
DeepSign: Deep Learning for Automatic Malware

Signature Generation and Classification *

Omid E. Davidt

Dept. of Computer Science

Bar-Han University

Ramat-Gan 52900, Israel

Email: mail@oedavid.com

Abstract-This paper presents a novel deep learning based

method for automatic mal ware signature generation and classi­

fication. The method uses a deep belief network (DBN), imple­

mented with a deep stack of denoising autoencoders, generating

an invariant compact representation of the malware behavior.

While conventional signature and token based methods for

malware detection do not detect a majority of new variants for

existing mal ware, the results presented in this paper show that sig­

natures generated by the DBN allow for an accurate classification

of new malware variants. Using a dataset containing hundreds of

variants for several major mal ware families, our method achieves

98.6% classification accuracy using the signatures generated by

the DBN. The presented method is completely agnostic to the

type of malware behavior that is logged (e.g., API calls and

their parameters, registry entries, web sites and ports accessed,

etc.), and can use any raw input from a sandbox to successfully

train the deep neural network which is used to generate mal ware

signatures.

Keywords-Deep Learning, Deep Belief Network, Autoencoders,

Maiware, Automatic Signature Generation

I. INTRODUCTION

Despite the nearly exponential growth in the number of new

malware (e.g., Panda Security reports that on average 160,000

new malware programs appeared every day in 2013 [18]),

the method for defending against these threats has largely

remained unchanged. Anti-virus solutions detect the malware,

analyze it, and generate a special handcrafted signature which

is released as an update to their clients. This manual analysis

phase typically takes a long time, during which the malware

remains undetected and keeps infecting new computers. Addi­

tionally, even when detected, the authors of mal ware programs

*The support of the KABARNIT Consortium under the Israeli Ministry of
Industry, Trade and Labor is gratefully acknowledged.

t Also affiliated with the School of Computer Science, Tel Aviv University,
Israel.

t Also affiliated with the Gonda Brain Research Center at Bar-Han Uni­
versity, and the Center for Automation Research, University of Maryland at
College Park, MD.

978-1-4799-1959-8/15/$31.00 @2015 IEEE

Nathan S. Netanyahu+

Dept. of Computer Science

Bar-Han University

Ramat-Gan 52900, Israel

Email: nathan@cs.biu.ac.il

usually make some minimal changes to their code, so that the

new variant is undetected by the anti-virus software. This "cat

and mouse" game between malware developers and anti-virus

companies goes on for many years for most major malware

programs, and with each release of a new variant, thousands

of computers are infected.

Several methods have been proposed for automatic mal­

ware signature generation, e.g., signatures based on specific

vulnerabilities, payloads, honeypots, etc. A major problem

associated with these methods is that they target specific

aspects of the malware, thus allowing the malware developers

to create a new undetected variant by modifying small parts

of their software. For example, a mal ware spreading through

the use of a specific vulnerability found in Windows operating

system, can use another vulnerability in the system to spread,

thus evading vulnerability-based signatures.

In this paper we present a novel method for signature

generation which does not rely on any specific aspect of

the mal ware, thus being invariant to many modifications in

the malware code (i.e., the proposed approach is capable of

detecting most new variants of any malware). The method

relies on training a deep belief network (DBN) [8], i.e., a

deep unsupervised neural network, which would create an

invariant compact representation of the general behavior of

the malware. In recent years DBNs have proven successful in

generating invariant representations for challenging domains,

and our method attempts to use similar principles for generat­

ing invariant representations for mal ware.

The proposed method consists of the following steps in

the unsupervised training phase: Given a dataset of malware

programs, run each program in a sandbox to generate a text

file containing the behavior of the program. Then, parse the

sandbox text file and convert it to a binary bit-string to

feed it to the neural network. Next, a deep belief network

implemented using deep de noising autoencoders is trained by

layer-wise training. The training is completely unsupervised,

and the network is not aware of the labels of each sample.

The DBN has eight layers, and its output layer contains 30

neurons. Thus, the resulting deep network basically generates

a signature containing 30 floating point numbers for each

program run in a sandbox.

