ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/288991542

A Deep Learning Approach for Network Intrusion Detection System

Conference Paper · December 2015

DOI: 10.4108/eai.3-12-2015.2262516

CITATION 1		READS 1,301
4 autho	r s, including:	
	Ahmad Yazdan Javaid University of Toledo 20 PUBLICATIONS 29 CITATIONS SEE PROFILE	Mansoor Alam National University of Sciences and Technolog 82 PUBLICATIONS 805 CITATIONS SEE PROFILE

All content following this page was uploaded by Ahmad Yazdan Javaid on 07 January 2016.

A Deep Learning Approach for Network Intrusion Detection System

Presented By: Dr. Ahmad Y. Javaid Co-authors:

Quamar Niyaz Dr. Weiqing Sun Dr. Mansoor Alam

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Introduction

- NIDS can be categorized as:
 - Signature based NIDS (SNIDS)
 - Attacks signatures are pre-installed
 - Anomaly detection based NIDS (ADNIDS)
 - Deviation from normal traffic pattern is attack
 - Most common among research community

Introduction

- Challenges arise for developing an efficient ADNIDS
 - Proper feature selection
 - Organization's reluctance to report any intrusion
 - To maintain privacy of various users
- Deep Learning can help to overcome the challenges of developing an efficient NIDS

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Self-taught Learning (STL)

- A deep learning approach consists of two stages for classification
 - Feature representation learnt from large unlabeled data, i.e., Unsupervised Feature Learning (UFL)
 - Learnt representation is applied on labeled data
- Sparse auto-encoder used for UFL

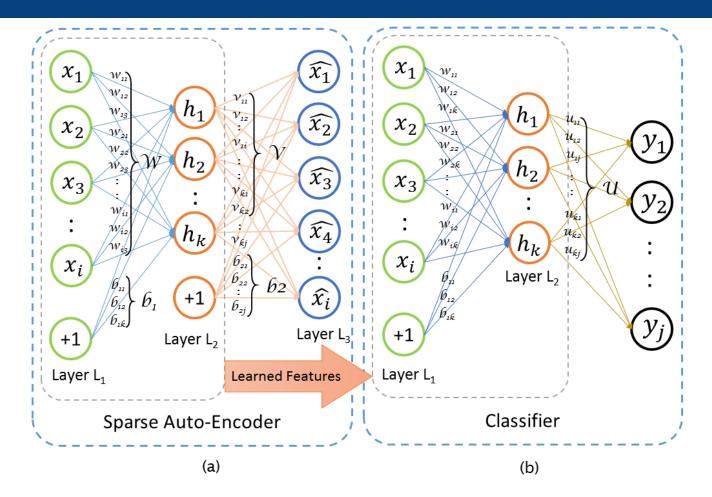


Figure 1: Two stages of Self-taught Learning (STL)

- Introduction
 - Self-taught Learning (STL)

– NSL-KDD

- Implementation of NIDS
- Results
- Conclusion

NSL-KDD Dataset

- An improved version of KDD Cup 99 intrusion dataset
 - Eliminated redundant records in KDD Cup 99
- Dataset records consist of 41 features labeled with normal or a particular attack traffic
 - Includes basic features, traffic features accumulated in a window interval, and content features

NSL-KDD Dataset

• Out of 41 features:

- 3 nominal, 4 binary, and 34 continuous

- Training and test data contains 23 and 38 traffic classes including normal and attack traffic
 - Attacks grouped into 4 categories: DoS, Probing, U2R, and R2L

- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

NIDS Implementation

- Implemented using MATLAB/Octave
- Pre-processed the dataset before applying STL
 - 1-to-N encoding to convert nominal attributes to discrete attributes
 - Max-min normalization of the attributes
- Evaluated for both the training and test data

