
CloudFence: Data Flow Tracking as a Cloud Service

Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou, Michalis Polychronakis, and
Angelos D. Keromytis

Computer Science Department, Columbia University
{vpappas,vpk,azavou,mikepo,angelos}@cs.columbia.edu

Abstract. The risk of unauthorized private data access is among the primary
concerns for users of cloud-based services. For the common setting in which the
infrastructure provider and the service provider are different, users have to trust
their data to both parties, although they interact solely with the latter. In this pa-
per we propose CloudFence, a framework for cloud hosting environments that
providestransparent, fine-graineddata tracking capabilities to both service pro-
viders, as well as their users. CloudFence allows users toindependentlyaudit the
treatment of their data by third-party services, through the intervention of the in-
frastructure provider that hosts these services. CloudFence also enables service
providers to confine the use of sensitive data in well-defineddomains, offering
additional protection against inadvertent information leakage and unauthorized
access. The results of our evaluation demonstrate the ease of incorporating Cloud-
Fence on existing real-world applications, its effectiveness in preventing a wide
range of security breaches, and its modest performance overhead on real settings.

Keywords: data auditing, data flow tracking, information confinement

1 Introduction

The multifaceted benefits of cloud computing to both serviceproviders and end users
have led to its rapid adoption for the deployment of online services and applications.
As businesses and individuals increasingly rely on the cloud, some of their private data
is handled and stored on systems outside of their administrative control. In this setting,
data confidentiality becomes a growing concern, especiallywhen taking into account
the recent spate of security breaches in major online services [7,15,41,42]. In lack of
an alternative option (other than not using the service at all), most users eventually trust
the service provider to keep their data safe.

Unfortunately, relying solely on reputable service providers does not mitigate the
risk. Most feature-rich cloud-based services are quite complex, and are usually built
by “glueing” together a multitude of components. Bugs and vulnerabilities in existing
code, misconfigurations and incorrect assumptions about the interaction between differ-
ent components, or even simple causes like the careless handling of access credentials,
can lead to the accidental exposure of critical data or leavethe system vulnerable to data
theft. At the same time, cloud computing encourages rapid application deployment, and
time-to-market pressure sometimes makes data safety a secondary priority.

In this work, we seek to reinforce the confidence of end users for the safety of their
data, beyond any assurances offered by the online service, by giving users the ability

2 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D.Keromytis

to audit their cloud-resident data through a different—and potentially more trustful—
entity than the actual provider of the service. This can be achieved by taking advantage
of the multi-party trust relationships that exist in typical cloud environments [12], in
which the service provider is different than the provider ofthe infrastructure on which
the service is hosted.

As a step towards this goal, we present CloudFence, a data flowtracking (DFT)
framework for cloud-based applications. CloudFence is offered by cloud hosting pro-
viders as a service to their tenants, as well as to the users ofthe tenants’ services.
Through a simple API, service providers can easily integrate data flow tracking in their
services and mark sensitive user data that needs to be protected. End users can then
monitor the propagation of their data directly through the cloud hosting provider, ensure
that all sensitive data is treated as expected, and spot any deviations. Service providers
can also take advantage of data flow tracking for enabling an additional layer of protec-
tion against data leaks, by preventing the propagation of marked data beyond a set of
specified network and file system locations, as well as for protecting their own digital
assets (e.g., configuration files or back-end databases). Tofacilitate the monitoring of
user data, end users have access to a web-based dashboard [46] with meaningful log
messages and a visual representation of the audit trails of their data.

A major challenge in supporting data auditing for services with a very large number
of users is the need for concurrent propagation of tagged data that carry different tags
for each user. At the same time, data tracking must be performed at a fine-grained level
to allow for precise tracking of user data as small as a creditcard number. CloudFence
introduces a novel data flow tracking framework based on runtime binary instrumenta-
tion that supportsbyte-leveldata tagging, and32-bit widetags per byte, enabling fine-
grained data tracking for up to four billion users. Cross-application and cross-host tag
propagation is handled transparently, without requiring any modifications to application
code. Despite the significant increase in tag space, the runtime overhead of CloudFence
is comparable to existing byte-level data flow tracking systems that support just a sin-
gle [9,13,34] or up to eight [23,35,36] tags, and an order of magnitude lower compared
to systems that support arbitrarily many tags [14,40].

