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Abstract-This paper presents a novel deep learning based 

method for automatic mal ware signature generation and classi­

fication. The method uses a deep belief network (DBN), imple­

mented with a deep stack of denoising autoencoders, generating 

an invariant compact representation of the malware behavior. 

While conventional signature and token based methods for 

malware detection do not detect a majority of new variants for 

existing mal ware, the results presented in this paper show that sig­

natures generated by the DBN allow for an accurate classification 

of new malware variants. Using a dataset containing hundreds of 

variants for several major mal ware families, our method achieves 

98.6% classification accuracy using the signatures generated by 

the DBN. The presented method is completely agnostic to the 

type of malware behavior that is logged (e.g., API calls and 

their parameters, registry entries, web sites and ports accessed, 

etc.), and can use any raw input from a sandbox to successfully 

train the deep neural network which is used to generate mal ware 

signatures. 

Keywords-Deep Learning, Deep Belief Network, Autoencoders, 

Maiware, Automatic Signature Generation 

I. INTRODUCTION 

Despite the nearly exponential growth in the number of new 

malware (e.g., Panda Security reports that on average 160,000 

new malware programs appeared every day in 2013 [18]), 

the method for defending against these threats has largely 

remained unchanged. Anti-virus solutions detect the malware, 

analyze it, and generate a special handcrafted signature which 

is released as an update to their clients. This manual analysis 

phase typically takes a long time, during which the malware 

remains undetected and keeps infecting new computers. Addi­

tionally, even when detected, the authors of mal ware programs 
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usually make some minimal changes to their code, so that the 

new variant is undetected by the anti-virus software. This "cat 

and mouse" game between malware developers and anti-virus 

companies goes on for many years for most major malware 

programs, and with each release of a new variant, thousands 

of computers are infected. 

Several methods have been proposed for automatic mal­

ware signature generation, e.g., signatures based on specific 

vulnerabilities, payloads, honeypots, etc. A major problem 

associated with these methods is that they target specific 

aspects of the malware, thus allowing the malware developers 

to create a new undetected variant by modifying small parts 

of their software. For example, a mal ware spreading through 

the use of a specific vulnerability found in Windows operating 

system, can use another vulnerability in the system to spread, 

thus evading vulnerability-based signatures. 

In this paper we present a novel method for signature 

generation which does not rely on any specific aspect of 

the mal ware, thus being invariant to many modifications in 

the malware code (i.e., the proposed approach is capable of 

detecting most new variants of any malware). The method 

relies on training a deep belief network (DBN) [8], i.e., a 

deep unsupervised neural network, which would create an 

invariant compact representation of the general behavior of 

the malware. In recent years DBNs have proven successful in 

generating invariant representations for challenging domains, 

and our method attempts to use similar principles for generat­

ing invariant representations for mal ware. 

The proposed method consists of the following steps in 

the unsupervised training phase: Given a dataset of malware 

programs, run each program in a sandbox to generate a text 

file containing the behavior of the program. Then, parse the 

sandbox text file and convert it to a binary bit-string to 

feed it to the neural network. Next, a deep belief network 

implemented using deep de noising autoencoders is trained by 

layer-wise training. The training is completely unsupervised, 



and the network is not aware of the labels of each sample. 

The DBN has eight layers, and its output layer contains 30 

neurons. Thus, the resulting deep network basically generates 

a signature containing 30 floating point numbers for each 

program run in a sandbox. 

We use a large dataset, provided to us by C4 Security, 

containing several major malware categories and several hun­

dred variants for each. The trained DBN generates a signature 

for each mal ware sample. The quality and representation 

power of these generated signatures is examined by running 

several supervised classification methods on them. The results 

show that a deep neural network achieves 98.6% classification 

accuracy when tested on unseen data, which attests to the 

representation power of the signatures due to DBN. 

In the next section we review several previous approaches 

for automatic signature generation. In Section III we describe 

our approach, and Section IV presents implementation details 

and experimental results. Section V contains our concluding 

remarks. 

