
MA LWARE CL ASSIFICATIO N WITH RECURRENT NETWORKS

Razvan Pascanu** Jack W Stokest Hennineh Sanossian+ Mady Marinescu, Ani! Thomas±

* University of Montreal, Montreal QC H3C 3J7 Canada
t Microsoft Research, One Microsoft Way, Redmond, WA 98052 USA

+ Microsoft Pty Ltd, Level 5, 4 Freshwater Place, Southbank, VIC 3006 Australia
± Microsoft Corp., One Microsoft Way, Redmond, WA 98052 USA

ABSTRACT

Attackers often create systems that automatically rewrite and

reorder their malware to avoid detection. Typical machine

learning approaches, which learn a classifier based on a hand­

crafted feature vector, are not sufficiently robust to such re­

orderings. We propose a different approach, which, similar

to natural language modeling, learns the language of mal ware

spoken through the executed instructions and extracts robust,

time domain features. Echo state networks (ESNs) and recur­

rent neural networks (RNNs) are used for the projection stage

that extracts the features. These models are trained in an un­

supervised fashion. A standard classifier uses these features

to detect malicious files. We explore a few variants of ESNs

and RNNs for the projection stage, including Max-Pooling

and Half-Frame models which we propose. The best perform­

ing hybrid model uses an ESN for the recurrent model, Max­

Pooling for non-linear sampling, and logistic regression for

the final classification. Compared to the standard trigram of

events model, it improves the true positive rate by 98.3% at a

false positive rate of 0.1 %.

Index Terms- Malware Classification, Recurrent Neural

Network, Deep Learning

1. INTRODUCTION

Malicious software, commonly referred to as malware, is a

significant problem for modern computing devices including

desktop computers and mobile phones. While commercial

anti-virus (AV) products attempt to detect and remediate (i.e.

clean) the infected device, attackers sufficiently motivated

by profit implement clever programming redundancies to

quickly and automatically reinfect the computer or phone.

Given the challenges and ubiquity of modern malware, many

researchers have attempted to devise automated methods for

detection [1]. For over a decade, researchers and anti-virus

companies have begun employing machine learning algo­

rithms to address this problem as noted in Section 2. In

the academic community, researchers have proposed using a

*The first author performed the work while at Microsoft Research

wide variety of machine learning classifiers such as logistic

regression [2], neural networks [3, 4], and decision trees [5]

for malware classification.

Recently, researchers have demonstrated excellent results

using recurrent neural networks (RNNs) on language mod­

eling [6], online handwritten recognition and generation [7],

and speech recognition [9]. Echo state networks (ESNs) have

been successfully used for predicting chaotic systems [10].

In this paper, we ask the question: Can these sequential mod­

els also help to automatically detect malware? In our study,

the high-level events are canonicalized representations of ap­

plication programming interface (API) calls made to various

components including the operating system (OS) and the C

run-time library form the input sequences. To the best of our

knowledge, this is the first paper to propose using RNNs or

ESNs to address the malware problem.

We attempt to learn the language of malware as a new

method of detecting these unknown threats. Specifically, us­

ing the recurrent model to directly classify the files is not ef­

ficient (there is only a single bit of information for every se­

quence). Instead, we use a recurrent model trained to predict

next API call, and use the hidden state of the model (that en­

codes the history of past events) as the fixed-length feature

vector that is given to a separate classifier (logistic regression

or MLP). In an attempt to improve the scope of this sununary

provided by the recurrent model we also provide a few mod­

ifications of how the feature vector is constructed from the

RNN or ESN. We first introduce Max-Pooling over the values

of the hidden units in time. The assumption behind this choice

is that hidden units may learn to specialize in detecting differ­

ent and potentially reordered temporal patterns. In our clas­

sification task we are primarily interested in knowing if these

temporal patterns are present or not in the input sequence.

Next we propose the Half-Frame model which increases the

memory capacity of our final representation by including state

information in the middle of the file's event sequence in ad­

dition to the final state. We also employ a Leaky-Units ar­

chitecture [11] which essentially utilizes an exponentially de­

caying low-pass filter to increase the long-term memory of

the system. It is often the case that for malware events the

978-1-4673-6997-8/15/$3l.00 ©2015 IEEE 1916 ICASSP 2015

most informative part of a sequence occurs at the beginning

of the sequence and may be forgotten by standard recurrent

models. To overcome this limitation, we use a Bi-Directional

model [12] which combines two separate models, one which

learns by processing the events in the forward direction and

the second which constructs a model by processing the events

in the reverse direction.