We evaluate the performance and effectiveness of CloudFence using two real-world
applications, and two publicly disclosed data leakage vulnerabilities in those applica-
tions. CloudFence can be easily integrated in both applications through the placement
of just a few API calls, while it offers effective protectionagainst a wide range of data
theft threats, including SQL injection and arbitrary file read attacks.

Our work makes the following main contributions:

– We propose the use of data flow tracking as a service offered bycloud hosting
providers i) for users, to independently audit their cloud-resident data, and ii) for
service providers, to confine data propagation within well-defined domains.

– We present the design and implementation of a novel data flow tracking framework
that uses 32-bit wide tags per byte, and introduces new features such as lazy tag
propagation and persistent tagging on disk and across the network.

– We have implemented CloudFence, a prototype implementation of the proposed
concept that allows service providers to easily integrate data flow tracking in their
applications through a simple API.

CloudFence 3

Fig. 1. Users explicitly trust their data to service providers, butalso implicitly trust the cloud
provider that hosts these services. CloudFence leverages this trust relationship to enable users to
audit their data directly through the cloud provider.

– We have evaluated CloudFence using real applications and demonstrate its effec-
tiveness and practicality.

2 Approach

Users of online services trust the providers of those services to securely handle and
protect their data. Credit card numbers, private files, and other sensitive data is stored
in back-end databases and file systems, beyond user control.In turn, service provid-
ers place their trust in the cloud infrastructure that hoststheir services. The traditional
provider-user relationship is thus transformed into a multi-party system [12], in which
users are often not aware of the cloud infrastructure provider at all (unless it is the same
entity that also offers the service, as for example is the case with many of the services
offered by Google or Amazon). In this work, we refer to both infrastructure and plat-
form “as a service” (IaaS/PaaS) providers ascloud providers. Their infrastructure hosts
the applications ofservice providers, which are delivered as services toend users.

From the users’ perspective, there is an inherent shared responsibility between the
cloud and the service providers regarding the security guarantees of the provided ser-
vice. Although end users do not interact directly with cloudproviders, they implicitly
trust their infrastructure—the systems in which their dataare kept. CloudFence aims to
exploit this implicit trust for the benefit of all parties by introducing adirect relationship
between end users and cloud providers, as shown in Figure1. With data flow tracking as
the basic underlying mechanism, the cloud provider enablesusers to directly inspect the
audit trail of sensitive data that was handled by services hosted on the cloud provider’s
infrastructure.

Incentives While the trust relationship between users and service providers is not al-
tered, CloudFence gives users an elevated degree of confidence by allowing them to
independently monitor their private data as it propagates through the cloud. In fact,
users are more likely to trust a large, well known, and highlyreputable cloud provider,
as opposed to a lesser-known developer or company (among thethousands that offer
applications and services through online application distribution platforms).

4 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D.Keromytis

CloudFence offers service providers two main benefits. First, with minimal effort,
it allows them to provide an extra feature that reinforces the trust relationship with their
users. This can also be considered as a competitive advantage: among two competing
services, privacy-conscious users may prefer the CloudFence-enabled one, knowing
that they will have an additional way of monitoring their data. Second, it empowers
service providers with the ability to confine the use of sensitive user data in well-defined
network and file system domains, and thus prevent inadvertent leaks or unauthorized
data access. Besides guarding user data, service providerscan also take advantage of
CloudFence to implement an additional level of protection for their own digital assets,
such as back-end credentials, source code, or configurationfiles.

Finally, by integrating CloudFence in its infrastructure,a cloud provider offers
added value to both its tenants and their users, potentiallyleading to a larger customer
base. Given the shared responsibility between cloud and service providers regarding
the safety of user data, both have an incentive to adopt a system like CloudFence as a
means of providing an additional level of assurance to theircustomers.

Security Model Our goal is to support benign service providers, who are willing to
integrate CloudFence in their applications to enhance the security of the provided ser-
vices. Note that this situation is typical for cloud-based services. End users have to
implicitly trust their data to both the service provider andthe cloud hosting provider in
order to use these services. The current implementation of CloudFence is built on top
of a user-level data flow tracking framework based on runtimebinary instrumentation,
which is directly integrated into the components of the protected service through an API
provided by the cloud provider. In such a setting, application developers are responsible
for specifying the sources of sensitive user input, so that all necessary data is always
being marked and tracked appropriately.

