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ABSTRACT 

Attackers often create systems that automatically rewrite and 

reorder their malware to avoid detection. Typical machine 

learning approaches, which learn a classifier based on a hand­

crafted feature vector, are not sufficiently robust to such re­

orderings. We propose a different approach, which, similar 

to natural language modeling, learns the language of mal ware 

spoken through the executed instructions and extracts robust, 

time domain features. Echo state networks (ESNs) and recur­

rent neural networks (RNNs) are used for the projection stage 

that extracts the features. These models are trained in an un­

supervised fashion. A standard classifier uses these features 

to detect malicious files. We explore a few variants of ESNs 

and RNNs for the projection stage, including Max-Pooling 

and Half-Frame models which we propose. The best perform­

ing hybrid model uses an ESN for the recurrent model, Max­

Pooling for non-linear sampling, and logistic regression for 

the final classification. Compared to the standard trigram of 

events model, it improves the true positive rate by 98.3% at a 

false positive rate of 0.1 %. 

Index Terms- Malware Classification, Recurrent Neural 

Network, Deep Learning 

1. INTRODUCTION 

Malicious software, commonly referred to as malware, is a 

significant problem for modern computing devices including 

desktop computers and mobile phones. While commercial 

anti-virus (AV) products attempt to detect and remediate (i.e. 

clean) the infected device, attackers sufficiently motivated 

by profit implement clever programming redundancies to 

quickly and automatically reinfect the computer or phone. 

Given the challenges and ubiquity of modern malware, many 

researchers have attempted to devise automated methods for 

detection [1]. For over a decade, researchers and anti-virus 

companies have begun employing machine learning algo­

rithms to address this problem as noted in Section 2. In 

the academic community, researchers have proposed using a 

*The first author performed the work while at Microsoft Research 

wide variety of machine learning classifiers such as logistic 

regression [2], neural networks [3, 4], and decision trees [5] 

for malware classification. 

Recently, researchers have demonstrated excellent results 

using recurrent neural networks (RNNs) on language mod­

eling [6], online handwritten recognition and generation [7], 

and speech recognition [9]. Echo state networks (ESNs) have 

been successfully used for predicting chaotic systems [10]. 

In this paper, we ask the question: Can these sequential mod­

els also help to automatically detect malware? In our study, 

the high-level events are canonicalized representations of ap­

plication programming interface (API) calls made to various 

components including the operating system (OS) and the C 

run-time library form the input sequences. To the best of our 

knowledge, this is the first paper to propose using RNNs or 

ESNs to address the malware problem. 

We attempt to learn the language of malware as a new 

method of detecting these unknown threats. Specifically, us­

ing the recurrent model to directly classify the files is not ef­

ficient (there is only a single bit of information for every se­

quence). Instead, we use a recurrent model trained to predict 

next API call, and use the hidden state of the model (that en­

codes the history of past events) as the fixed-length feature 

vector that is given to a separate classifier (logistic regression 

or MLP). In an attempt to improve the scope of this sununary 

provided by the recurrent model we also provide a few mod­

ifications of how the feature vector is constructed from the 

RNN or ESN. We first introduce Max-Pooling over the values 

of the hidden units in time. The assumption behind this choice 

is that hidden units may learn to specialize in detecting differ­

ent and potentially reordered temporal patterns. In our clas­

sification task we are primarily interested in knowing if these 

temporal patterns are present or not in the input sequence. 

Next we propose the Half-Frame model which increases the 

memory capacity of our final representation by including state 

information in the middle of the file's event sequence in ad­

dition to the final state. We also employ a Leaky-Units ar­

chitecture [11] which essentially utilizes an exponentially de­

caying low-pass filter to increase the long-term memory of 

the system. It is often the case that for malware events the 
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most informative part of a sequence occurs at the beginning 

of the sequence and may be forgotten by standard recurrent 

models. To overcome this limitation, we use a Bi-Directional 

model [12] which combines two separate models, one which 

learns by processing the events in the forward direction and 

the second which constructs a model by processing the events 

in the reverse direction. 

2. RELATED WORKS 

Related work falls into two main categories, recurrent model­

ing and malware classification. 