We use a large dataset, provided to us by C4 Security,

containing several major malware categories and several hun­

dred variants for each. The trained DBN generates a signature

for each mal ware sample. The quality and representation

power of these generated signatures is examined by running

several supervised classification methods on them. The results

show that a deep neural network achieves 98.6% classification

accuracy when tested on unseen data, which attests to the

representation power of the signatures due to DBN.

In the next section we review several previous approaches

for automatic signature generation. In Section III we describe

our approach, and Section IV presents implementation details

and experimental results. Section V contains our concluding

remarks.

II. RELATED WORK

It is very difficult to successfully generate signatures which

can be used to prevent new attacks, and so the conventional

methods are usually ineffective against zero-day mal ware [6],

[26], [28]. Several approaches have been suggested to improve

the signature generation process. Here we briefly review sev­

eral of them.

Several methods which try to cope with new malware

variants do so by analyzing the traffic (assuming that traffic

patterns do not change substantially for each variant of the

malware). Autograph [11] records source and destination of

connections attempted from outside the network (inbound

connections). An external source is considered to be a scanner

if it has made more than a prespecified number of attempts to

connect to an IP address in the network. After deeming this

external source a scanner, and thus potentially malicious, Au­

tograph selects the most frequent byte sequence from the net­

work traffic of this source and uses it as its signature. A scanner

malware already signed by Autograph can evade detection by

modifying its most frequent byte sequence. A similar approach

for signature generation based on network traffic is Honeycomb

[12], which analyzes the traffic on the honeypot. Honeycomb

uses largest common substrings (LCS) to generate signatures

and measure similarities in packet payloads. The PAYL sensor

[28] monitors the flow of information in the network and tries

to detect malicious attacks using anomaly detection, assuming

that the packets associated with zero-day attacks are distinct

from normal network traffic. The Nemean architecture [30] is

a semantic-aware Network Intrusion Detection System (NIDS)

which normalizes packets from individual sessions in the

network and renders semantic context. A signature generation

component clusters similar sessions and generates signatures

for each cluster. Another semantic-aware method is Amd [5],

which generates semantic-aware code templates and specifies

the conditions for a match between the templates and the

programs being checked. Polygraph [20] generates content

based signatures that use several substring signatures (tokens),

to expand the detection of mal ware variants. EarlyBird [24]

sifts through the invariant portion of a worm's content that will

appear frequently on the network as it spreads or attempts to

spread. Netspy [28] also uses the invariant portion of network

traffic generated by malware to generate a signature.

The majority of anti-virus programs reply on analyzing the

executable file to determine whether it is a malware. As Filiol

and Josse [6] establish, most current anti-virus programs do

not detects variant of mal ware. They propose a method for

automatic signature generation by analyzing the executable's

code and substrings, and measure statistical distribution of

code across variants of mal ware. Their experiments were

performed on short (small sized) mal ware such as Nimda,

Code Red/Code Red II, MS Blaster, Sober, Netsky and Beagle.

This method is less accurate when applied to larger mal ware.

Most real world mal ware are large, containing many modules

and sub-modules, and so a statistical analysis would not be

sufficient to accurately classify them. Auto-Sign [25] generates

a list of signatures for a malware by splitting its executable

to segments of equal sizes. For each segment a signature is

generated, and the list of signatures is subsequently ranked.

This method is more resilient to small modifications in the

executable, but a malware can evade this method by encrypting

the executable (which is a simple and popular method for

many malware programs), and thus evading any method which

inspects the executable file for signature comparison.

Since current approaches mostly rely on specific behavior

of malware for signature generation (e.g., specific network

traffic, or specific substrings in executable, etc.), new malware

variants could be created with minimal modifications, such that

they would not be detected by the conventional methods. In

the next section we propose a method for signature generation

based on the behavior of the program, without focusing on

any specific aspect of the executable or network traffic, thus

making it difficult for a malware variant to evade detection.

