 128 were used. For
smaller learning rates, more iterations may be required.

We train our generator to accept 20 uniformly distributed
numbers using numpy.random.rand, which allows for a
seed, in order to produce a fake domain name. Similarly,
we use numpy.random.multinomial to sample from the
output using the common seed.

Although the GAN framework ensures that DeepDGA
maximally confuses the detector model, we are interested in
its ability to bypass an independent model. So, to measure
detectability of the DGA, we measure detection rates using
a random forest DGA classifier that uses manually-crafted
domain name features defined in [3], [4], [5], [15]. In partic-
ular, the manually crafted features of the random forest DGA
classifier include the following:

• length of domain name,
• entropy of character distribution in domain name,
• vowel to consonant ratio,
• Alexa top 1M n-gram frequency distribution co-

occurrence count, where n = 3, 4 or 5,
• n-gram normality score, and
• meaningful characters ratio.

Note that for the n-gram normality score, we use n = 3,
n = 4 and n = 5 as three distinct features as opposed to
n = 1, n = 2 and n = 3 as in [15] since the larger n-gram
size performed better in preliminary experiments.

V. RESULTS

The autoencoder was pretrained for 300 epochs, with each
epoch using 256K domains randomly sampled from the Alexa
Top 1M, and a batch size of 128. Pretraining required roughly
14 hours on a single NVIDIA Titan X GPU. Subsequent to
pretraining, in each adversarial round, we generated 12,800
adversarial samples against the detector. Each round required
roughly 7 minutes on the GPU. Results from the training are
detailed in the following subsections.

A. Autoencoder results

Given a domain as input, the autoencoder produces a multi-
nomial distribution over the possible characters (outcomes),
from which a domain can be sampled. For example, a few
domains sampled from the output of the autoencoder given
the input (with TLD removed) are shown in Table II.

The autoencoder does not reconstruct perfectly the input,
which can be ascribed to the stochastic sampling of the
multinomial distributions to choose each domain character
via independent draws, and insufficient model capacity (e.g.,
heavy model bias) to express all character combinations of

TABLE II
A FEW DOMAINS SAMPLED FROM THE OUTPUT OF THE DEEPDGA

AUTOENCODER (WITH TLDS REMOVED)

biogartenversand --> bidegerafernrnps
metapack --> mdtkhrhk

diaboliclabs --> dirinoyslhns
homehealthsollution --> tsntneyerasyeeaenne

mousebreath --> metbrslamtl
newinventions --> nataiirsfsdos

wonderbox --> weonkimwb
tara-china --> tun-mos-gi

gobuu --> caxfx
keeyword --> kaxioawy
kandidco --> kauircae

toaster-schwerin --> teztoylabr-bs-st

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

Po
si

tiv
e

R
at

e

ROC Curve

Round 0 (AUC = 0.9710)
Round 1 (AUC = 0.9403)
Round 2 (AUC = 0.9330)
Round 3 (AUC = 0.9319)

Fig. 3. ROC curves for random forest classifier trained on DeepDGA vs.
Alexa top 10K averaged over 10-fold crossvalidation. DeepDGA becomes
increasingly more difficult for the random forest classifier to detect with each
round of adversarial training up to three rounds. (Subsequent rounds don’t
produce substantial AUC reduction.)

domains in the Alexa top 1M. However, since we actually
don’t want to generate domain names in the Alexa top 1M,
but rather names names from the same (or similar) generative
distribution, the reconstructions are wholly adequate.

B. GAN results

Figure 3 displays Receiver Operating Characteristic (ROC)
curves of a random forest classifier after each of four adver-
sarial rounds. The classifier is trained on DeepDGA generated
domains as malicious and the Alexa top 10K as benign.
Results are based on 10-fold cross-validation. The ROC curves
demonstrate that performance of the random forest classifier
degrades with the number of adversarial rounds with an
apparent asymptote after three rounds. This degradation is due
to the GAN’s ability to generate domains that create confusion
for the classifier. Training on these domains will allow us to
harden the classifier to blind spots to increase performance of
a DGA detector. All subsequent experiments in this paper will
be based on three adversarial rounds due to decreasing utility
after three rounds.

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
DeepDGA (before adversarial rounds)

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
DeepDGA (after 3 adversarial rounds)

- . 0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z
0.0

0.1

0.2
Alexa Top 1M

Fig. 4. Character distribution of DeepDGA compared to the Alexa top 1M
before adversarial rounds and after 3 adversarial rounds.