Recurrent Modeling: Recurrent neural networks have 

been explored since the 1980s. However this model quickly 

became unpopular following the discovery of the vanishing 

and exploding gradient problem [13, 14]. As a way of avoid­

ing these issues, [15] introduced Echo State Networks, a form 

of recurrent neural models whose input and recurrent weights 

are not trained, but carefully sampled. Jaeger and Haas [10] 

show that such models can do very well on predicting chaotic 

dynamics. Results as those from [14, 16, 17] try to address the 

learning problem of RNNs. As a result, a variety of state-of­

the-art results, including online handwritten recognition [7] 

or speech [9], have been obtained using different variations 

of recurrent models. Mikolov et al. [6] provide state-of-the­

art results in language modelling using a standard RNN. [7] 

explores the same problem with deep LSTM recurrent mod­

els. 

Malware Classification: The most recent summary of 

the field of malware classification is given in [1]. A classic pa­

per on malware classification was written by Shultz et al. [18] 

which proposed several different classifiers including Ripper, 

Naive Bayes, and an ensemble classifier to classify files as 

malware or benign. Neural networks were also used [3, 4] 

to detect malware. Kolter and Maloof [5] compared naive 

Bayes, decision trees, support vector machines, and boost­

ing for malware classification. The event stream used in our 

model is a reflection of the unknown file's behavior. Behavior 

malware detection has also been a very active area of research. 

A few of the important papers which utilize behavior to de­

tect malware include [19, 20]. EI-Bakry [21] suggested that 

a Time Delay Neural Networks could be used for mal ware 

classification, but did not do any experiments to validate the 

claim. A hierarchical Hidden Markov Model was also used 

for this task by Muhaya et al. [22]. 

3. ALGORITHM DESCRIPTION 

Let Ut and ht denote the input and state vectors, respectively, 

at time instance t. Let Win, Wrec, b, Wout, bout be the in­

put to hidden layer weight matrix, recurrent weight matrix, 

bias, and output weight matrix and output bias respectively. 

Let cP and cPout be the activation function of the hidden layer 

and output layer respectively. In our projection stage, tanh is 

used for the hidden layer and softmax for the output. The re­

current models are then described by the following equations: 

cP(WinUt + Wrecht-l + b) 
cPout(Woutht + bout), 

(1) 

(2) 

where Yt is the predicted output. For malware classification, 

the memory window of the standard ESN and RNN models is 

not sufficient. To address this shortcoming, we propose two 

new algorithmic additions for recurrent architectures, Max­

Pooling and Half-Frame. In our study we also employ the pre­

viously proposed Leaky-Units [11] and Bi-Directional mod­

els [12]. Finally, we discuss the classification stage. 

Max-Pooling: Max-Pooling is a form of non-linear 

downsampling which has previously been used in convo­

lutional neural networks (CNNs) for object recognition in 

images [23]. Similar to the desired response for vision, we 

use Max-Pooling to increase invariance in the fixed-length 

representation we feed to the system's classification stage. 

While Max-Pooling was originally proposed in the context 

of CNNs, we believe that using Max-Pooling for RNNs and 

ESNs is new. As shown in Figure 1, we select the maximum 

hidden state output, hmax for each sequence as: 

hmax(i) = max(ho(i), h1(i),··· hT(i)) (3) 

for i E (0, . . .  , N -1) where N is the number of neurons and 

the max operation is performed element-wise. The represen­

tation of the sequence is the concatenation of the last state and 

the Max-Pooling layer [hT; hmaxl. 
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Fig. 1: Depiction of the overall structure of the model. The 

projection stage consists of a recurrent model where Max­

Pooling is used as additional features for the fixed-length rep­

resentation. 

Half-Frame: Instead of using the state information at the 

end of the sequence to determine if the sequence contains 

malicious activity, we also use the intermediary state in this 

model. The intuition is that the intermediary state will mostly 

represent the history up to that point in time, while the last 

state will mostly represent the events towards the end of the 
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Fig. 3: Missclassification rate for best models as a function of 

the maximal sequence length. 

sequence. Typically, the Half-Frame model includes the state 

from the middle of the sequence in addition to the state at the 

end of the sequence. Based on our intuition, this allows our 

model to increase its memory capacity within each sequence. 