III. PROPOSED SIGNATURE GENERATION METHOD

This section provides our novel approach for signature

generation. The main question we are trying to answer is the

following: Is it possible to generate a signature for a program

that represents its behavior, and is invariant to small scale

changes? In recent years deep learning methods have proven

very successful in accomplishing this very task in computer

vision. Deep neural networks are trained to create invariant

representations of objects, so that even when the object is

in a different position, size, contrast, angle, etc., the network

still detects the object correctly. These networks have achieved

under 10% error in the difficult task of ImageNet [14], [23].

Unsupervised versions of these networks have been developed

as well, e.g. [16], [17], where deep belief networks were

training by merely exposing the networks to images randomly

taken from YouTube videos. Krizhevsky and Hinton [13] used

deep autoencoders to create short binary codes for images

based on their content (e.g., pictures containing elephants will

have similar codes, etc.).

Our method uses these principles and applies them for

modeling the behavior of programs (and specifically, malware).

The goal is that the obtained representation would be invariant

to small scale changes, and thus capable of detecting most

variants of malware1• To accomplish this goal, we first need

to find a way to represent the behavior of a program as a fixed

sized vector, which would be the input to the neural network.

We will then train a deep belief network which would produce

invariant representations of the input. The output of the DBN

will be the signature for the malware.

A. Program Behavior as Binary Vector

Behavior of programs (and specifically malware) is typ­

ically recorded by running the programs in a sandbox. A

sandbox is a special environment which allows for logging

the behavior of programs (e.g., the API function calls, their

parameters, files created or deleted, websites and ports ac­

cessed, etc.) The results are saved in a file (typically a text

file). Figure 1 shows a snippet of logs recorded by a sandbox.

Sandbox records are usually analyzed manually, trying to learn

information that would assist in creating a signature for the

malware (see Section II).

The simplest method for converting the sandbox generated

text file to a fixed size string is using one of the methods

common in natural language processing (NLP). Of these

methods, the simplest yet is unigram (i-gram) extraction. For

example, given a dataset of text samples, find the 5,000 most

frequent words in the text (these words would comprise the

dictionary), and then for each text sample check which of

these 5,000 words are present. Thus, each text sample is

represented as a 5,000 sized bit-string. Unlike language text

files, sandbox files contain a variety of information, and require

several preprocessing stages to extract the useful content (e.g.,

I Note that there are many similarities between our approach and that of
Krizhevsky and Hinton [13], as both use deep autoencoders to create short
signatures for the content; in our case the content is the high level behavior
of the program (and not specific low level features such as strings in the
executable), and in Krizhevsky and Hinton's case, it is the high level objects
appearing in the image (and not low level features based on pixels in the
image).

Fig. 1. A snippet from the log file generated by Cuckoo sandbox.

string after "api" tag contains the name of function call,

etc.). However, in order to remain as domain agnostic as

possible, we propose to treat the sandbox file as a simple

text file, and extract unigrams without any preprocessing. That

is, all the markup and tagged part of the files are extracted

as well (e.g., given "api": "CreateFileW", the terms

extracted are "api": and "CreateFileW", completely

ignoring what each part means). While this may sounds absurd

(intentionally adding useless noise where it can be easily

removed), this should not pose a problem, since the learning

system (described below) should easily learn to ignore these

irrelevant parts. Specifically, our method follows the following

simple steps to convert sandbox files to fixed size inputs to

the neural network: (1) For each sandbox file in the dataset,

extract all unigrams, (2) remove the unigrams which appear in

all files (contain no information), (3) for each unigram count

the number of files in which it appears, (4) select top 20,000

with highest frequency, and (5) convert each sandbox file to a

20,000 sized bit string, by checking whether each of the 20,000

unigrams appeared in it. In other words, we first define which

words (unigrams) participate in our dictionary (analogous to

the dictionaries used in NLP, which usually consist of the most

frequent words in a language), and then for each sample we

check it against the dictionary for the presence of each word

and thus produce a binary vector.

B. Training a Deep Belief Network

The previous subsection described a simple method for

converting the behavior of a computer program to a fixed

size binary vector. As we discussed previously, most malware

variants make small changes in their code (i.e., small changes

in behavior), which is sufficient to evade the classical signature

generation methods. We would like to generate a signature for

each program which is resilient to these small changes (an

invariant representation, similar to those used for computer

vision). In order to achieve this goal, we create a deep

belief network (DBN) by training a deep stack of denoising

autoencoders.

