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Abstract

The security of the networking infrastructure (e.g., routers and switches) in large scale en-
terprise or Internet service provider (ISP) networks is mainly achieved through mechanisms
such as access control lists (ACLs) at the edge of the network and deployment of centralized
AAA (authentication, authorization and accounting) systems governing all access to network
devices. However, a misconfigured edge router or a compromised user account may put the
entire network at risk. In this paper, we propose enhancing existing security measures with
an intrusion detection system overseeing all network management activities. We analyze device
access logs collected via the AAA system, particularly TACACS+, in a global tier-1 ISP net-
work and extract features that can be used to distinguish normal operational activities from
rogue/anomalous ones. Based on our analyses, we develop a real-time intrusion detection sys-
tem that constructs normal behavior models with respect to device access patterns and the
configuration and control activities of individual accounts from their long-term historical logs
and alerts in real-time when usage deviates from the models. Our evaluation shows that this
system effectively identifies potential intrusions and misuses with an acceptable level of false
alarms.

1 Introduction

A fundamental aspect of network security is securing the networking infrastructure itself, which can
be particularly challenging in a large scale enterprise or ISP (Internet service provider) network.
In such networks, hundreds or thousands of routers and switches are widely dispersed among a
geographically diverse set of offices and are typically managed by a large team of network oper-
ators. It is imperative that the networking infrastructure and the information contained therein
be fully protected against any malicious priers and attackers. For example, information available
at networking devices, such as router configuration and traffic statistics, may contain confiden-
tial business data of tremendous value to a business competitor. Divulging such information will
likely result in a significant disadvantage to the ISP’s business. Leakage of some critical security
information in the router configuration such as QoS policy or firewall/ACL (Access Control List)
settings may subject the network to crafted and targeted attacks such as DDoS (Distributed Denial
of Service) attack. Or in an even more devastating scenario, malicious attackers gaining privileged
access to the networking device might alter the network configuration to create havoc and paralyze
the entire network and the services it supports.
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Given the risk of severe consequences, large scale networks typically devise and deploy a range
of security and protection measures for their networking devices. One common practice is to
utilize the combination of periphery protection and centralized authentication and authorization for
communication to networking devices. By restricting premises access, unauthorized persons are
blocked from gaining physical access to networking devices. Through careful configuration of ACLs
at all network edge routers, unauthorized network traffic is also blocked from reaching network
devices. And finally, technologies such as TACACS+ (Terminal Access Controller Access-Control
System Plus) [1] and RADIUS (Remote Authentication Dial In User Service) [2], ensure that only
authenticated users (i.e. authorized network operators/administrators) have access to routers and
switches (either directly or remotely over the network).

The architecture above is very effective against threats from external attackers when working
properly. However, there is always the possibility that building security is breached, allowing
physical access to router hardware, or that ACLs on an edge router are misconfigured, admitting
attacking traffic. Furthermore, with a large team of network operators, compromised users or
compromised user accounts can be a critical source of potential security troubles arising inside the
network.

In this paper, we propose to add another layer of defense for networking infrastructure by
overseeing all operations being done in the network, and automatically detecting and raising alarms
for “suspicious” activities. We leverage the existing authentication and authorization framework
and collect router/switch access logs in real-time. We develop an anomaly detection system that
compares on-going router/switch access activities against a set of patterns or profiles constructed
from historical data, and once an anomaly is identified, triggers an alarm to network security
managers for further investigation of potential intrusions and misuses.

Although the concept of intrusion detection system is well established in computer system se-
curity, applying the idea in networking device management remains unexplored, interesting, and
challenging. To detect abnormal activities, we must obtain data on routine/normal network man-
agement activities in a large scale network, analyze that data, and determine what features best
distinguish normal activities from abnormal ones. In our study, we base our analysis on the real
network data from one of the largest ISP networks, which comprises tens of thousands of routers
distributed worldwide. We conduct an in-depth analysis on a wide range of different characteris-
tics about operators’ access patterns and identify useful features. The effectiveness of an intrusion
detection system is known to be limited by noisy baseline behavior and hence high false positives.
Thus, when developing the detection methodology and the prototype system for capturing poten-
tial intrusions and misuses, we focus on managing false positives to be well within an acceptable
range. Any given attack is likely to come from a small number of source subnets or accounts. Thus
we aggregate detected “threat scores” by their origin source addresses and login accounts. This
allows us to amplify the signal of offense and hence be able to detect offenders while they are still
exploring the network before large-scale damage is inflicted.