2. RELATED WORKS

Related work falls into two main categories, recurrent model­

ing and malware classification.

Recurrent Modeling: Recurrent neural networks have

been explored since the 1980s. However this model quickly

became unpopular following the discovery of the vanishing

and exploding gradient problem [13, 14]. As a way of avoid­

ing these issues, [15] introduced Echo State Networks, a form

of recurrent neural models whose input and recurrent weights

are not trained, but carefully sampled. Jaeger and Haas [10]

show that such models can do very well on predicting chaotic

dynamics. Results as those from [14, 16, 17] try to address the

learning problem of RNNs. As a result, a variety of state-of­

the-art results, including online handwritten recognition [7]

or speech [9], have been obtained using different variations

of recurrent models. Mikolov et al. [6] provide state-of-the­

art results in language modelling using a standard RNN. [7]

explores the same problem with deep LSTM recurrent mod­

els.

Malware Classification: The most recent summary of

the field of malware classification is given in [1]. A classic pa­

per on malware classification was written by Shultz et al. [18]

which proposed several different classifiers including Ripper,

Naive Bayes, and an ensemble classifier to classify files as

malware or benign. Neural networks were also used [3, 4]

to detect malware. Kolter and Maloof [5] compared naive

Bayes, decision trees, support vector machines, and boost­

ing for malware classification. The event stream used in our

model is a reflection of the unknown file's behavior. Behavior

malware detection has also been a very active area of research.

A few of the important papers which utilize behavior to de­

tect malware include [19, 20]. EI-Bakry [21] suggested that

a Time Delay Neural Networks could be used for mal ware

classification, but did not do any experiments to validate the

claim. A hierarchical Hidden Markov Model was also used

for this task by Muhaya et al. [22].

3. ALGORITHM DESCRIPTION

Let Ut and ht denote the input and state vectors, respectively,

at time instance t. Let Win, Wrec, b, Wout, bout be the in­

put to hidden layer weight matrix, recurrent weight matrix,

bias, and output weight matrix and output bias respectively.

Let cP and cPout be the activation function of the hidden layer

and output layer respectively. In our projection stage, tanh is

used for the hidden layer and softmax for the output. The re­

current models are then described by the following equations:

cP(WinUt + Wrecht-l + b)
cPout(Woutht + bout),

(1)

(2)

where Yt is the predicted output. For malware classification,

the memory window of the standard ESN and RNN models is

not sufficient. To address this shortcoming, we propose two

new algorithmic additions for recurrent architectures, Max­

Pooling and Half-Frame. In our study we also employ the pre­

viously proposed Leaky-Units [11] and Bi-Directional mod­

els [12]. Finally, we discuss the classification stage.

Max-Pooling: Max-Pooling is a form of non-linear

downsampling which has previously been used in convo­

lutional neural networks (CNNs) for object recognition in

images [23]. Similar to the desired response for vision, we

use Max-Pooling to increase invariance in the fixed-length

representation we feed to the system's classification stage.

While Max-Pooling was originally proposed in the context

of CNNs, we believe that using Max-Pooling for RNNs and

ESNs is new. As shown in Figure 1, we select the maximum

hidden state output, hmax for each sequence as:

hmax(i) = max(ho(i), h1(i),··· hT(i)) (3)

for i E (0, . . . , N -1) where N is the number of neurons and

the max operation is performed element-wise. The represen­

tation of the sequence is the concatenation of the last state and

the Max-Pooling layer [hT; hmaxl.

r---------------------Bjnaiy-OLit-pu� ,
9 ' , ,

: c::::::J :
i Classifier (LR, MLP) t i 8.9.9.7.8.7.8.1.8.5.6.6.7.0

hO;'::;�';>�)� 2:�" 5 .1 - .5 .5
.8 .(j 0 .5

Fig. 1: Depiction of the overall structure of the model. The

projection stage consists of a recurrent model where Max­

Pooling is used as additional features for the fixed-length rep­

resentation.

Half-Frame: Instead of using the state information at the

end of the sequence to determine if the sequence contains

malicious activity, we also use the intermediary state in this

model. The intuition is that the intermediary state will mostly

represent the history up to that point in time, while the last

state will mostly represent the events towards the end of the

1917

Fig. 3: Missclassification rate for best models as a function of

the maximal sequence length.

sequence. Typically, the Half-Frame model includes the state

from the middle of the sequence in addition to the state at the

end of the sequence. Based on our intuition, this allows our

model to increase its memory capacity within each sequence.