II. RELATED WORK 

It is very difficult to successfully generate signatures which 

can be used to prevent new attacks, and so the conventional 

methods are usually ineffective against zero-day mal ware [6], 

[26], [28]. Several approaches have been suggested to improve 

the signature generation process. Here we briefly review sev­

eral of them. 

Several methods which try to cope with new malware 

variants do so by analyzing the traffic (assuming that traffic 

patterns do not change substantially for each variant of the 

malware). Autograph [11] records source and destination of 

connections attempted from outside the network (inbound 

connections). An external source is considered to be a scanner 

if it has made more than a prespecified number of attempts to 

connect to an IP address in the network. After deeming this 

external source a scanner, and thus potentially malicious, Au­

tograph selects the most frequent byte sequence from the net­

work traffic of this source and uses it as its signature. A scanner 

malware already signed by Autograph can evade detection by 

modifying its most frequent byte sequence. A similar approach 

for signature generation based on network traffic is Honeycomb 

[12], which analyzes the traffic on the honeypot. Honeycomb 

uses largest common substrings (LCS) to generate signatures 

and measure similarities in packet payloads. The PAYL sensor 

[28] monitors the flow of information in the network and tries 

to detect malicious attacks using anomaly detection, assuming 

that the packets associated with zero-day attacks are distinct 

from normal network traffic. The Nemean architecture [30] is 

a semantic-aware Network Intrusion Detection System (NIDS) 

which normalizes packets from individual sessions in the 

network and renders semantic context. A signature generation 

component clusters similar sessions and generates signatures 

for each cluster. Another semantic-aware method is Amd [5], 

which generates semantic-aware code templates and specifies 

the conditions for a match between the templates and the 

programs being checked. Polygraph [20] generates content 

based signatures that use several substring signatures (tokens), 

to expand the detection of mal ware variants. EarlyBird [24] 

sifts through the invariant portion of a worm's content that will 

appear frequently on the network as it spreads or attempts to 

spread. Netspy [28] also uses the invariant portion of network 

traffic generated by malware to generate a signature. 

The majority of anti-virus programs reply on analyzing the 

executable file to determine whether it is a malware. As Filiol 

and Josse [6] establish, most current anti-virus programs do 

not detects variant of mal ware. They propose a method for 

automatic signature generation by analyzing the executable's 

code and substrings, and measure statistical distribution of 

code across variants of mal ware. Their experiments were 

performed on short (small sized) mal ware such as Nimda, 

Code Red/Code Red II, MS Blaster, Sober, Netsky and Beagle. 

This method is less accurate when applied to larger mal ware. 

Most real world mal ware are large, containing many modules 

and sub-modules, and so a statistical analysis would not be 

sufficient to accurately classify them. Auto-Sign [25] generates 

a list of signatures for a malware by splitting its executable 

to segments of equal sizes. For each segment a signature is 

generated, and the list of signatures is subsequently ranked. 

This method is more resilient to small modifications in the 

executable, but a malware can evade this method by encrypting 

the executable (which is a simple and popular method for 

many malware programs), and thus evading any method which 

inspects the executable file for signature comparison. 

Since current approaches mostly rely on specific behavior 

of malware for signature generation (e.g., specific network 

traffic, or specific substrings in executable, etc.), new malware 

variants could be created with minimal modifications, such that 

they would not be detected by the conventional methods. In 

the next section we propose a method for signature generation 

based on the behavior of the program, without focusing on 

any specific aspect of the executable or network traffic, thus 

making it difficult for a malware variant to evade detection. 

III. PROPOSED SIGNATURE GENERATION METHOD 

This section provides our novel approach for signature 

generation. The main question we are trying to answer is the 

following: Is it possible to generate a signature for a program 

that represents its behavior, and is invariant to small scale 

changes? In recent years deep learning methods have proven 

very successful in accomplishing this very task in computer 

vision. Deep neural networks are trained to create invariant 



representations of objects, so that even when the object is 

in a different position, size, contrast, angle, etc., the network 

still detects the object correctly. These networks have achieved 

under 10% error in the difficult task of ImageNet [14], [23]. 