Our contribution in this paper can be summarized as follows:

• We propose to systematically monitor and analyze the networking device access logs to protect
the networking infrastructure. To the best of our knowledge, this is the first study that focuses
on monitoring and auditing networking device access and control logs to catch anomalous
activities.

• We analyze TACACS+ logs collected over more than six months from a tier-1 ISP network
and identify a set of features that can be utilized to distinguish suspicious activities from
normal operations — such as the login ID and originator IP prefix association pattern, the
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daily number of distinct routers accessed, and the number of hops over which an operator
logs on to a router from a different router.

• we develop a system tool for the ISP network. Our controlled experiment shows that it
successfully identifies injected “malicious” activities – with corresponding threat scores sig-
nificantly higher than those of day-to-day operational activities.

The rest of the paper is organized as follows. In Section 2, we provide an overview of operational
management activities in large scale IP networks and a brief introduction of the authentication,
authorization, and accounting system from which we collect logs. Section 3 presents our analysis
result on the characteristics of normal operation activities. Section 4 describes the rules and
detection system that we build for detecting and alerting on suspicious router accesses and controls.
We evaluate our overall system performance in Section 5. We discuss related work in Section 6 and
finally conclude the study in Section 7.

2 Background

2.1 Managing IP networks

We first provide an overview of the various types of management activities in large scale IP networks.
We describe these in the setting of a global ISP network although many of them are fundamental
to large enterprise networks or regional ISP networks as well.

Managing a global ISP network requires a large team of network operators. These operators are
typically organized in a tier structure – lower tier operators respond to more routine issues following
a set of predefined MOPs (Maintenance Operation Protocols), while more complex matters are
escalated to upper tier operators, who have more profound knowledge and deeper understanding
of the network. Truly complicated ones are further passed to a small group of experts, possibly
including support teams of vendors of involved devices.

Different tiers of operators have different functional roles. Some may be dedicated to the care
of a high profile enterprise customer, in which case they will frequently access provider edge (PE)
routers but seldom touch backbone routers. Some operators may be responsible for servicing the
metropolitan area network for a certain region. Others may oversee control plane health (e.g.,
router CPU utilization) for the entire network. Depending on their role, operators are expected to
have distinct patterns of network management activities.

Network operators often exercise control over routers and switches by logging on to the device.
Today, nearly all networking devices support console access via direct connection to the device and
remote access via ssh or telnet. Control is exercised by invoking a sequence of commands through
the Command Line Interface (CLI) of the device’s operating system. For example, on Cisco IOS,
typing

ping 1.2.3.4

triggers a ping test from the router to the IP address. And typing
enable

configure terminal

interface Ethernet0

shutdown

exit

administratively shuts down the interface Ethernet0 at the router.
Note that Cisco IOS supports two different access levels – user level and privileged level. The

enable command in the above example enters the privileged level, in which configuration change
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(configure terminal) is allowed. Such capability is widely supported on other vendor systems
such as Juniper JunOS as well. In addition, AAA systems (described in the next subsection) support
finer grained command groups. A user cannot invoke commands outside of his/her predetermined
access levels or command groups.

In addition to operators typing commands via the CLI, ISPs rely on a broad range of automated
tools for their network management activities. These tools are typically designed to achieve a spe-
cific type of function. For example, automation tools/systems that perform configuration auditing
periodically sweep through the entire network issuing a show running-config command to collect
active router configurations. Another tool might collect hardware, traffic, or protocol status and
statistics information by logging into the routers of interest and invoking commands such as show
process CPU history, show interfaces POS 1/0, and show ip bgp summary. These software
systems may use designated logins when requesting access to networking devices.

Using the combination of function-level controls via various automated systems and manual
command-level controls, operators are able to accomplish a wide range of network management
tasks including provisioning and decommissioning customer services, troubleshooting networking
and service problems, performing device life cycle management, conducting measurements, and
monitoring the health of the network and services.