An autoencoder is an unsupervised neural network which

sets the target values (of the output layer) to be equal to the

inputs, i.e., the number of neurons at the input and output

layers is equal, and the optimization goal for output neuron i
is set to equal Xi, which is the value of the input neuron i. A

hidden layer of neurons is used between the input and output

layers, and the number of neurons in the hidden layer is usually

set to fewer than those in the input and output layers, thus

creating a bottleneck, with the intention of forcing the network

to learn a higher level representation of the input. That is, for

each input X, it is first mapped to a hidden layer y, and the

output layer tried to reconstruct x. The weights of the encoder

layer (W) and the weights of the decoder layer (W') can

be tied (i.e., defining W' = WT). Autoencoders are typically

trained using backpropagation with stochastic gradient descent

[22], [29].

Recently it has been demonstrated that denoising GLttoen­

coders [27] generalize much better than basic autoencoders

in many tasks. In denoising autoencoders each time a sample

is given to the network, a small portion (usually a ratio of

about 0.1 to 0.2) of it is corrupted by adding noise (or more

often by zeroing the values). That is, given an input X, first

it is corrupted to x and then given to the input layer of the

network. The objective function of the network in the output

layer remains generating X, i.e., the uncorrupted version of the

input (see Figure 2). This approach usually works better than

basic autoencoders due to diminishing the overfitting in the

network. By having to recreate the uncorrupted version of the

input, the network is forced to generalize better, and determine

more high level patterns. Additionally, since the network rarely

receives the same input pattern more than once (each time

sees a corrupted version only), there is a diminished risk of

overfitting (though it still takes place). Finally, using denoising

autoencoders the hidden layer need not necessarily be smaller

than the input layer (in basic autoencoder such a larger hidden

layer may result in simply learning the identity function). Note

that the noise is added only during training. In prediction time

the network is given the uncorrupted input (i.e., similar to basic

autoencoder).

When an autoencoder's training is complete, we can dis­

card the decoder layer, fix the values of the encoder layer (so

the layer can no longer be modified), and treat the output of

Fig. 2. One layer of denoising autoencoder during training.

the hidden layer as the input to a new autoencoder added on

top of the previous autoencoder. This new autoencoder can be

trained similarly. Using such layer-wise unsupervised training,

deep stacks of autoencoders can be assembled to create deep

neural networks consisting of several hidden layers (forming a

deep belief network). Given an input, it will be passed through

this deep network, resulting in high level outputs. In a typical

implementation, the outputs may then be used for supervised

classification if required, serving as a compact higher level

representation of the data.

In our approach we train a deep denoising autoencoder con­

sisting of eight layer: 20,000-5,000-2,500-1,000-500-250-

100-30. At each step only one layer is trained, then the weights

are "frozen", and the subsequent layer is trained, etc. (see

Figure 3). At the end of this training phase, we have a deep

network which is capable of converting the 20,000 input vector

into 30 floating point values. We regard these 30-sized vector

as the "signature" of the program. Note that the network is

trained only using the samples in the training set, and for

all future samples it will be run in prediction mode, i.e.,

receiving the 20,000-sized vector it will produce 30 output

values, without modifying the weights.

The next section provides implementation details and ex­

perimental results, and demonstrates that the resulting 30-sized

vector (i.e., the signature) indeed provides a good invariant

representation of the malware.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this section we first describe the malware dataset and

the properties of the sandbox that was used, then provide the

details of the trained neural network, and finally present our

experimental results.

A. Malware Dataset and Sandbox

Our dataset consists of six major categories of malware,

and 300 variants in each category, for a total of 1,800 samples,

which were provided to us by C4 Security. Each of these six

malware categories spread massively worldwide and caused

a tremendous damage. Hundreds of variants of them were

Fig. 3. Illustration of DBN training. (I) Train the first autoencoder layer. (II) Use the weights from the previous layer, and build a new autoencoder on top of
them. The weights taken from the first autoencoder are frozen. (III) Similarly, take the weights from the previous layer and add a new layer. (IV) Proceed with
layer-wise training until training all the eight layers for the final DBN.

created, each time modifying some parts of the malware

to evade anti-virus programs. These new variants remained

undetected until they were manually detected, analyzed, and a

signature was generated for them.