Unsupervised versions of these networks have been developed 

as well, e.g. [16], [17], where deep belief networks were 

training by merely exposing the networks to images randomly 

taken from YouTube videos. Krizhevsky and Hinton [13] used 

deep autoencoders to create short binary codes for images 

based on their content (e.g., pictures containing elephants will 

have similar codes, etc.). 

Our method uses these principles and applies them for 

modeling the behavior of programs (and specifically, malware). 

The goal is that the obtained representation would be invariant 

to small scale changes, and thus capable of detecting most 

variants of malware1• To accomplish this goal, we first need 

to find a way to represent the behavior of a program as a fixed 

sized vector, which would be the input to the neural network. 

We will then train a deep belief network which would produce 

invariant representations of the input. The output of the DBN 

will be the signature for the malware. 

A. Program Behavior as Binary Vector 

Behavior of programs (and specifically malware) is typ­

ically recorded by running the programs in a sandbox. A 

sandbox is a special environment which allows for logging 

the behavior of programs (e.g., the API function calls, their 

parameters, files created or deleted, websites and ports ac­

cessed, etc.) The results are saved in a file (typically a text 

file). Figure 1 shows a snippet of logs recorded by a sandbox. 

Sandbox records are usually analyzed manually, trying to learn 

information that would assist in creating a signature for the 

malware (see Section II). 

The simplest method for converting the sandbox generated 

text file to a fixed size string is using one of the methods 

common in natural language processing (NLP). Of these 

methods, the simplest yet is unigram (i-gram) extraction. For 

example, given a dataset of text samples, find the 5,000 most 

frequent words in the text (these words would comprise the 

dictionary), and then for each text sample check which of 

these 5,000 words are present. Thus, each text sample is 

represented as a 5,000 sized bit-string. Unlike language text 

files, sandbox files contain a variety of information, and require 

several preprocessing stages to extract the useful content (e.g., 

I Note that there are many similarities between our approach and that of 
Krizhevsky and Hinton [13], as both use deep autoencoders to create short 
signatures for the content; in our case the content is the high level behavior 
of the program (and not specific low level features such as strings in the 
executable), and in Krizhevsky and Hinton's case, it is the high level objects 
appearing in the image (and not low level features based on pixels in the 
image). 

Fig. 1. A snippet from the log file generated by Cuckoo sandbox. 

string after "api" tag contains the name of function call, 

etc.). However, in order to remain as domain agnostic as 

possible, we propose to treat the sandbox file as a simple 

text file, and extract unigrams without any preprocessing. That 

is, all the markup and tagged part of the files are extracted 

as well (e.g., given "api": "CreateFileW", the terms 

extracted are "api": and "CreateFileW", completely 

ignoring what each part means). While this may sounds absurd 

(intentionally adding useless noise where it can be easily 

removed), this should not pose a problem, since the learning 

system (described below) should easily learn to ignore these 

irrelevant parts. Specifically, our method follows the following 

simple steps to convert sandbox files to fixed size inputs to 

the neural network: (1) For each sandbox file in the dataset, 

extract all unigrams, (2) remove the unigrams which appear in 

all files (contain no information), (3) for each unigram count 

the number of files in which it appears, (4) select top 20,000 

with highest frequency, and (5) convert each sandbox file to a 

20,000 sized bit string, by checking whether each of the 20,000 

unigrams appeared in it. In other words, we first define which 

words (unigrams) participate in our dictionary (analogous to 

the dictionaries used in NLP, which usually consist of the most 

frequent words in a language), and then for each sample we 

check it against the dictionary for the presence of each word 

and thus produce a binary vector. 

B. Training a Deep Belief Network 

The previous subsection described a simple method for 

converting the behavior of a computer program to a fixed 



size binary vector. As we discussed previously, most malware 

variants make small changes in their code (i.e., small changes 

in behavior), which is sufficient to evade the classical signature 

generation methods. We would like to generate a signature for 

each program which is resilient to these small changes (an 

invariant representation, similar to those used for computer 

vision). In order to achieve this goal, we create a deep 

belief network (DBN) by training a deep stack of denoising 

autoencoders. 