2.2 Authentication, Authorization and Accounting

The networking infrastructure in large scale networks is typically protected by an AAA (Authentica-
tion, Authorization, and Accounting) system. There are two mainstream AAA frameworks widely
used commercially – TACACS+ (Terminal Access Controller Access-Control System Plus) [1] and
RADIUS (Remote Authentication Dial In User Service) [2]. While differing in some specifics, such
as whether authentication and authorization are separately maintained in user profiles, both sys-
tems use one or more centralized servers to verify a user’s identity (authentication) on login, verify
access privilege (authorization) on a per command basis, and record all users’ activites in their logs
(accounting). The log entries contain critical information which includes

(i) the timestamp of the access request
(ii) the IP address of the targeted network device (e.g., the router Loopback address)
(iii) the IP address of the remote user requesting access
(iv) the user’s login ID
(v) the command line executed
(vi) other information such as user terminal, user privilege level, and timezone.

To enable a deployed TACACS+ or RADIUS system in the network, all routers in the network
need to be configured with the IP addresses of the servers – typically there are multiple replicated
servers for redundancy. A large network can further be divided into multiple zones, for example,
by the device type or by the autonomous system (AS) that they belong to. Different zones may
have different sets of TACACS+/RADIUS servers, which may contain different user account and
privilege settings.

3 Characteristics of Normal Operation Activities

As described in the Introduction, our objective is to monitor all operations activities in the network
and detect potential intrusions and misuses. This serves as an additional security protection for
the networking infrastructure. Hence, we do not assume network periphery protection and AAA
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Figure 1: CDF of the number of login attempts
before a success

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  50  100  150  200  250  300  350

P
(X

 <
=

 n
)

X:Number of Consecutive denied logins without successfully login(n)

consecutive: < 1 min from previous reject

Figure 2: CDF of the number of consecutive login
failures from a common originator IP

are working to their fullest extent – e.g., all users’ login credentials are kept confidential to the
operator only, and the periphery protection is effectively blocking all external attackers.

We start by examining normal network operational activities recorded in the AAA logs. We
focus on aspects that would best distinguish normal activities from actions that an external or
internal attacker might take. In the following analyses, we use data collected from a global tier-1
ISP network which generates tens of millions of TACACS+ log entries accessing tens of thousands
of routers per day.

3.1 Failed login attempts

The most intuitive way to separate potential attacks from legitimate accesses is to check whether
they can readily pass authentication. Attackers may expose themselves by inputting the wrong
login credentials. However, it is also expected that legitimate users sometimes “fat finger” their
login ID or password. Thus, we examine failed login attempts in normal TACACS+ logs (using
one month’s data).

Figure 1 plots the cumulative distribution function (CDF) of the number of consecutive login
attempts before a successfully authenticated login. We consider a login request within one minute
of a preceding one with the same originator IP, the same login ID, and the same target networking
device as a consecutive login.

We observe that more than 99.992% of logins pass authentication the first time. More than 85%
of the remaining ones input the correct credentials the next time, and it is extremely rare that a user
fails more than five times before finally getting it right. The ratio of login failure is considerably
lower than that typically seen in computer systems [3]. This is likely due to the predominance of
logins generated by automated network management tools in our data – a unique characteristic
of network infrastructure operations. Figure 1 demonstrates the potential of generating intruder
alarms when a small number (e.g., 6) of repeated failed logins is seen.

This type of monitoring can be defeated if the attacker has a list of valid login IDs and device
names – they can use a different login ID or target a different device when an attempt fails. We can
improve detection by looking for consecutive login failures from a common originator IP irrespective
of the login ID used. Figure 2 plots the CDF of the number of consecutive (i.e., less than one minute
apart from the preceding one) login failures. We observe that around 85% of the rejected login
attempts are either rectified or abandoned in six times or fewer. However, there are some login
attempts going as high as a few hundreds in a row. Manual inspection finds that they are due to
network management scripts running out of sync with router CLI (e.g. sending password when login
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Figure 4: Stability of the login ID and originator
IP prefix association

ID is expected or vice versa). This rarely occurs, but when it does it produces many consecutive
login failures – and correctly generates an alarm.

3.2 Login access pattern

As described in Section 2, an AAA log entry contains login access information characterized by
the user login ID, the originator IP address, and the target router IP address. We define a login

session as the network management activities sharing the common triple and being close in time
(e.g., with an idle timeout of 10 minutes).