The six malware categories used are Zeus, Carberp, Spy­

Eye, Cidox, Andromeda, and DarkComet. All of these six

malware families are used to carry out a wide range of criminal

tasks, and have infected millions of computers worldwide.

Several crackdowns by the FBI and other law enforcement

agencies in numerous countries have resulted in the arrest of

more than a hundred persons involved with development and

use of these mal ware, but their variants are widely used to

the present day. The following is a brief description of the six

mal ware classes.

Zeus. Probably the most widely used Trojan for cyber

crime (especially for stealing financial information). It was

first detected in July 2007 and is still widely used both in

its original format and in thousands of variants which are con­

tinuously introduced to evade anti-viruses. It is estimated that

in the US alone it has infected about 3.6 million computers.

Several of the top malware programs used for stealing banking

information are based on variations of Zeus. The entire source

code of Zeus is freely available online, facilitating the creation

of new mal ware based on it.

Carberp. A widespread mal ware that silently downloads

and installs other malware components to the infected system.

It was first discovered in 20lO and reported as the sixth most

popular mal ware for stealing financial information. Currently

there are no clear estimates of the number of infected systems

or amount of money earned by the developers, as this mal ware

remains mostly underground. In its later versions it heavily

incorporates Zeus code.

Spy Eye. First reported in 2009 as a banking Trojan but

it has been used to carry payloads for industrial espionage as

well. It has infected 1.4 million computers worldwide since

2009, and the developers of this malware have made more

than $3.2 million in a six-month period alone. It specializes

in stealing valuable personal information from the victim's

computer, including banking login and passwords, credit card

numbers, social security numbers, etc.

Cidox. A remote administrative tool (RAT) which is mainly

used to control infected systems. This Trojan is not self­

replicating, but is rather spread via manual targeting of victims.

It is one of the first malware not hiding in the master boot

record of Windows operating system, and instead, hides in

network file system locations. It reconfigures the NTFS file

system's program loader, thus becoming invisible in the file

system.

Andromeda. One of the most widespread non-replicating

spam bots, which mostly spreads via email-based infections.

It was inactive for a certain duration, but has recently resur­

faced with more sophisticated features. This mal ware was

first identified in February 2007, and it was reported that

most of the infected systems were in the European countries.

Andromeda is highly modular, and can incorporate various

modules (keylogger, screen capture, etc.).

DarkComet. A remote administration tool, first discovered

in February 2012. It is used in a wide range of targeted

attacks, and has the ability to take pictures via webcam,

record conversations via a microphone attached to the PC,

and gain full control of the infected machine. It is freely

available online, and as a result, one of the most popular

remote administration tools.

In 2011 the source code of Zeus was leaked, and since then

many other mal ware have started incorporating its code into

their program. As a result, at times it is difficult to categorize

a new variant as either Zeus or one of the other malware

families (e.g., variant of Carberp which uses many parts of

Zeus code is commonly referred to as "Zberp"). In this work

we use the categories provided by Kaspersky anti-virus as our

ground truth. That is, if Kaspersky classifies a malware as a

variant of Carberp, then for our purposes that is the correct

label (hence, the prediction task for our learning module is

difficult, because the six different classes of malware are not

completely separated.)

Each of the 1,800 programs in our dataset is run in Cuckoo

sandbox2, the most popular open source sandbox tool for

mal ware analysis. Cuckoo sandbox records native functions

and Windows API call traces, details of files created and

deleted from the file system, IP addresses, URLs and ports

accessed by the program, registry keys written, etc. The result

is saved in a text file in JSON file format (though note that

as described in the previous section our approach is agnostic

to the format of this text file, and completely ignores the

formatting). Using the procedure described in the previous

section each of these sandbox files is converted to a 20,000

sized bit-string, which is a rough fixed size representation of

the raw sandbox text file.