Fixed-Length Representations: Once Wrec and Win
have been learned for the RNN or generated for the ESN,

the next step in the processing is to construct a fixed-length

representation for the event stream which is provided as input

to the classification stage.

One practical issue we face at this point is the huge varia­

tion in the length of the input streams. Some streams included

a single event while others had over 100,000 events. To deal

with this, and also to answer the question: How fast can we

detect if a file is infected or not?, we decided on a maximal

length N and minimal length n for any stream. We ignored

all sequences shorter than n, which was fixed to 15 through­

out all our experiments. For all sequences with more than N
steps, which was a hyper-parameter for which we explored

the values 50, 100, 200 and 65536, we kept only the first N
events.

Classifier: The final component of the proposed algo­

rithm is the classification stage. As noted previously, we used

both logistic regression and multi-layer perceptrons with rec­

tifier units [24] to classify the fixed-length projections. We

also use dropouts which have shown to significantly improve

the generalization of the MLP model [25]. It is important

to note that the RNN and ESN are trained independently of

the classifier. Thus, they act as feature extractors trained in

an unsupervised fashion. We believe this approach is another

contribution to the growing body of representation learning

approaches.

4. EXPERIMENTAL RESULTS

We rely on Theano [26] to efficiently implement these ar­

chitectures. We first describe the parameter settings used in

this analysis. We then investigate the effect of the representa­

tion length for the various models. We conclude this section

by presenting the Receiver Operating Characteristic (ROC)

curves for each model.

Experiment Configuration: The malware and benign

files were collected from our company's production, anti­

mal ware file collection. Some of the samples may be used to

train a production mal ware classification system, and we ac­

knowledge this dataset is not publicly available. Our system is

under constant attack by adversaries and releasing the dataset

may degrade the end user's protection on hundreds of millions

of computers around the world. For training the projection

stage, analysts provided behavior event streams from 250,000

randomly selected mal ware files from the file collection they

use during their daily investigations and 250,000 randomly

selected benign files from a second collection which is used

to ensure that anti-virus signatures do not cause false positive

detections on third-party programs. The initial dataset was

randomly split into 297,500, 52,500, and 150,000 examples

for training, validation, and test, respectively. The training is

done on segments of equal length of 100 events formed from

the streams representing each file.

The raw event stream consists of 114 distinct, high-level

events generated by the anti-malware engine which encode

all of the low-level API (application progranuning interface)

calls made by the program. There are several different APIs

which can be used to generate a file (e.g. kernel32!CreateFile,

msvcrt!fopen), and these high-level events canonicalize mul­

tiple events with similar functionality. To infer the ability

of the models to generalize, we collected the list of events

that appear in only one class or the other and ignored these

events. To train the final classifier in the classifier stage, we

used 75,000 randomly selected files which were evenly split

between the malware and benign classes. These files were

split as 50,000 for training, 10,000 for validation, and 15,000

for test. The considered files had at least 15 events, and the

sequence formed from the first 100 events of each file was

unique. This ensured that there was no overlap between the

training, validation and test set which were constructed by

randomly assigning files to one of the 3 possible sets.

We hand-tuned the hyper-parameters of the projection and

classification models by sweeping over a range of possible

values. For the classification stage, we consider logistic re­

gression and a two hidden-layer MLP. Logistic regression is

trained using the softmax criterion in all cases. All MLPs

have two hidden layers. For both models the optimal learn­

ing rate is 1.0, and we use dropout for the MLP with a drop

probability of 0.5. The hidden layers of the MLP have 1024

units and use rectifier activation function. The learning rate is

halved when the validation error increases.

The dimensionality of the fixed-length representation is

3000 for all recurrent models. Bi-Directional models use

1500 hidden units for the forward pass and 1500 units for the

backwards pass. Half-Frame models have 1500 units and the

representation uses 1500 values for mid-sequence frame and

1500 for the last frame. Max-Pooling model has similarly

1500 hidden units and the representation is the last hidden

state concatenated to the max-pooled one. Leaky-Units mod-

1918

(a) Logistic regression (b) MLPs (c) Best performing models

Fig. 2: ROC curves for different classifiers (a-c).

els consist of 1500 units from the smoothed model where

f3 is uniformly sampled between [.01, .1] and 1500 normal

hidden units. For each of these models, we append the rep­

resentation from the bag of events to the final representation.