The login access information can be valuable in capturing attackers. For example, an originator
IP that is not part of a block of addresses previously seen as an originating address in the logs
is a strong indication that the network periphery protection may have a hole. Furthermore, each
network operator typically has a rather stable set of work locations from which he/she manages
the network, and due to his/her role, there can be a fixed set of network devices that the operator
typically manages. So source and destination IP addresses will tend to be consistent over time for
many operators.

We first look at the association of the operators’ login and the originating IP address. Figure 3
plots the CDF of the number of distinct originator IP addresses associated with a login ID in a
month. We observe that 62% of login IDs manage the network from only one IP address. If we
consider common originator subnets (with varying size), the number rises to 69% for /24 IP prefixes
and 72% for /16 IP prefixes. In the rest of the paper, we will use /24 IP prefixes when aggregating
originator IP address – it is not excessively large, yet can accommodate most of logins from the
same facility/office.

Figure 3 also shows that even with /24 originator IP prefixes, about 1% of the login IDs access
the network from more than 10 distinct IP prefixes. Looking into those, we find that there are cases
when an operator first logs on from a gateway server to a router, and then logs on to other routers
from that router. The loopback IP address of the first hop router appears as the originator IP for
the second access session. While such “stepping-stone” access sessions are not common, they do
occur – operators use this either for convenience or under certain network conditions, for example,
when direct access to the other routers is unavailable. We can tighten our rule to deal with this
situation by excluding sessions which originate on a router or switch. This removes “stepping stone”
sessions from the analysis. The solid line in Figure 4 plots the number of distinct originator IP
prefixes against the rank of login IDs – to protect proprietary information, we normalize the rank
of login IDs to be between 0 and 1. We find above 73% of users have only one (non-stepping-stone)
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originator IP prefix and no one logs on from more than 5 distinct IP prefixes. This indicates that
there exists a strong stability in the access pattern characterized by login ID and originator IP prefix
combination – deviating from it can be a symptom of attacks. Figure 4 also plots the stability of
this access pattern month by month – the shaded area indicates that the same login ID and IP
prefix association has appeared in the preceding month. This demonstrates strong predictability
based on past access behavior pattern (the unshaded area is mostly due to new users or infrequent
users who only access the network in the second month).

Going back to the “stepping-stone” sessions, by matching the ssh command on the first hop
router and the remote login log request on the second router, we can reconstruct the chain of
stepping-stones. Figure 5 and Figure 6 plot the distribution function of the length of these chains
and the outbound fan-out of these chains. It is evident that both attributes are bound by a
small number (e.g., 7) in normal operational activities. In contrast, an intruder working from a
compromised router may attempt to gain information from a large number of other routers, which is
likely to produce long chains or high fan-outs. Watching those attributes closely can be an effective
way to catch the intruder.

We next turn to the association between the networking device and the IP prefix from which
management control activities originate. The solid line in Figure 7 plots the number of distinct
originator IP prefixes versus the rank of the networking device IDs. As in Figure 4, we normalize
the ranks to be between 0 and 1 to protect proprietary information. We find that 60% of the
routers are only controlled from hosts within one /24 IP block during a one month period. These
control activities are likely routine network auditing and health monitoring. A small portion of the
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Figure 10: CDF of the average number of sessions
initiated per login ID per day

network devices are managed from a small number of (e.g., 2-7) IP prefixes which correspond to
the network operation centers responsible for those devices. In normal operations activities, some
access across regions is unexpected. While a major Network Operations Center may deal with
equipment anywhere in the world, it is suspicious if an operator from a regional office in Japan
requests access to a router serving IPTV in the USA. Catching abnormal associations between
routers and originator IP prefixes can be an effective way of identifying such cases. The shaded
area in Figure 7 shows the overlapping associations that have appeared in the preceding month;
this demonstrates the predictability of these associations. The unshaded area is mostly due to the
limitation of using one-month data for comparison. This can be greatly reduced when we consider
longer historical data.

Finally, we examine the association between login IDs and network devices. Many users or
software tools have limited scope in terms of the networking devices managed. The solid line in
Figure 8 plots the number of distinct network zones (described in Section 2) that each login ID
has accessed in a one month period. We again normalized the x-axis to avoid disclosing the size
of the operator work-force. We observe that the majority of login IDs have a very limited scope
(e.g., less than 3 zones) while a small number of high-tier operators or software tool IDs access
many zones. The stability of the login IDs’ access pattern is depicted by the month over month
comparison shown in the shaded area. We observe a strong month-by-month predictability that
can be utilized for detecting intrusions or misuses.