Fixed-Length Representations: Once Wrec and Win 
have been learned for the RNN or generated for the ESN, 

the next step in the processing is to construct a fixed-length 

representation for the event stream which is provided as input 

to the classification stage. 

One practical issue we face at this point is the huge varia­

tion in the length of the input streams. Some streams included 

a single event while others had over 100,000 events. To deal 

with this, and also to answer the question: How fast can we 

detect if a file is infected or not?, we decided on a maximal 

length N and minimal length n for any stream. We ignored 

all sequences shorter than n, which was fixed to 15 through­

out all our experiments. For all sequences with more than N 
steps, which was a hyper-parameter for which we explored 

the values 50, 100, 200 and 65536, we kept only the first N 
events. 

Classifier: The final component of the proposed algo­

rithm is the classification stage. As noted previously, we used 

both logistic regression and multi-layer perceptrons with rec­

tifier units [24] to classify the fixed-length projections. We 

also use dropouts which have shown to significantly improve 

the generalization of the MLP model [25]. It is important 

to note that the RNN and ESN are trained independently of 

the classifier. Thus, they act as feature extractors trained in 

an unsupervised fashion. We believe this approach is another 

contribution to the growing body of representation learning 

approaches. 

4. EXPERIMENTAL RESULTS 

We rely on Theano [26] to efficiently implement these ar­

chitectures. We first describe the parameter settings used in 

this analysis. We then investigate the effect of the representa­

tion length for the various models. We conclude this section 

by presenting the Receiver Operating Characteristic (ROC) 

curves for each model. 

Experiment Configuration: The malware and benign 

files were collected from our company's production, anti­

mal ware file collection. Some of the samples may be used to 

train a production mal ware classification system, and we ac­

knowledge this dataset is not publicly available. Our system is 

under constant attack by adversaries and releasing the dataset 

may degrade the end user's protection on hundreds of millions 

of computers around the world. For training the projection 

stage, analysts provided behavior event streams from 250,000 

randomly selected mal ware files from the file collection they 

use during their daily investigations and 250,000 randomly 

selected benign files from a second collection which is used 

to ensure that anti-virus signatures do not cause false positive 

detections on third-party programs. The initial dataset was 

randomly split into 297,500, 52,500, and 150,000 examples 

for training, validation, and test, respectively. The training is 

done on segments of equal length of 100 events formed from 

the streams representing each file. 

The raw event stream consists of 114 distinct, high-level 

events generated by the anti-malware engine which encode 

all of the low-level API (application progranuning interface) 

calls made by the program. There are several different APIs 

which can be used to generate a file (e.g. kernel32!CreateFile, 

msvcrt!fopen), and these high-level events canonicalize mul­

tiple events with similar functionality. To infer the ability 

of the models to generalize, we collected the list of events 

that appear in only one class or the other and ignored these 

events. To train the final classifier in the classifier stage, we 

used 75,000 randomly selected files which were evenly split 

between the malware and benign classes. These files were 

split as 50,000 for training, 10,000 for validation, and 15,000 

for test. The considered files had at least 15 events, and the 

sequence formed from the first 100 events of each file was 

unique. This ensured that there was no overlap between the 

training, validation and test set which were constructed by 

randomly assigning files to one of the 3 possible sets. 

We hand-tuned the hyper-parameters of the projection and 

classification models by sweeping over a range of possible 

values. For the classification stage, we consider logistic re­

gression and a two hidden-layer MLP. Logistic regression is 

trained using the softmax criterion in all cases. All MLPs 

have two hidden layers. For both models the optimal learn­

ing rate is 1.0, and we use dropout for the MLP with a drop 

probability of 0.5. The hidden layers of the MLP have 1024 

units and use rectifier activation function. The learning rate is 

halved when the validation error increases. 