Therefore we are investigating if these new representations,

that take into account the order of events, encode additional

useful information which is not present in the bag of events

encoding. Given the low-dimensionality of the input data no

feature selection is required.

The sparsity for the initialization of the recurrent weights

is set to have each unit at time t feed into only 20 randomly

selected units at t + 1. The spectral radius in all cases is set

initially to 0.99. The input weights' scale (measured as the

norm of each column of the matrix) is set to 2.0, and their

sparsity (with the same meaning as above) is also set to 20.
The learning rate for training is 1.0. A cutoff threshold is used

for clipping the gradients for RNNs and is set to 1.0. For the

RNN, the additional cost of predicting the whole sequence,

given the state of the network ht, has a weight of 0.5.
ROC Curves: In the previous subsection, we evaluated

the performance of the recurrent models with a classifier

threshold value of 0.5. Next, we evaluate the ROC curves

for each of these models, and later we compare the best

performing Max-Pooling models against several baseline ar­

chitectures (see Figure 2c). Figure 2a and Figure 2b shows

the ROC curves when logistic regression and the MLP, re­

spectively, are used for classification.

Figure 2c compares the ROC curves of the best per­

forming Max-Pooling architectures plus several baselines

including a bag of events representation and a bag of tri­

grams model [3, 2, 27]. The baseline bag of events (BOE)

model is equivalent to the standard Bag of Words (BOW)

model in natural language processing. To compare against

previously published papers which utilize event sequences,

we use a bag of trigrams representation, and train a logistic

regression model with softmax. The results confirm our sus­

picion. At a false positive rate of 0.1 %, the TPR of the bag

of trigrams model (36.17%) is significantly better than for

the bag of events models (24.46%). The ROCs for logistic

regression dominate the MLPs for both the ESNs and RNNs,

but the results are very close for ESNs. The ESN model with

Max-Pooling and logistic regression (TPR = 7l.71% at FPR

= 0.1 %) outperforms event trigrams by 98.3%. We believe

Max-Pooling works for the ESN and RNN because, for this

task, we care about detecting temporal patterns regardless

of when the pattern occurs in the sequence. In particular,

this property helps to detect reordered malware. If each unit

specializes in different patterns, Max-Pooling tells us which

of these different patterns actually appear in the file. Figure 3

shows the misclassification rate as a function of the maximal

number of steps processed, suggesting that there is not much

accuracy lost if we truncate all sequences to a maximum of

200 steps (greatly reducing the memory and computation

req uirements).

S. CONCLUSIONS

Automated mal ware classification is a very challenging prob­

lem. When we began this research, we were concerned that

the adversarial nature of the attack would prevent recurrent

models from learning the language of malware. Results in

Section 4 demonstrate that combining a recurrent model with

a standard classifier can improve the true positive rate by a

factor of three compared to a bag-of-events model and a factor

of two given by a bag-of-trigrams model. Given this tremen­

dous improvement, we believe these hybrid models which

combine an ESN or RNN with a higher-level classifier can

serve as effective weapons in the mal ware analyst's arsenal.

Our initial goal of this work was to learn the language of

malware, but the ESN models outperform the RNNs in the

majority of the experiments. The task of learning falls in this

situation mostly on the classifier which has to extract the use­

ful information from the random temporal projection of the

ESN. We believe that Max-Pooling is more useful in this sit­

uation, as the ESN does not utilize the hidden state in the

same way the RNN does. The hidden representation is more

redundant due to implicit randomness of the projection. We

are hopeful that additional research in recurrent modeling can

be adapted to the malware language modeling task and can

improve these results in the future.

1919

6. REFERENCES

[1] N. Idika and A.P. Mathur, "A survey of malware detec­

tion techniques," Tech. Rep., Purdue Univ., February

2007.

[2] Nikos Karampatziakis, Jack Stokes, Anil Thomas, and

Mady Marinescu, "Using file relationships in mal ware

classification," in Detection of Intrusions and Mal­

ware, and Vulnerability Assessment, vol. 7591 of Lec­

ture Notes in Computer Science, pp. 1-20. Springer

Berlin Heidelberg, 2013.

[3] George E. Dahl, Jack W. Stokes, Li Deng, and Dong

Yu, "Large-scale malware classification using random

projections and neural networks," in ICASSP, 2013.