3.3 User behavior

As mentioned in Section 2, different login IDs (corresponding to different operators or network
management tools) have different roles/functions. Each user is likely to have a roughly stable
behavior in access schedule (frequency), type of control (e.g., monitoring, or troubleshooting, or
configuration change), and class of commands (e.g., SONET controller settings versus ACL config-
urations). Significant deviation from normal behavior can be a symptom of an account becoming
compromised and an intruder impersonating the owner of the login account. In this subsection, we
examine the properties of such user behaviors exhibited in normal network management activities.

We first examine the inter-session time distribution. Figure 9 plots the maximum difference in
days between two consecutive logins from the same ID in a six-month period. We observe a wide
variability among different login IDs. Many login IDs access the network on a regular basis, with
at most a few days gap. But there are a considerable number of login IDs that only access the
network occasionally. This suggests that it may be helpful to profile login IDs in different groups
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Figure 11: CDF of the average number of devices
accessed per login ID per day
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Figure 13: Keywords Frequency Distribution
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according to their access frequency.
Figure 10 shows the CDF of the average number of login sessions per login ID per day in a

representative month. Here we exclude the days when the login ID is not active in the average
statistic. The tail part of the curve, which goes several order of magnitude larger, is cut off so that
we do not disclose the exact number of devices in the network – similarly for Figure 11. We observe
that the majority of the login IDs have only a few login sessions per day. For example, 65% of IDs
log onto the network no more than 5 times daily (on average). There are also many software tools
and network management scripts producing over a hundred login sessions on daily basis. A login
account suddenly changing its behavior, especially from having a small number of login sessions
daily to a large number of them on a given day, is unusual or abnormal behavior and should be
examined to see if it indicates a problem. Similarly, Figure 11 shows the CDF of the average
number of distinct networking devices accessed per login ID per day. Compared to Figure 10, it
shows even more concentration – 65% of IDs log on to no more than 2 networking devices daily
(on average). The tail portion of the curve again is dominated by software tools monitoring a large
number of devices regularly, such as network configuration auditing tools. A surge in the number
of distinct networking devices that a user initiates in a short period of time might be an intruder
scouting for information. To understand the variability on this metric, Figure 12 shows a scatter
plot of the coefficient of variation (CV) versus the mean – each point represents one login ID. We
find that most of the CVs are bound by a small number (e.g., 3), while the login IDs with large
number of average daily device accesses typically have much smaller CVs – suggesting that they
can be more tightly bounded.
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Figure 15: Detection System Architecture

The set of router control commands and configurations used by a login ID is expected to exhibit
some stability too. For a login account used by a software tool, the set of commands is determined
by programming and rarely changes. For an operator’s login, the subset of commands should be
subject to his/her privilege level and tightly related to his/her job role. However, obtaining the
exact association between login ID and the subset of the commands is a challenging task – for
example through code analysis of the software tool.

In contrast, we take an approach that is detached from the semantics of router control com-
mands, as follows: (a) we tokenize the commands (i.e., separate words in the command by white
space); (b) we consider the tokens that contain any number as parameters (e.g., IP address) and
remove those tokens; (c) we remove any non-alphabetic characters in each of the tokens and convert
the remainder into lower case letters – we will refer to these as the keywords; (d) we profile each
user with the set of keywords used.

Figure 13 shows the likelihood that a keyword is present in a command (sorted in decreasing
order) based on one month of logs. We observe a strong skewness in the distribution, which can be
well modeled by the Zipfs’ distribution. The high ranked keywords are those used in monitoring
network health (e.g., ping, vrf, show). And most of the bottom ranked ones are some arbitrary
tokens (such as customer name) referenced in the description field of certain router configurations
or some misspellings (due to typos by operators) of other keywords. It is sufficient to keep track
a subset of keywords (e.g., top 1000) and represent the remainder simply as the other keyword.
Figure 14 shows the stability of the use of keywords per login ID, which plots the average cosine
similarity of the keyword frequency distribution comparing one day against the previous active
day. Login IDs with a high number of daily log entries trend to have high predictability one day
to another. Deviation from the regular command keywords, especially for a software tool account,
can be a symptom of an intruder impersonating the owner of the account.