An autoencoder is an unsupervised neural network which 

sets the target values (of the output layer) to be equal to the 

inputs, i.e., the number of neurons at the input and output 

layers is equal, and the optimization goal for output neuron i 
is set to equal Xi, which is the value of the input neuron i. A 

hidden layer of neurons is used between the input and output 

layers, and the number of neurons in the hidden layer is usually 

set to fewer than those in the input and output layers, thus 

creating a bottleneck, with the intention of forcing the network 

to learn a higher level representation of the input. That is, for 

each input X, it is first mapped to a hidden layer y, and the 

output layer tried to reconstruct x. The weights of the encoder 

layer (W) and the weights of the decoder layer (W') can 

be tied (i.e., defining W' = WT). Autoencoders are typically 

trained using backpropagation with stochastic gradient descent 

[22], [29]. 

Recently it has been demonstrated that denoising GLttoen­

coders [27] generalize much better than basic autoencoders 

in many tasks. In denoising autoencoders each time a sample 

is given to the network, a small portion (usually a ratio of 

about 0.1 to 0.2) of it is corrupted by adding noise (or more 

often by zeroing the values). That is, given an input X, first 

it is corrupted to x and then given to the input layer of the 

network. The objective function of the network in the output 

layer remains generating X, i.e., the uncorrupted version of the 

input (see Figure 2). This approach usually works better than 

basic autoencoders due to diminishing the overfitting in the 

network. By having to recreate the uncorrupted version of the 

input, the network is forced to generalize better, and determine 

more high level patterns. Additionally, since the network rarely 

receives the same input pattern more than once (each time 

sees a corrupted version only), there is a diminished risk of 

overfitting (though it still takes place). Finally, using denoising 

autoencoders the hidden layer need not necessarily be smaller 

than the input layer (in basic autoencoder such a larger hidden 

layer may result in simply learning the identity function). Note 

that the noise is added only during training. In prediction time 

the network is given the uncorrupted input (i.e., similar to basic 

autoencoder ). 

When an autoencoder's training is complete, we can dis­

card the decoder layer, fix the values of the encoder layer (so 

the layer can no longer be modified), and treat the output of 

Fig. 2. One layer of denoising autoencoder during training. 

the hidden layer as the input to a new autoencoder added on 

top of the previous autoencoder. This new autoencoder can be 

trained similarly. Using such layer-wise unsupervised training, 

deep stacks of autoencoders can be assembled to create deep 

neural networks consisting of several hidden layers (forming a 

deep belief network). Given an input, it will be passed through 

this deep network, resulting in high level outputs. In a typical 

implementation, the outputs may then be used for supervised 

classification if required, serving as a compact higher level 

representation of the data. 

In our approach we train a deep denoising autoencoder con­

sisting of eight layer: 20,000-5,000-2,500-1,000-500-250-

100-30. At each step only one layer is trained, then the weights 

are "frozen", and the subsequent layer is trained, etc. (see 

Figure 3). At the end of this training phase, we have a deep 

network which is capable of converting the 20,000 input vector 

into 30 floating point values. We regard these 30-sized vector 

as the "signature" of the program. Note that the network is 

trained only using the samples in the training set, and for 

all future samples it will be run in prediction mode, i.e., 

receiving the 20,000-sized vector it will produce 30 output 

values, without modifying the weights. 

The next section provides implementation details and ex­

perimental results, and demonstrates that the resulting 30-sized 

vector (i.e., the signature) indeed provides a good invariant 

representation of the malware. 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In this section we first describe the malware dataset and 

the properties of the sandbox that was used, then provide the 

details of the trained neural network, and finally present our 

experimental results. 