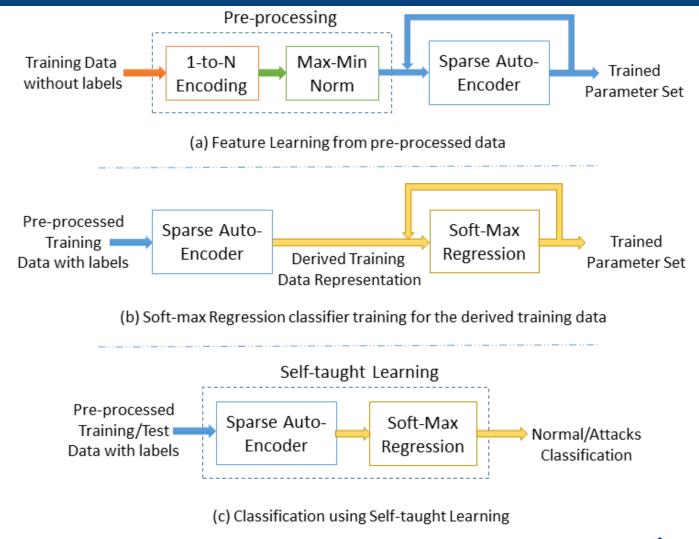
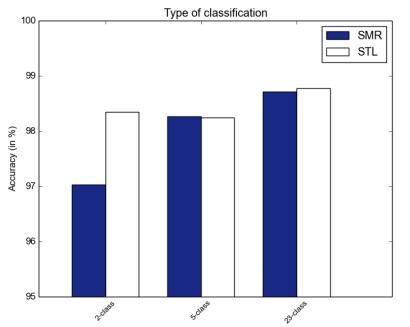


Figure 2: Steps involved in NIDS Implementation

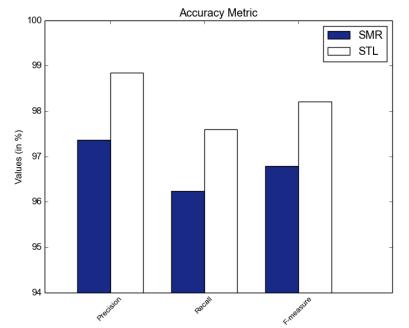
- Introduction
 - Self-taught Learning (STL)
 - NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Accuracy Metrics

- Accuracy % age of correctly classified records
- **Precision** P = TP/(TP + FP) * 100%
- **Recall** R = TP / (TP + FN) * 100%
- **F-measure** F = 2 * P * R / (P + R) * 100%

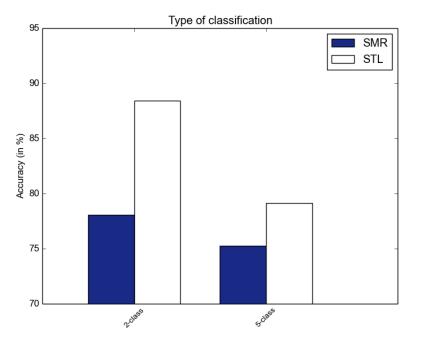

Performance Evaluation

- Implemented the NIDS for 3-types
 - Normal and Anomaly (2-class)
 - Normal and four attack categories (5-class)
 - Normal and 22 attacks (23-class)
 - For training data only
- Precision, Recall, and F-measures evaluated for 2-class and 5-class

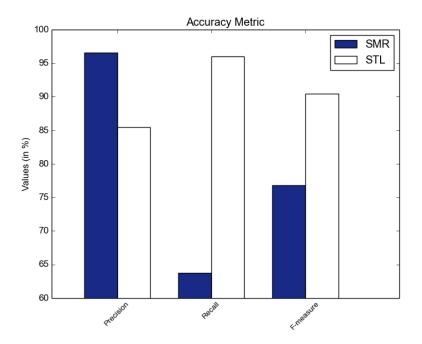


Evaluation based on Training data

- Accuracy evaluated for 2, 5, and 23-classes
- STL achieved >98% accuracy for all types



- Precision, recall, and f-measure evaluated for 2-class
- STL achieved f-measure value ~99%



Evaluation based on Test data

- STL achieved accuracy of ~88% for 2-class
- Better than various previous methods

- STL achieved ~90% f-measure value
- SMR achieved only ~77%

- Introduction
- Overview
 - Self-taught Learning (STL)NSL-KDD
- Implementation of NIDS
- Results
- Conclusion

Conclusion

- STL based NIDS showcased good performance compared to other methods on NSL-KDD dataset
- Future work
 - Performance enhancement using other DL methods
 - To be implemented for real-time network operation

Thanks!

e-m@il: ahmad.javaid@utoledo.edu

View publication stats