4 Design of an Online Intrusion Detection System

Based on the analysis from the previous section, we design an online intrusion detection system
that oversees the network management activities of the ISP network and detects and alarms on
anomalous patterns. Figure 15 shows the system architecture. We collect the logs from AAA
servers in near real-time. The logs are fed into an online preprocessing module, which extracts
critical information and updates on an entry by entry basis the running states of sessions, login IDs,
originators and commands that are required for the different intrusion detection rules. Periodically
(e.g., every day) the running states are fed into an offline profiling module in which the different
profiles required by the rules are updated – the initial profiles can be constructed via offline analysis
of an extended period of historical data. The online rule checkers examine the running states against
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the profiles and rules and tag the corresponding log entries with a threat score. An aggregation
module then sums the threat score in a window according to the login ID or originator IP and
finally an alarming and presentation module makes the information available to network security
operators.

4.1 Domain knowledge-based rules

We first define a set of rules that is specific to the network under study. We maintain a list of the IP
address blocks that belong to the ISP network. We check the originator IP of each AAA log entry
against the list. An IP address from outside of the network indicates a breach of the periphery
protection that the ISP has deployed, and consequently the log entry is given a high threat score.

We also track the timestamp of the last login failure from each originator IP address and if a
new failed login attempt is observed within T1 seconds we update the timestamp and increment
the count of consecutive login failures for the originator IP. Once the count exceeds a threshold
N1, we output the entries of these login attempts and assign a threat score to each of them. The
timestamp and failure counts are reset when a successful login from the originator IP is made or
the timeout T1 is exceeded. With such a rule in place, an intruder that attempts to stay under the
radar has to significantly slow down its attack, reducing the efficacy of the attack and prolonging
the exposure.

Another rule in this category is for stepping stone sessions. We trace stepping stone accesses
as they occur and when the length of the access chain becomes greater than a threshold N2 or the
fan out becomes greater than N3, we assign a threat score to the sessions involved.

4.2 Rules based on access pattern profiles

In our daily association profile we keep track of the following attributes: (1) originator IP prefix (2)
login ID (3) 〈 login ID, originator IP prefix 〉 (4) 〈 login ID, device zone 〉 (5) 〈 originator IP prefix,
device zone 〉. For each entry we track the most recent date of appearance and the cumulative
number of appearances. We delete an entry when the most recent appearance is more than T2

(e.g., 180) days and add new entries to the long term profile once their count is sufficiently large.
We assign a threat score to sessions that do not match the existing profile. Note that if a

session is from a new originator IP or new login ID, we do not include the threat score due to the
lack of associations in (3), (4) and (5). The weight of the threat score of new associations of (3),
(4) is set to be higher as the cumulative count of the login ID increases – our confidence to assert
suspicious activities increases with more history data. Similarly, the weight of the threat score for
(5) increases when the cumulative count for the corresponding originator IP prefix increases.

4.3 Rules based on statistical models of the access profile

We keep track the mean and variance of the following attributes: (1) daily number of sessions per
login ID (2) daily number of distinct routers accessed per login ID (3) daily frequency count of
command keywords per login ID for top N4 and the other keywords.

We use the EWMA (Exponentially Weighted Moving Average) algorithm in estimating the
running statistics for attribute X on day t:

Meant = αXt + (1 − α)Meant−1

V art = α(Xt − Meant)
2 + (1 − α)V art−1
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When computing the daily average, we exclude the case where the corresponding attribute is zero
on day t – for example, when the user is inactive on the day.

If at any time, the daily cumulative counts reach or exceed some pre-calculated threshold for
the attribute, we will assign a threat score to the access sessions involved. The thresholds are
determined as follows.

Since the login IDs that have a high number of daily sessions (i.e., the highly active accounts),
exhibit low variability as shown in Section 3.3, we set the thresholds in the same way as anomaly
detection in Gaussian random variables: Threshold = Mean + N4 × V ar

1/2. For the login IDs
that have a moderate number of daily sessions, we set the threshold to be the product of a constant
factor and the mean value: Threshold = Mean × N5. This is based on the observation that the
coefficients of variation are bound by a small constant. And finally for the large portion of login IDs
that only access the network occasionally, we set the threshold to be a small constant: Threshold =
N6. Once an attribute exceeds the defined threshold, a threat score is assigned. The value (weight)
of the threat score is set according to a sublinear function of the corresponding attribute (the daily
cumulative count) value.