A. Malware Dataset and Sandbox 

Our dataset consists of six major categories of malware, 

and 300 variants in each category, for a total of 1,800 samples, 

which were provided to us by C4 Security. Each of these six 

malware categories spread massively worldwide and caused 

a tremendous damage. Hundreds of variants of them were 



Fig. 3. Illustration of DBN training. (I) Train the first autoencoder layer. (II) Use the weights from the previous layer, and build a new autoencoder on top of 
them. The weights taken from the first autoencoder are frozen. (III) Similarly, take the weights from the previous layer and add a new layer. (IV) Proceed with 
layer-wise training until training all the eight layers for the final DBN. 

created, each time modifying some parts of the malware 

to evade anti-virus programs. These new variants remained 

undetected until they were manually detected, analyzed, and a 

signature was generated for them. 

The six malware categories used are Zeus, Carberp, Spy­

Eye, Cidox, Andromeda, and DarkComet. All of these six 

malware families are used to carry out a wide range of criminal 

tasks, and have infected millions of computers worldwide. 

Several crackdowns by the FBI and other law enforcement 

agencies in numerous countries have resulted in the arrest of 

more than a hundred persons involved with development and 

use of these mal ware, but their variants are widely used to 

the present day. The following is a brief description of the six 

mal ware classes. 

Zeus. Probably the most widely used Trojan for cyber 

crime (especially for stealing financial information). It was 

first detected in July 2007 and is still widely used both in 

its original format and in thousands of variants which are con­

tinuously introduced to evade anti-viruses. It is estimated that 

in the US alone it has infected about 3.6 million computers. 

Several of the top malware programs used for stealing banking 

information are based on variations of Zeus. The entire source 

code of Zeus is freely available online, facilitating the creation 

of new mal ware based on it. 

Carberp. A widespread mal ware that silently downloads 

and installs other malware components to the infected system. 

It was first discovered in 20lO and reported as the sixth most 

popular mal ware for stealing financial information. Currently 

there are no clear estimates of the number of infected systems 

or amount of money earned by the developers, as this mal ware 

remains mostly underground. In its later versions it heavily 

incorporates Zeus code. 

Spy Eye. First reported in 2009 as a banking Trojan but 

it has been used to carry payloads for industrial espionage as 

well. It has infected 1.4 million computers worldwide since 

2009, and the developers of this malware have made more 

than $3.2 million in a six-month period alone. It specializes 

in stealing valuable personal information from the victim's 

computer, including banking login and passwords, credit card 

numbers, social security numbers, etc. 

Cidox. A remote administrative tool (RAT) which is mainly 

used to control infected systems. This Trojan is not self­

replicating, but is rather spread via manual targeting of victims. 

It is one of the first malware not hiding in the master boot 

record of Windows operating system, and instead, hides in 

network file system locations. It reconfigures the NTFS file 

system's program loader, thus becoming invisible in the file 

system. 

Andromeda. One of the most widespread non-replicating 

spam bots, which mostly spreads via email-based infections. 

It was inactive for a certain duration, but has recently resur­

faced with more sophisticated features. This mal ware was 

first identified in February 2007, and it was reported that 

most of the infected systems were in the European countries. 

Andromeda is highly modular, and can incorporate various 

modules (keylogger, screen capture, etc.). 

DarkComet. A remote administration tool, first discovered 

in February 2012. It is used in a wide range of targeted 

attacks, and has the ability to take pictures via webcam, 

record conversations via a microphone attached to the PC, 

and gain full control of the infected machine. It is freely 

available online, and as a result, one of the most popular 

remote administration tools. 

In 2011 the source code of Zeus was leaked, and since then 

many other mal ware have started incorporating its code into 

their program. As a result, at times it is difficult to categorize 

a new variant as either Zeus or one of the other malware 

families (e.g., variant of Carberp which uses many parts of 



Zeus code is commonly referred to as "Zberp"). In this work 

we use the categories provided by Kaspersky anti-virus as our 

ground truth. That is, if Kaspersky classifies a malware as a 

variant of Carberp, then for our purposes that is the correct 

label (hence, the prediction task for our learning module is 

difficult, because the six different classes of malware are not 

completely separated.) 