Having converted all our dataset to 1,800 vectors (each

of size 20,000), we randomly split them to 1,200 samples for

training (200 samples from each of the six categories) and 600

samples for testing (lOO samples from each category).

B. Training the DBN

As described in the previous section, we train a deep de­

noising autoencoder consisting of eight layers (20,000-5,000-

2,500-1,000-500-250-lO0-30), with layer-wise training. To

further regularize the network and prevent overfitting, we use

dropout [lO]. Each time a new input is given to the network,

each hidden unit is randomly omitted from the network with

a probability of 0.5 (i.e., about half of the units in the hidden

layer are omitted). The idea is that a hidden unit cannot rely

on other hidden units being present. Another way to view the

dropout procedure is as a very efficient way of performing

model averaging with neural networks. A good way to reduce

the error on the test set is to average the predictions produced

by a very large number of different networks. The standard

way to do this is to train many separate networks and then

to apply each of these networks to the test data, but this is

computationally expensive during both training and testing.

Random dropout makes it possible to train a huge number

of different networks in a reasonable time. In prediction time,

all the neurons in hidden layer are present, but their output

is multiplied by 0.5 (halved). Note that in our case, training

autoencoders, at each learning step we have only one hidden

layer. For example, when training the first layer 20,000 to

5,000 to 20,000, then only the neurons in the hidden layer

2 Available at http://www . cuckoosandbox. org

Fig. 4. Illustration of all the stages from initial malware run in Sandbox to

signature derivation using DBN.

of 5,000 neurons are affected by dropout. During prediction,

the output of each of these hidden units is halved.

Instead of using the standard logistic or tanh activation

functions, we use rectified linear units (ReLU) for the non­

linearity function [7].

f(x) = max(O, x)

ReLU is widely used when training deep neural networks,

usually resulting in faster convergence and diminishes the

gradient vanishing problem, which especially affects deep

networks [3].

Other parameters we use are: noise ratio of 0.2 for denois­

ing autoencoders, lOOO training epochs (for each autoencoder

layer), learning rate which starts at 0.001 and linearly decays

to 0.000001, batch size of 20, and no momentum. We use an

L2 penalty for network regularization. Note that each layer has

an additional bias unit, which is connected to all the units in

the subsequent layer.

Due to the large network size (e.g., only the layer con­

necting 20,000 input neurons to 5,000 neurons contains more

than lOO,OOO,OOO weights which should be learned), we ran

the network on an Nvidia GeForce GTX 680 graphics card

(GPU). This reduced the training time to under two days.

Putting the above steps together, we have constructed an

end-to-end method for automatic signature generation: The

program is run in a sandbox, the sandbox file is converted to

a binary bit-string which is fed to the neural network, and the

deep neural network produces a 30-sized vector at its output

layer, which we treat as the signature of the program. See

Figure 4.

C. Experimental Results

We now examine the quality of the generated signatures

due to DeepSign. To do so, we feed all of our 1,800 vectors

of size 20,000 to the DBN, and convert them to 30-sized

representations (signatures).

Fig. 5. A 2-dimensional visualization of the malware signatures (each node
is one malware signature), generated by the t-SNE dimensionality reduction
algorithm. Each color corresponds to one of six malware categories. Note that
the labels are used for coloring the nodes only, and otherwise the visualization
is due to completely unsupervised DBN.

Figure 5 provides a two dimensional visualization of the

data, where each node is one mal ware signature. The visual­

ization is generated using the t-distributed stochastic neighbor

embedding (t-SNE) algorithm [19], in this case reducing the

dimensionality of the data from 30 (signature length) to 2. The

goal of t-SNE is to reduce the dimensionality such that the

closer two nodes are to each other in the original high dimen­

sional space, the closer they would be in the 2-dimensional

space. Note that the labels are used for coloring the nodes

only, and otherwise the visualization is due to unsupervised

DBN. The figure illustrates that variants of the same mal ware

family are mostly clustered together in the signature space,

demonstrating that the signatures due to DBN indeed capture

invariant representations of malware. Some clustering errors

are expected here (as can be seen in the visualization), since as

explained in Subsection IV-A, many of these malware classes

use parts of code from each other, and the distinction even

amongst anti-virus detections is blurred. Here we use the labels

given by Kaspersky anti-virus as the ground truth against

which we measure the performance of our method.