Figure 4 displays the unigram distribution of domains
generated before adversarial rounds, after three adversarial
rounds, and those from the Alexa top 1M. Note that the
unigram distribution approaches that of the Alexa top 1M after
three rounds demonstrating the confusing nature of domains
generated by DeepDGA.

Compared to other character-based DGAs, DeepDGA shows
significant improvement in its ability to produce domains that
are undetectable by a DGA classifier. Figure 5 shows the area
under the ROC curve for the random forest classifier trained
to detect each of ten character-based DGAs and DeepDGA
vs. the Alexa top 10K individually. In other words, there are
eleven different random forest models, each trained specifically
to detect a particular DGA. Using the the random forest model,
DeepDGA exhibits a false negative rate of roughly 1 in 14, as
opposed to the next-best-performaing DGA, pykspa, which
exhibits a false negative rate of roughly 1 in 106, a decrease
of over 7×.

The detection rate is even more striking when one trains
a general DGA detector on the available samples. We create
a dataset using the top 10K Alexa domain names and 10K
domain names from each of the DGAs in the comparison set,
including DeepDGA. We report the average crossvalidation
score over 10-folds using a 20% holdout set for each fold.
Results in Table III show that under such a scenario, less
than 50% of the DeepDGA samples are detected by the
classifier (recall), whereas the next best DGAs (simda and
kraken_v2) are detected at a rate of 98%. This represents a
25× improvement in avoiding detection (1 in 2 vs. 1 in 50).

A few DeepDGA domains (without TLDs) after adversarial
tuning are shown below in Table IV. Domain names are of
varying length, exhibit no strong common patterns, and can
be exactly reproduced via a random seed.

C. Hardening a machine learning model

It has previously been shown that adversarial examples
may be shared across different machine learning models [2],

Fig. 5. Area under ROC curve for random forest classifier trained on each
DGA algorithm vs. Alexa top 10K averaged over 10-fold crossvalidation.

TABLE III
DETECTION RATE ON 20% HOLDOUT SETS AVERAGED OVER 10
CROSSVALIDATION FOLDS OF TRAINING THE RANDOM FOREST
CLASSIFIER, WITH EQUAL NUMBER OF SAMPLES PER CLASS.

detection rate support
corebot 1.00 1997

cryptolocker 1.00 1988
dircrypt 0.99 1977
kraken_v2 0.96 1998
lockyv2 0.97 1982
pykspa 0.85 2009
qakbot 0.99 1985
ramdo 0.99 1985
ramnit 0.98 2015
simda 0.96 2025
DeepDGA 0.48 2497
avg / total 0.96 22457

[1]. We demonstrate that by augmenting a training set with
adversarial examples generated by the GAN, a model can be
hardened against DGA families not observed in the training
set. In particular, we trained the random forest model using a
leave-one-family-out strategy in which an entire DGA family
is held out for validation, while the random forest model is
trained on the remaining nine families. The top Alexa 10K
are included in the training set, and the next Alexa 10K are
included in the holdout set. This baseline result is compared
to a hardened result in which 10K DeepDGA samples are
appended to the 9-family plus Alexa training dataset. For each
case, we report the true positive rate (TPR) at a fixed false
positive rate (FPR) of 1%. This generally required different
thresholds for baseline and hardened models.

TABLE IV
DOMAINS NAMES (WITHOUT TLDS) AFTER ADVERSARIAL TUNING

firiaps sirgivrv laner mivognit
qiurdeees tisehl spienienitne yhujq
gyldles thellehm thuaemoa statpottxy
lirneret chdareet shtrunoa vietips

TABLE V
BINARY CLASSIFICATION OF A RANDOM FOREST CLASSIFIER BEFORE AND

AFTER ADVERSARIAL HARDENING. EACH ROW REPRESENTS THE TRUE
POSITIVE RATE (TPR) AT A FIXED 1% FALSE POSITIVE RATE ON A

HELD-OUT DGA FAMILY OF 10K DOMAINS AND 10K HELD-OUT ALEXA
DOMAINS. ALL OTHERS FAMILIES OF 10K SAMPLES (PLUS ALEXA TOP

10K) ARE USED IN THE TRAINING SET, WITH 10K ADVERSARIAL
EXAMPLES BEING AUGMENTED IN THE CASE OF THE HARDENED

CLASSIFIER.

baseline hardened
corebot 0.97 0.97
dircrypt 0.95 0.93
qakbot 0.94 0.94
ramnit 0.94 0.94
lockyv2 0.87 0.84

cryptolocker 0.87 0.88
simda 0.75 0.79

krakenv2 0.72 0.76
pykspa 0.67 0.71
ramdo 0.54 0.54
average 0.68 0.70

Training the classifier on adversarially crafted samples gen-
erally improved the model’s ability to detect families not in
the training set. Table V shows that the hardened classifier
maintains or increases the effective TPR especially for families
with low baseline TPRs, and all families except dircrypt
and lockyv2 which exhibit marginally smaller effective
TPRs at a 1% FPR.