Each of the 1,800 programs in our dataset is run in Cuckoo 

sandbox2, the most popular open source sandbox tool for 

mal ware analysis. Cuckoo sandbox records native functions 

and Windows API call traces, details of files created and 

deleted from the file system, IP addresses, URLs and ports 

accessed by the program, registry keys written, etc. The result 

is saved in a text file in JSON file format (though note that 

as described in the previous section our approach is agnostic 

to the format of this text file, and completely ignores the 

formatting). Using the procedure described in the previous 

section each of these sandbox files is converted to a 20,000 

sized bit-string, which is a rough fixed size representation of 

the raw sandbox text file. 

Having converted all our dataset to 1,800 vectors (each 

of size 20,000), we randomly split them to 1,200 samples for 

training (200 samples from each of the six categories) and 600 

samples for testing (lOO samples from each category). 

B. Training the DBN 

As described in the previous section, we train a deep de­

noising autoencoder consisting of eight layers (20,000-5,000-

2,500-1,000-500-250-lO0-30), with layer-wise training. To 

further regularize the network and prevent overfitting, we use 

dropout [lO]. Each time a new input is given to the network, 

each hidden unit is randomly omitted from the network with 

a probability of 0.5 (i.e., about half of the units in the hidden 

layer are omitted). The idea is that a hidden unit cannot rely 

on other hidden units being present. Another way to view the 

dropout procedure is as a very efficient way of performing 

model averaging with neural networks. A good way to reduce 

the error on the test set is to average the predictions produced 

by a very large number of different networks. The standard 

way to do this is to train many separate networks and then 

to apply each of these networks to the test data, but this is 

computationally expensive during both training and testing. 

Random dropout makes it possible to train a huge number 

of different networks in a reasonable time. In prediction time, 

all the neurons in hidden layer are present, but their output 

is multiplied by 0.5 (halved). Note that in our case, training 

autoencoders, at each learning step we have only one hidden 

layer. For example, when training the first layer 20,000 to 

5,000 to 20,000, then only the neurons in the hidden layer 

2 Available at http://www . cuckoosandbox. org 

Fig. 4. Illustration of all the stages from initial malware run in Sandbox to 

signature derivation using DBN. 

of 5,000 neurons are affected by dropout. During prediction, 

the output of each of these hidden units is halved. 

Instead of using the standard logistic or tanh activation 

functions, we use rectified linear units (ReLU) for the non­

linearity function [7]. 

f(x) = max(O, x) 

ReLU is widely used when training deep neural networks, 

usually resulting in faster convergence and diminishes the 

gradient vanishing problem, which especially affects deep 

networks [3]. 

Other parameters we use are: noise ratio of 0.2 for denois­

ing autoencoders, lOOO training epochs (for each autoencoder 

layer), learning rate which starts at 0.001 and linearly decays 

to 0.000001, batch size of 20, and no momentum. We use an 

L2 penalty for network regularization. Note that each layer has 

an additional bias unit, which is connected to all the units in 

the subsequent layer. 

Due to the large network size (e.g., only the layer con­

necting 20,000 input neurons to 5,000 neurons contains more 

than lOO,OOO,OOO weights which should be learned), we ran 

the network on an Nvidia GeForce GTX 680 graphics card 

(GPU). This reduced the training time to under two days. 

Putting the above steps together, we have constructed an 

end-to-end method for automatic signature generation: The 

program is run in a sandbox, the sandbox file is converted to 

a binary bit-string which is fed to the neural network, and the 

deep neural network produces a 30-sized vector at its output 

layer, which we treat as the signature of the program. See 

Figure 4. 

C. Experimental Results 

We now examine the quality of the generated signatures 

due to DeepSign. To do so, we feed all of our 1,800 vectors 

of size 20,000 to the DBN, and convert them to 30-sized 

representations (signatures). 