The dimensionality of the fixed-length representation is 

3000 for all recurrent models. Bi-Directional models use 

1500 hidden units for the forward pass and 1500 units for the 

backwards pass. Half-Frame models have 1500 units and the 

representation uses 1500 values for mid-sequence frame and 

1500 for the last frame. Max-Pooling model has similarly 

1500 hidden units and the representation is the last hidden 

state concatenated to the max-pooled one. Leaky-Units mod-
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(a) Logistic regression (b) MLPs (c) Best performing models 

Fig. 2: ROC curves for different classifiers (a-c). 

els consist of 1500 units from the smoothed model where 

f3 is uniformly sampled between [.01, .1] and 1500 normal 

hidden units. For each of these models, we append the rep­

resentation from the bag of events to the final representation. 

Therefore we are investigating if these new representations, 

that take into account the order of events, encode additional 

useful information which is not present in the bag of events 

encoding. Given the low-dimensionality of the input data no 

feature selection is required. 

The sparsity for the initialization of the recurrent weights 

is set to have each unit at time t feed into only 20 randomly 

selected units at t + 1. The spectral radius in all cases is set 

initially to 0.99. The input weights' scale (measured as the 

norm of each column of the matrix) is set to 2.0, and their 

sparsity (with the same meaning as above) is also set to 20. 
The learning rate for training is 1.0. A cutoff threshold is used 

for clipping the gradients for RNNs and is set to 1.0. For the 

RNN, the additional cost of predicting the whole sequence, 

given the state of the network ht, has a weight of 0.5. 
ROC Curves: In the previous subsection, we evaluated 

the performance of the recurrent models with a classifier 

threshold value of 0.5. Next, we evaluate the ROC curves 

for each of these models, and later we compare the best 

performing Max-Pooling models against several baseline ar­

chitectures (see Figure 2c). Figure 2a and Figure 2b shows 

the ROC curves when logistic regression and the MLP, re­

spectively, are used for classification. 

Figure 2c compares the ROC curves of the best per­

forming Max-Pooling architectures plus several baselines 

including a bag of events representation and a bag of tri­

grams model [3, 2, 27]. The baseline bag of events (BOE) 

model is equivalent to the standard Bag of Words (BOW) 

model in natural language processing. To compare against 

previously published papers which utilize event sequences, 

we use a bag of trigrams representation, and train a logistic 

regression model with softmax. The results confirm our sus­

picion. At a false positive rate of 0.1 %, the TPR of the bag 

of trigrams model (36.17%) is significantly better than for 

the bag of events models (24.46%). The ROCs for logistic 

regression dominate the MLPs for both the ESNs and RNNs, 

but the results are very close for ESNs. The ESN model with 

Max-Pooling and logistic regression (TPR = 7l.71% at FPR 

= 0.1 %) outperforms event trigrams by 98.3%. We believe 

Max-Pooling works for the ESN and RNN because, for this 

task, we care about detecting temporal patterns regardless 

of when the pattern occurs in the sequence. In particular, 

this property helps to detect reordered malware. If each unit 

specializes in different patterns, Max-Pooling tells us which 

of these different patterns actually appear in the file. Figure 3 

shows the misclassification rate as a function of the maximal 

number of steps processed, suggesting that there is not much 

accuracy lost if we truncate all sequences to a maximum of 

200 steps (greatly reducing the memory and computation 

req uirements). 

S. CONCLUSIONS 

Automated mal ware classification is a very challenging prob­

lem. When we began this research, we were concerned that 

the adversarial nature of the attack would prevent recurrent 

models from learning the language of malware. Results in 

Section 4 demonstrate that combining a recurrent model with 

a standard classifier can improve the true positive rate by a 

factor of three compared to a bag-of-events model and a factor 

of two given by a bag-of-trigrams model. Given this tremen­

dous improvement, we believe these hybrid models which 

combine an ESN or RNN with a higher-level classifier can 

serve as effective weapons in the mal ware analyst's arsenal. 

Our initial goal of this work was to learn the language of 

malware, but the ESN models outperform the RNNs in the 

majority of the experiments. The task of learning falls in this 

situation mostly on the classifier which has to extract the use­

ful information from the random temporal projection of the 

ESN. We believe that Max-Pooling is more useful in this sit­

uation, as the ESN does not utilize the hidden state in the 

same way the RNN does. The hidden representation is more 

redundant due to implicit randomness of the projection. We 

are hopeful that additional research in recurrent modeling can 

be adapted to the malware language modeling task and can 

improve these results in the future. 
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