Our approach offers protection against many classes of attacks that can lead to unau-
thorized data access (but which do not allow arbitrary code execution), such as SQL
injection, command substitution, parameter tampering, directory traversal, and other
prevalent web attacks that are seen in the wild. In case of attackers who gain arbitrary
code execution, we can no longer guarantee accurate data tracking, since they can not
only compromise our framework, but can also exfiltrate data through covert channels.
Finally, besides protecting against external attacks, an equally important goal of Cloud-
Fence is to bring into users’ and service providers’ attention any unintended data expo-
sure that may lead to unauthorized access. For example, sensitive data can accidentally
be recorded in error logs or included into memory dumps afteran application crash.

System Overview Figure2 shows the main interactions among the different parties
that are involved in CloudFence-enabled services. Initially, users register with the cloud
provider (1) and acquire a universally unique ID, distinctive within the vicinity of the
cloud provider’s infrastructure. Then, they use the onlineservices offered by various
service providers by providing the ID acquired from the previous step (2).

The actual mechanism used for conveying user IDs to CloudFence is not addressed
in this work. As possible solutions, the service provider can either request from users
to provide their ID during the sign up process on the corresponding application, or in

CloudFence 5

Fig. 2. Main interactions between the different parties involved in CloudFence-enabled applica-
tions. Users register with the cloud provider (1), and then use the services offered by various
service providers using the same set of credentials (2). Sensitive data are tagged and tracked
transparently throughout the cloud infrastructure (3). Users can audit their data through a web
interface exposed directly by the cloud provider (4).

case a cloud-wide identity management system is in place, the application can access
the respective ID transparently by requesting it directly from the cloud provider (after
the user has successfully authenticated). Such functionality is gaining traction among
cloud providers. Indicatively, Amazon recently launched the “Login with Amazon” fea-
ture [2], which allows users to login to Amazon-hosted services with a single account,
while it also supports federated login using Google and Facebook identities [1].

Sensitive data is tagged by the service provider with the supplied user ID, and is
tracked throughout the cloud infrastructure, while audit information is gathered and
stored at the cloud provider (3). At any time, users can monitor the audit trails of data
directly through the cloud provider using a user-friendly web interface (4). Service
providers also have read access to the collected audit data through a specialized API.
Besides user data, CloudFence can be used to protect the service providers’ own assets,
such as back-end credentials, configuration files, and source code. This can be achieved
by tagging them as sensitive, tracking their propagation through the cloud infrastructure,
and enforcing fine-grained perimetric access control basedon the applied tags.

Challenges The on-demand consolidation of computing elements in cloudsettings
allows service providers to easily “glue” together functionality and content from third-
party sources, and build feature-rich applications. As thebenefits of this approach are
numerous, it is critical not to interfere with that paradigmwhile enabling data tracking.
We consider this as thetransparent trackingrequirement. The applied DFT method
should support incremental deployment by not requiring intrusive changes, such as
manually annotating source code [33], custom OSs [48], or modified hypervisors [50].

Second, tracking granularity plays a crucial role in the effectiveness of DFT. A
service provider can choose between tracking data as small as a single byte [30], which
enables robust protection against extreme cases of data leakage, or employing a more
coarse-grained (and hence error-prone) approach [29]. However, fine-grained DFT has
a significant performance cost, as tracking logic becomes more intricate (e.g., consider

6 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D.Keromytis

the case of two 32-bit numbers with only some of their bits marked as sensitive). We
consider this as thefine-grained trackingrequirement, which suggests performing DFT
at the appropriate granularity for balancing overhead and accuracy.

Third, given the range of cloud delivery mechanisms with different compositional
characteristics (e.g., IaaS, PaaS), it is important to ensure that dynamic collaboration is
taken into consideration when performing DFT. Thedomain-wide trackingrequirement
refers to the precise monitoring of data flows beyond the process boundary.Examples
include intra-host application elements that communicatethrough the file system or
OS-level IPC, or consolidated application components running on remote endpoints.