Fig. 5. A 2-dimensional visualization of the malware signatures (each node 
is one malware signature), generated by the t-SNE dimensionality reduction 
algorithm. Each color corresponds to one of six malware categories. Note that 
the labels are used for coloring the nodes only, and otherwise the visualization 
is due to completely unsupervised DBN. 

Figure 5 provides a two dimensional visualization of the 

data, where each node is one mal ware signature. The visual­

ization is generated using the t-distributed stochastic neighbor 

embedding (t-SNE) algorithm [19], in this case reducing the 

dimensionality of the data from 30 (signature length) to 2. The 

goal of t-SNE is to reduce the dimensionality such that the 

closer two nodes are to each other in the original high dimen­

sional space, the closer they would be in the 2-dimensional 

space. Note that the labels are used for coloring the nodes 

only, and otherwise the visualization is due to unsupervised 

DBN. The figure illustrates that variants of the same mal ware 

family are mostly clustered together in the signature space, 

demonstrating that the signatures due to DBN indeed capture 

invariant representations of malware. Some clustering errors 

are expected here (as can be seen in the visualization), since as 

explained in Subsection IV-A, many of these malware classes 

use parts of code from each other, and the distinction even 

amongst anti-virus detections is blurred. Here we use the labels 

given by Kaspersky anti-virus as the ground truth against 

which we measure the performance of our method. 

To further measure the quality of this compact representa­

tion, we train a supervised classifier on the 30-sized vectors 

as follows: Train the classifier on the 1,200 vectors of size 30, 

and then predict on the 600 test vectors (of size 30). The higher 

the prediction accuracy is, the better the generated signatures 

are. 

We first train an SVM classifier3 using 1,200 signatures, 

and then use it to predict the correct labels (out of 6 possi­

ble) on the 600 prediction signatures. The resulting accuracy 

is 96.4%. Alternatively, running a basic k-nearest neighbor 

algorithm (with k = 1) where each of the 600 prediction 

samples are given the label of their nearest neighbor (Euclidean 

distance) from the 1,200 training samples, results in an ac-

3We use the popular UBSYM library [4] . 

curacy of 95.3%. This high accuracy obtained when training 

and predicting solely on the compact signature space attests to 

the fact that DeepSign generates meaningful signatures for the 

malware, resulting in successful detection of a high percentage 

of the mal ware variants generated with the purpose of evading 

classical anti-virus signatures . 

Finally, to examine whether the classification accuracy 

in the supervised learning context can be improved, we use 

the weights of the trained neural network due to the DBN 

as the initial weights for a deep supervised neural network. 

The supervised network has exactly the same layers as the 

DBN, but with the addition of six neurons in the output layer 

(corresponding to six categories of malware). The neurons 

in this added output layer are softmax units, minimizing the 

cross-entropy loss function. Training this network on the 1,200 

input training samples (using input noise = 0.2, dropout = 0.5, 

and learning rate = 0.001), and predicting on 600 test samples 

results in 98.6% accuracy on test data, a relatively substantial 

improvement over the SVM results. 

V. CONCLUDING REMARKS 

In this paper we reviewed past approaches for generat­

ing signatures for mal ware programs, and proposed a novel 

method based on deep belief networks. Current approaches for 

mal ware signature generation use specific aspects of malware 

(e.g., certain network traffic normality or a substring in the 

program); thus, new malware variants easily evade detection 

by modifying small parts of their code. 

Our proposed approach is inspired by the recent success 

in training deep neural networks which produce invariant 

representations. We first run the mal ware in a sandbox and 

then convert the sandbox log file to a long binary bit-string. 

This bit-string is fed to a deep 8-layered neural network which 

produces 30 values in its output layer. These values are used 

as the signature of the program. The experimental results show 

that the signatures produced by the DBN are highly successful 

for mal ware detection. These signatures can either be used in 

a completely unsupervised framework or used for supervised 

mal ware classification. 

The results presented here demonstrate that unsupervised 

deep learning is a powerful method for generating high level 

invariant representations in domains beyond computer vision, 

language processing, or speech recognition; and can be applied 

successfully to challenging domains such as malware signature 

generation. 
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