[4] Jeffrey O. Kephart, "A biologically inspired immune

system for computers," in In Artificial Life IV- Pro­

ceedings of the Fourth International Workshop on the

Synthesis and Simulation of Living Systems. 1994, pp.

130-139, MIT Press.

[5] J.Z. Kolter and M.A. Maloof, "Learning to detect and

classify malicious executables in the wild," in Journal

of Machine Learning Research, 2006, pp. 2721-2744.

[6] T. Mikolov, M Karafiat, L. Burget, J. Cernocky, and

S Khundanpur, "Recurrent neural network based lan­

guage model," in Proceedings of Interspeech, 20lO.

[7] A. Graves, "Generating sequences with recurrent neural

networks," Tech. Rep., arXiv: 1308.0850, 2013.

[8] A. Graves, A. Mohamed, and G. Hinton, "Speech recog­

nition with deep recurrent neural networks," in ICASSP,

2013.

[9] H. Jaeger and H. Haas, "Harnessing nonlinearity: Pre­

dicting chaotic systems and saving energy in wireless

cOlmnunication," in Science, 2004.

[lO] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu,

"Advances in optimizing recurrent networks," in Proc.

ICASSP 38, 2013.

[11] Mike Schuster and Kuldip K. Paliwal, "Bidirectional re­

current neural networks," IEEE Transactions on Signal

Processing, vol. 45, pp. 2673-2681, November 1997.

[12] Y. Bengio, P. Simard, and P. Frasconi, "Learning long­

term dependencies with gradient descent is difficult,"

IEEE Transactions on Neural Networks, vol. 5, no. 2,

pp. 157-166, 1994.

[13] S. Hochreiter and J. Schmidhuber, "Long short-term

memory," Neural Computation, pp. 1735-1780, 1997.

1920

[14] H. Jaeger, "The "echo state" approach to analysing and

training recurrent neural networks," Tech. Rep., German

National Research Center for Information Technology,

200l.

[15] R. Pascanu, T. Mikolov, and Y Bengio, "On the dif­

ficulty of training recurrent neural models," in ICML,

2013.

[16] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, "On

the importance of momentum and initialization in deep

learning," ICML, 2013.

[17] M.G. Schultz, Eleazar Eskin, E. Zadok, and S. Stolfo,

"Data mining methods of detection of new malicious ex­

ecutables," in Proceedings of the 2001 IEEE Symposium

on Security and Privacy, 2001, pp. 38-49.

[18] M. Christodorescu, S. Jha, and C. Kruegel, "Mining

specifications of malicious behavior," in Proceedings of

ISEC08, 2008, pp. 5-14.

[19] E. Kirda and C. Kruegel, "Behavior based spyware de­

tection," in Proceedings of the 15th USENIX Security

Symposium), 2006, pp. 273-288.

[20] H. El-Bakry, "Fast virus detection by using high speed

time delay neural networks," Journal in Computer Vi­

rology, vol. 6, pp. 115-122, 2010.

[21] F. Muhaya, M. Khan, and Y. Xiang, "Polymorphic

mal ware detection using hierarchical hidden markov

model," in IEEE International Conference on Depend­

able, Autonomic and Secure Computing (DASC), 201l.

[22] D. Scherer, A. Muller, and S. Behnke, "Evaluation of

pooling operations in convolutional architectures for ob­

ject recognition," in Proc. of the IntI. Con! on Artificial

Neural Networks, 20lO, pp. 92-lOl.

[23] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rec­

tifier neural networks," in AISTATS, Apr. 2011.

[24] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinv, "Improving

neural networks by preventing co-adaptation of feature

detectors," Tech. Rep., arXiv: 1207.0580, 2012.

[25] James Bergstra, Olivier Breuleux, Frederic Bastien, Pas­

cal Lamblin, Razvan Pascanu, Guillaume Desjardins,

Joseph Turian, David Warde-Farley, and Yoshua Ben­

gio, "Theano: a CPU and GPU math expression com­

piler," in Proceedings of the Python for Scientific Com­

puting Conference (SciPy), 20lO.

[26] Syed Mehdi, Ajay Kumar Tanwani, and Muddassar Fa­

rooq, "Imad: in-execution malware analysis and detec­

tion," in Proceedings of the I I th Annual conference on

Genetic and evolutionary computation, 2009, pp. 1553-

1560.