Finally, the main concept behind CloudFence requires that personal data are marked
with a respective user ID. The goal is to support applications with apractically unlim-
ited number of users, and thus the DFT component should be able to handle a respec-
tively large number of tags. This requirement is highly challenging, as most DFT frame-
works provide either a single tag [9,13,34] or just a few—usually eight [23,35,36].

3 Design

CloudFence consists of three main components: thedata flow tracking(DFT) subsys-
tem, theAPI stub, and theaudit trails generation component. The DFT subsystem per-
forms fine-grained, byte-level explicit data flow tracking without requiring any modifi-
cation to applications or the underlying OS, while at the same time handles232 different
tags. Our DFT component supports tracking across processesrunning on the same or
remote hosts. Specifically, itpiggybackstags on the data exchanged through IPC mecha-
nisms or network I/O channels, keeps persistent tag information for marked data written
to files, and handles (un)marshalling transparently. Finally, the low ratio of tagged data
allows for further optimizations, like lazily propagatingthe tags when possible.

The API stub allows service providers totag, i.e., attach metadata information, on
sensitive user data that enters their applications. CloudFence does not require appli-
cation modifications regarding data tracking (e.g., extensive annotations). However, it
requires small changes to application code for marking sensitive information. Figure3
illustrates the overall architecture of CloudFence. The two processes in the upper part
of the figure represent components of a consolidated application, while the rest of the
components are part of the cloud provider’s infrastructure. Note that for the rest of our
discussion, we assume that the service provider relies on anIaaS delivery mechanism,
and in this example both processes run on the same (virtual) host. However, Cloud-
Fence can be seamlessly employed in PaaS and SaaS setups. Data that are tagged as
sensitive (denoted by the solid line in the figure) is trackedacross all local files, host-
wide IPC mechanisms, and selected network sockets. Tagged bytes that are written to
storage devices, or transmitted to remote hosts, result in an audit message.

Data Flow Tracking Although our DFT component is inspired by previously proposed
DFT tools [9,23], for reasons that are explained in detail in Section4, we built it from
scratch to provide a transparent, fine-grained, and domain-wide tracking framework
suitable for the target cloud environment. We employ Intel’s Pin [28], a dynamic binary
instrumentation toolkit. Pin injects a tiny user-level virtual machine monitor (VMM) in

CloudFence 7

Fig. 3. CloudFence architecture.

the address space of a running process, or in a program that launches itself, and provides
an extensive API that CloudFence uses for inspecting and modifying (dynamically at
run-time) the process’ code at the instruction level.

In particular, CloudFence uses Pin to analyze all instructions that move or combine
data to determine data dependencies. Then, based on the discovered dependencies, it
instruments program code by injecting the respective tag propagation logicbeforethe
corresponding instructions. Both the original and the additional instrumentation code,
i.e., the data tracking logic, are re-translated using Pin’s just-in-time compiler. How-
ever, this process is performed only once, right before executing a previously unseen
sequence of instructions, and the instrumented code is placed into a code cache to avoid
paying the translation cost multiple times.

API The CloudFence API consists of three functions (C prototypes): add tag(),
del tag() andcopy tag(). Theadd tag function is used for associating a 32-
bit tag to every byte whiledel tag is used for unlabeling data. Thecopy tag func-
tion propagates the tag information for the data in[&src, &src+len] to [&dst,
&dst+len]. The functionality is necessary for aiding the service provider in dealing
with cases of unintended unlabeling, also known aswhitewashing, which we further
discuss in Section6. CloudFence also provides appropriate wrappers for higherlevel
languages, which are commonly used in web applications. In particular, for some of
the applications used in our evaluation, we developed a PHP extension that provides
data tagging to string arguments (other types can be supported likewise), by internally
calling the lower-level C functions exported by the CloudFence API.

Audit Trails Generation The main purpose of CloudFence’s auditing mechanism is
to generatedetailed audit trailsfor tagged data. Therefore, we implemented a generic
“verbose” logging mechanism that collects information fortagged data accesses and
generates audit logs. The generated trails are stored in a database outside the vicinity of
the service provider in an “append-only” fashion to preventtampering of archived audit
trails. The DFT component pushes audit information to the audit component whenever
tagged data is written to a cloud storage device or pass through I/O channels to end-
points inside or outside the cloud.