VI. DISCUSSION

We have demonstrated automatically generating artificial
domains that are adversarial to a deep learning DGA model.
The adversarial examples are shown to be shared between the
deep learning detector model—for which they were explicitly
optimized to circumvent—as well as a random forest model.
This demonstrates in an information security setting a key
point in [2], [1]: that adversarial examples may be shared
across different models.

Training a GAN to generate these examples requires sub-
stantial art to prevent common failure modes. We introduced
novel history regularization, neural layers (box layer and
principal axis box layer), and more common autoencoder
pre-training to simplify the learning task of the generator.
Subsequent to our experiments, [25] proposed other strategies
for training GANs, which we leave to future work.

Furthermore, we have demonstrated that by augmenting a
training set with DeepDGA adversarial examples, a random
forest classifier was hardened against DGA families not ob-
served during training. The ability to harden using GAN-
crafted samples generally increased TPR for a fixed FPR
in our experiments. Unlike the perterbation-based adversarial
example generation proposed in [1] (i.e., fast gradient sign
method), the GAN-crafted samples are meant to match the data
actual distribution, so that, without care, FPR may be adversely
affected when used for hardening. A qualitative comparison of
the adversarial example quality and quantitative comparison of
hardening strategies using the more direct fast-gradient sign
method for DGA detection is left to future work.

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: detecting the
rise of DGA-based malware,” in P21st USENIX Security Symposium
(USENIX Security 12), pp. 491–506, 2012.

[4] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proc. 10th ACM
SIGCOMM conference on Internet measurement, pp. 48–61, ACM,
2010.

[5] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting al-
gorithmically generated domain-flux attacks with DNS traffic analysis,”
Networking, IEEE/ACM Transactions on, vol. 20, no. 5, pp. 1663–1677,
2012.

[6] A. J. Aviv and A. Haeberlen, “Challenges in experimenting with botnet
detection systems.,” in CSET, 2011.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, pp. 2672–2680,
2014.

[8] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proceedings of the 37th IEEE Symposium on Security and Privacy,
2015.

[9] M. Ward, “Cryptolocker victims to get files back for free,” BBC News,
August, vol. 6, 2014.

[10] “A closer look at cyrptolocker’s DGA.” https://blog.fortinet.com/post/
a-closer-look-at-cryptolocker-s-dga. Accessed: 2016-04-22.

[11] N. Hampton and Z. A. Baig, “Ransomware: Emergence of the cyber-
extortion menace,” in Australian Information Security Management
Conference, 2015.

[12] A. Cherepanov and R. Lipovsky, “Hesperbot-A new, advanced banking
trojan in the wild,” 2013.

[13] Symantec, W32.Ramnit analysis. 2015-02-24, Version 1.0.
[14] J. Geffner, “End-to-end analysis of a domain generating algorithm

malware family.” Black Hat USA 2013, 2013.
[15] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, “Phoenix: DGA-

based botnet tracking and intelligence,” in Detection of intrusions and
malware, and vulnerability assessment, pp. 192–211, Springer, 2014.

[16] A. J. Robinson, “An application of recurrent nets to phone probability
estimation,” Neural Networks, IEEE Transactions on, vol. 5, no. 2,
pp. 298–305, 1994.

[17] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur,
“Recurrent neural network based language model.,” in INTERSPEECH,
vol. 2, p. 3, 2010.

[18] A. Graves, “Sequence transduction with recurrent neural networks,”
arXiv preprint arXiv:1211.3711, 2012.

[19] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in
optimizing recurrent networks,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2013 IEEE International Conference on, pp. 8624–
8628, IEEE, 2013.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with LSTM,” Neural computation, vol. 12, no. 10,
pp. 2451–2471, 2000.

[22] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” J. Machine Learning Research,
vol. 3, pp. 115–143, 2003.

[23] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015.

[24] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural
language models,” arXiv preprint arXiv:1508.06615, 2015.

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” arXiv preprint
arXiv:1606.03498, 2016.

[26] F. Chollet, “keras.” https://github.com/fchollet/keras, 2016.

