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Introduction

• NIDS can be categorized as:
– Signature based NIDS (SNIDS)

• Attacks signatures are pre-installed

– Anomaly detection based NIDS (ADNIDS)
• Deviation from normal traffic pattern is attack
• Most common among research community



Introduction

• Challenges arise for developing an efficient 
ADNIDS
– Proper feature selection
– Organization’s reluctance to report any intrusion

• To maintain privacy of various users 

• Deep Learning can help to overcome the 
challenges of developing an efficient NIDS
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Self-taught Learning (STL)

• A deep learning approach consists of two stages 
for classification
– Feature representation learnt from large unlabeled 

data, i.e., Unsupervised Feature Learning (UFL)
– Learnt representation is applied on labeled data

• Sparse auto-encoder used for UFL



Figure 1: Two stages of Self-taught Learning (STL) 
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NSL-KDD Dataset

• An improved version of KDD Cup 99 intrusion 
dataset
– Eliminated redundant records in KDD Cup 99 

• Dataset records consist of 41 features labeled 
with normal or a particular attack traffic
– Includes basic features, traffic features accumulated 

in a window interval, and content features



NSL-KDD Dataset

• Out of 41 features:
– 3 nominal, 4 binary, and 34 continuous 

• Training and test data contains 23 and 38 traffic 
classes including normal and attack traffic
– Attacks grouped into 4 categories: DoS, Probing, 

U2R, and R2L
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NIDS Implementation

• Implemented using MATLAB/Octave
• Pre-processed the dataset before applying STL

– 1-to-N encoding to convert nominal attributes to 
discrete attributes

– Max-min normalization of the attributes 

• Evaluated for both the training and test data



Figure 2: Steps involved in NIDS Implementation
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Accuracy Metrics

• Accuracy     %age of correctly classified records
• Precision
• Recall
• F-measure

%100*)/( FPTPTPP +=

%100*)/( FNTPTPR +=

%100*)/(**2 RPRPF +=



Performance Evaluation

• Implemented the NIDS for 3-types
– Normal and Anomaly (2-class)
– Normal and four attack categories (5-class)
– Normal and 22 attacks (23-class)

• For training data only

• Precision, Recall, and F-measures evaluated for 
2-class and 5-class 



Evaluation based on Training data

 Accuracy evaluated for 2, 5, and 23-classes
 STL achieved >98% accuracy for all types

 Precision, recall, and f-measure evaluated 
for 2-class
 STL achieved f-measure value ~99% 



Evaluation based on Test data

 STL achieved accuracy of ~88% for 2-class
 Better than various previous methods

 STL achieved ~90% f-measure value
 SMR achieved only ~77%
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Conclusion

• STL based NIDS showcased good performance 
compared to other methods on NSL-KDD 
dataset

• Future work
– Performance enhancement using other DL methods
– To be implemented for real-time network operation
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