To further measure the quality of this compact representa­

tion, we train a supervised classifier on the 30-sized vectors

as follows: Train the classifier on the 1,200 vectors of size 30,

and then predict on the 600 test vectors (of size 30). The higher

the prediction accuracy is, the better the generated signatures

are.

We first train an SVM classifier3 using 1,200 signatures,

and then use it to predict the correct labels (out of 6 possi­

ble) on the 600 prediction signatures. The resulting accuracy

is 96.4%. Alternatively, running a basic k-nearest neighbor

algorithm (with k = 1) where each of the 600 prediction

samples are given the label of their nearest neighbor (Euclidean

distance) from the 1,200 training samples, results in an ac-

3We use the popular UBSYM library [4] .

curacy of 95.3%. This high accuracy obtained when training

and predicting solely on the compact signature space attests to

the fact that DeepSign generates meaningful signatures for the

malware, resulting in successful detection of a high percentage

of the mal ware variants generated with the purpose of evading

classical anti-virus signatures .

Finally, to examine whether the classification accuracy

in the supervised learning context can be improved, we use

the weights of the trained neural network due to the DBN

as the initial weights for a deep supervised neural network.

The supervised network has exactly the same layers as the

DBN, but with the addition of six neurons in the output layer

(corresponding to six categories of malware). The neurons

in this added output layer are softmax units, minimizing the

cross-entropy loss function. Training this network on the 1,200

input training samples (using input noise = 0.2, dropout = 0.5,

and learning rate = 0.001), and predicting on 600 test samples

results in 98.6% accuracy on test data, a relatively substantial

improvement over the SVM results.

V. CONCLUDING REMARKS

In this paper we reviewed past approaches for generat­

ing signatures for mal ware programs, and proposed a novel

method based on deep belief networks. Current approaches for

mal ware signature generation use specific aspects of malware

(e.g., certain network traffic normality or a substring in the

program); thus, new malware variants easily evade detection

by modifying small parts of their code.

Our proposed approach is inspired by the recent success

in training deep neural networks which produce invariant

representations. We first run the mal ware in a sandbox and

then convert the sandbox log file to a long binary bit-string.

This bit-string is fed to a deep 8-layered neural network which

produces 30 values in its output layer. These values are used

as the signature of the program. The experimental results show

that the signatures produced by the DBN are highly successful

for mal ware detection. These signatures can either be used in

a completely unsupervised framework or used for supervised

mal ware classification.

The results presented here demonstrate that unsupervised

deep learning is a powerful method for generating high level

invariant representations in domains beyond computer vision,

language processing, or speech recognition; and can be applied

successfully to challenging domains such as malware signature

generation.

ACKNOWLEDGMENT

We would like to thank C4 Security for providing the

mal ware dataset used in this research.

REFERENCES

[1] Y Bengio and Y LeCun. Scaling learning algorithms towards AI. Large

Scale Kernel Machines. MIT Press, 2007.

[2] Y Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer­
wise training of deep networks. Advances in Neural Iriformation Pro­

cessing Systems 19, pages 153-160. MIT Press, 2007.

[3] Y Bengio. Learning deep architectures for AI. Foundations and Trends

in Machine Learning, 2(1):1-127, 2009.

[4] C.H. Chang and C.l. Lin. LIBSVM: A library for support vector
machines, ACM Transactions on Intelligent Systems and Technology,
2(3):27:1-27:27,2011.

[5] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R.E. Bryant.

Semantics-aware mal ware detection, In Proceedings of the 2005 IEEE

Symposium on Security and Privacy, pages 32-46, Oakland, CA, May
2005.

[6] E. Filiol and S. Josse. A statistical model for undecidable viral detection,

Journal in Computer Virology, 3(2):65-74, 2007.