4.4 Aggregation of threat scores

Using the rules above, in the course of a day, we maintain an updated set of AAA log entries that
are assigned non-zero threat scores. Those AAA log entries are tagged with information on the rule
of violated to aid further examination by network security operators. Suspicious log entries can be
noise (i.e., triggered by abnormal activites of low interest to security) – for example, an operator
starting to use a new set of commands can trigger a violation detection by the user-keyword-rule.
To reduce the chance that a network security operator has to investigate a non-critical violation, we
further aggregate these log entries by login ID and by originator IP. The idea is that real attackers
may be caught by multiple rules and by aggregating the threat scores on a per login ID or per
originator IP basis they can be further distinguished from non-critical anomalies.

To achieve this, we use a moving window of T3 (e.g., 1 day), and sum up the threat score within
the window for all login IDs and originator IPs. We then set a threshold N7 based on historical
data. When we observe an aggregate threat score exceeding N7, we generate an alarm to the
network security operators. We also display all suspicious activities on a dashboard report from
which network security operators can pull information on demand.

5 Evaluation

We evaluate our system from two perspectives – the rate of anomalies detected from day-to-day
network management activities and the effectiveness of detecting artificially injected anomalous ac-
tivities. The former quantifies the resources required to investigate potential misuses and intrusions.
The latter quantifies the chance that an anomaly goes undetected by our system.

5.1 Running system performance

Figure 16 shows the distribution of the aggregate threat score in a month using two types of
aggregations – by login ID (solid line) and by originator IP address (dashed line). We observe
that about 91% of login IDs and 82% of originator IPs pass the system without raising any threat
score. Meanwhile, there exist a small number of cases in which the system reports a high threat
score. By manual inspection, we find most of them correspond to unusual network changes such as
a newly deployed network management center or a major software upgrade on an existing network
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ID in one month
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Figure 17: CDF of aggregate threat score by login
ID in one month w.r.t. different α values

management tool. We will see an example of this in Section 5.3. We also find that most of the
low threat scores (e.g., less than 3) correspond to a small number of log entries from either a new
or a very infrequently used account. Profiles for such accounts are difficult to construct based on
history, and they do not generate many activities to drive the threat score high.

Figure 16 defines the tradeoff curves between the alarming rate and the sensitivity to anomalous
activities. Raising the alarm threshold (the N6 in Section 4.4), reduces the number of cases that
security operators have to investigate but also reduces the chance of catching a stealth intrusion.
For a concrete example, setting N6 to 5 would produce a few alarms per day on average, which is
quite manageable for the network security operators.

We note that the above N6 and several others as described in Section 4 are parameters used in
the system. We do not present the exact values for the parameters in our running system due to
security considerations. Instead, we show through an example our reasoning on parameter selection.
Figure 17 shows the solid line in Figure 16 with a varying α value used in the EWMA estimate.
Note the x-axis is in log scale. Different α values effectively factor in different amounts of history
data. Setting α = 0.05 effectively ignores (e.g., weight less than 0.01) data more than 90 active
days old while α = 0.3 effectively ignores data more than 13 active days old. However, Figure 17
shows there is little difference in the threat scores among the four different α values – indicating
that a short history is sufficient for the system.

5.2 Controlled experiment

Using Figure 16 as a reference point, we design a controlled experiment as follows. We first randomly
select 50 pairs of non-overlapping login IDs. We then take one day’s worth of AAA logs from our
running system and substitute the login ID field in the log entries such that the two login IDs in
each of the chosen pairs are switched. Finally, we feed the manipulated AAA logs into our running
system and monitor the output.

Figure 18 presents the CDF curves of the aggregate threat score based on the original AAA
logs (dashed line) and the synthetic data (solid line) respectively. We find that our system is able
to detect many of the behavior changes introduced by the login ID swapping. 72 out of the 100
login IDs report non-zero threat score and among them, 30 login IDs have a threat score higher
than 10. Compared to the baseline threat score distribution from the original logs, the result using
the synthetic data stands out significantly.