[7] X. Glorot, A. Bordes and Y Bengio. Deep sparse rectifier neural
networks. In Proceedings of the 14th International Coriference on

Artijiciaiintelligence and Statistics, pages 315-323, 2011.

[8] G.E. Hinton, S. Osindero, and yw. Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527-1554, 2006.

[9] G.E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504-507, 2006.

[10] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov. Improving neural networks by preventing co-adaptation
of feature detectors. CoRR absI1207.0580, 2012.

[11] H.A. Kim and B. Karp. Autograph: Toward automated, distributed
worm Signature detection. In Proceedings of the 13th Use nix Security

Symposium (Security 2004), San Diego, CA, August, 2004.

[12] C. Kreibich and J. Crowcroft. Honeycomb: Creating intrusion detection
signatures using honeypots. ACM SIGCOMM Computer Communica­

tion Review, 34(1):51-56, 2004.

[13] A. Krizhevsky and G.E. Hinton. Using very deep autoencoders for
content-based image retrieval, 19th European Symposium on Artijicial

Neural Networks (ESANN), 2011.

[14] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification
with deep convolutional neural networks, Advances in Neural Informa­

tion Processing Systems, pages 1106-1114, 2012.

[15] Y LeCun, L. Bottou, Y Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,

86(11):2278-2324, 1998.

[16] H. Lee, C. Ekanadham, and A. Ng. Sparse deep belief net model for
visual area V 2. Advances in Neural Iriformation Processing Systems 20,

pages 873-880, MIT Press, 2008.

[17] Q.Y. Le, R. Monga, M. Devin, K. Chen , G.S. Corrado, 1. Dean, and A.
Ng. Building high-level features using large scale unsupervised learning,
In Proceedings of the International Conference on Machine Learning,

2012.

[18] M. Lopez. 160,000 new samples of malware every day in the first

quarter of 2014, Panda Security website, May 2014.

[19] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional

data using t-SNE. Journal of Machine Learning Research, 9:2579-2605,
2008.

[20] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically gener­

ating signatures for polymorphic worms, In Proceedings of the 2005

IEEE Symposium on Security and Privacy, pages 226-241, 2005.

[21] M. Ranzato, C.S. Poultney, S. Chopra, and Y LeCun. Efficient learning

of sparse representations with an energy-based model. Advances in

Neural Information Processing Systems 19, pages 1137-1144. MIT

Press, 2007.

[22] D.E. Rumelhart, G.E. Hinton, and R.I. Williams. Learning representa­
tions by back-propagating errors. Nature, 323:533-536, 1986.

[23] K. Simonyan and A. Zisserman Very deep convolutional networks for
large-scale image recognition, CoRR abs1l409.l556, 2014.

[24] S. Singh, C. Eitan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In Proceedings of the 6th Symposium on Operating

Systems Design and Implementation (OSDI), pages 45-60, December
2004

[25] G. Tahan, C. Glezer, Y Elovici, and L. Rokach. Auto-Sign: an automatic
signature generator for high-speed mal ware filtering devices, Journal in

Computer Virology, 6(2):91-103, 2010.

[26] Y Tang and S. Chen. Defending against Internet worms: A signature­
based approach. In Proceedings of IEEE INF O COM, pages 1384- 1394,
Miami, Florida, 2005.

[27] P. Vincent, H. Larochelle, I. Lajoie, Y Bengio, and P. Manzagol.
Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of Machine

Learning Research, 11:3371-3408,2010.

[28] K. Wang and S.I. Stolfo. Anomalous payload-based network intrusion
detection. Recent Advances in Intrusion Detection, 3224:203-222, 2004.

[29] P.J. Werbos. Beyond regression: New tools for prediction and analysis

in the behavioral sciences, Ph.D. Thesis, Harvard University, 1974.

[30] Y. Yegneswaran, J.T. Giffin, P. Barford, and S. lha. An architecture
for generating semantics-aware signatures, In Proceedings of the 14th

USENIX Security Symposium, pages 97-112, Baltimore, Maryland,
August 2005.