For a closer look at how our system detects anomalous behavior changes, Figure 19 and Figure 20
compare the contribution to the threat score from rules based on access pattern profiles with the
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Figure 19: Threat score by rules based on access
pattern profiles

contribution from rules based on statistical models of the access profile respectively. For each of the
100 login IDs, we plot their threat score against the difference in the daily average access frequency
to the substituting login ID in the AAA logs. For example, a login ID abc, with 16 sessions per
day on average, which is replaced by login id xyz, with an average of 1024 sessions per day, would
have its threat score plotted at 6 (i.e. log(1024)− log(16)) on the x-axis. We observe that both the
access pattern changes and the access statistics changes have contributed to the high threat score.
The higher the difference in the amount of access activities between the pair of swapped login IDs,
the higher the resulting threat scores – with the exception in Figure 20 on the negative side of the
x-axis. The exception arises because the rules based on the statistical models are one-sided, i.e.,
we do not alert on a “busy” user suddenly becoming less active, as this behavior change does not
seem to pose any security threat.

5.3 A case study

We now look at an example in which our system alerts with a high threat score. Figure 21 plots
the aggregate thread score of a particular login ID over the course of four days. The login ID is
used by a software tool that periodically initiates ping commands among the various provider edge
(PE) routers of the VPN customers to monitor their VPN health.

Starting in the afternoon of day 2 of the plot, we observe a fast increase in the aggregate threat
score by the login ID. In less than two hours, the threat score passed the 99.5% alarming threshold
and kept rising. It turns out that the software tool was upgraded that day and the new control
sessions include a show version command that collects the router OS version across the network
– similar to what might occur if an intruder attempted to collect information as preparation for
attacks. After validating the change of behavior due to software upgrade, we include the pattern
change in the profile update at the end of day, which greatly reduces the threat score on day 3.
The corresponding statistical models are further updated at the end of day 3 and the new pattern
then gets fully captured by the profiles. Hence, there is no more threat score on day 4.

6 Related Work

Our work falls into the area of IDS (Intrusion Detection Systems) in computer and networking
security, which dates back to 1980 when Anderson [4] first proposed a computer security surveillance
system. Over time, the research area has become more active as the Internet grew in scale and
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application diversity and new security threats constantly emerged.
IDS broadly divide into two categories: host-based (HIDS) [5,6,7,8,9] and network-based (NIDS)

[10, 11, 12, 13] — HIDS typically rely on information about running processes to catch intrusions
to computer host(s); NIDS typically analyze network traffic in order to detect attacks. Another
taxonomy of IDS is based on detection principles [14]: anomaly-based IDS (AIDS) [5,6,7,8,9,11,12]
capture anomalous traffic or processes based on analysis of normal patterns. Signature-based IDS
(SIDS) [10, 13, 15, 16] use known signatures of attacks to alert on viral activities. Our work aligns
with AIDS in principle.

Masquerader detection is a branch of IDS. A masquerader is an attacker who obtains a user’s
password, penetrates the access control system and impersonates a legitimate user. Lunt et al
[5] designed IDES as the first IDS handling masquerader detection, using a simple yet effective
statistical model. Recently, different machine learning techniques such as Genetic Algorithm [7],
Naive Bayesian classification [8], Support Vector Machine [9] have been applied in this area. In this
study, we build user behavior models from access and command invocation patterns using statistical
methods and alert based on deviation from the model. It remains as future work to evaluate
whether more sophisticated machine learning algorithms can improve sensitivity and accuracy in
our problem setting.

7 Conclusion

In this paper, we have studied the problem of protecting the networking infrastructure and the in-
formation available therein for large scale enterprise or ISP networks. We have proposed to enhance
existing security measures with an intrusion detection system overseeing all network management
activities. By analyzing device access logs collected via AAA systems, particularly TACACS+, in
a global tier-1 ISP network, we have gained a tremendous insight on the features that distinguish
normal operational activities from rogue/anomalous ones. We have further developed a real-time
intrusion detection system that builds statistical models to profile normal operational activities
and alerts in real-time on any deviation from the profiles. Our evaluation demonstrates that this
system effectively identifies potential intrusions and misuses with an acceptable overall alarm rate.

For future work, we would like to explore using more sophisticated machine learning techniques
in additional statistical methods to capture anomalous network access activities. We are also
interested in further introducing automated mitigation control based on detected anomalies to the
AAA system such that an attack or intrusion can be stopped as early as possible.
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