8 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D.Keromytis

4 Implementation

From a high-level perspective, most of CloudFence’s functionality is built around the
DFT component, except the user interface, which is a user-accessible web application
coupled with a back-end database. Our current prototype is implemented using Pin 2.10,
and works with unmodified applications running on x86-64 Linux. The data auditing
component is layered on top of CloudFence using system call interposition.

4.1 32-bit Wide Tags and 64-bit Support

Theshadow memoryused for keeping data tag information plays a crucial role inrun-
time performance. Previously proposed DFT systems mainly use two approaches for
tagging memory: (i) bit-sized tags [34], whereby every byte of addressable memory is
tagged using a single bit in the shadow memory, and (ii) byte-sized tags [9, 13, 23],
whereby each byte of program memory has a sibling in the shadow arena. In between,
systems like Umbra [36] and TEMU [40] allow for various byte-to-byte and byte-to-bit
configurations, as well as for lossy encodings (e.g., four bytes of addressable memory
can be tagged using one byte). TEMU, in particular, enables very flexible tagging, by
supporting tag values of arbitrary size, at the expense of higher runtime performance
overhead [44]. CloudFence trades some of this flexibility for a lower runtime slowdown.

Implementing 32-bit wide tags requires re-designing the shadow memory from
scratch. Driven by the fact that data from different sources, carrying dissimilar tags,
are rarely combined in our context (e.g., the memory bytes oftwo different credit card
numbers are unlikely to be combined), we opted for a solutionthat greatly increases
the number of tags stored per datum, but unavoidably also increases the overhead of tag
combination operations. More precisely, each tag value is stored as a different number,
and when two tags are combined, anew tag value is created. Still, incorporating this
change alone in commodity DFT systems [9, 23] would only increase the number of
tags from 8 to 256, using byte-size tagging. Hence, our next step was to expand the tag
size from one to four bytes, allowing for 232 tags.

The transition to 64-bit not only helps overcoming available memory limits, but also
enables further optimizations. The relatively expensive translation that involves shadow
page table lookups is replaced by a faster one. Taking advantage of the ample address
space, we split it in two parts: the shadow memory and the actual process memory. This
is achieved by reserving the shadow memory as soon as the process is started, forcing
it to allocate memory only in its own part. Address translation then becomes as simple
as scaling the virtual address and adding an offset. For example, the memory tags of
addressvaddr can be obtained as follows:taddr = (vaddr << 2) + toff,
wheretoff corresponds to the offset of the shadow memory. CloudFence reserves
16TB of user space for the application and 64TB for the shadowmemory, resulting
in an offset value of0x100000000000. However, it allocates pages in the shadow
region on demand, i.e., only when a page contains tag information. As every byte of
tracked program data needs four more bytes for its tag, part of the physical memory
footprint of a process increases by a factor of four.

CloudFence 9

4.2 Lazy Tag Propagation

Most x86-64 instructions fall into one of two major categories: arithmetic and data
transfer. For the latter, tags are always propagated following the flow of data, i.e., we
alwayscopy the tags of the source operand over the tags of the destination operand. On
the other hand, whenever the destination operand is derivedfrom a combination of its
own value and that of the source operand, there are three possible cases, each having a
different impact in terms of performance:

/* arithmetic instructions */
if (shadow[src] != 0)

if (shadow[dst] == 0)
shadow[dst] = shadow[src];

else if (shadow[dst] != shadow[src])
shadow[dst] = combine(shadow[src], shadow[dst]);

Starting from the worst case, (else if), if both operands have different tags, a lookup
is performed and anew tag is generated. If only the source operand is tagged, its tag
is copied to the destination. If the source operand is not tagged, no action needs to
be taken. Given that only a small amount of data is usually tagged in our scenarios
(recall that we care for discrete pieces of sensitive information), we optimized our de-
sign for the last case using Pin’s API for fast conditional instrumentation. Arithmetic
instructions are instrumented with a lightweight check of whether the source operand
is tagged (fast path). In case it is, the appropriate propagation actions are performed
according to the code snippet above (slow path). This avoids in the common case the
excessive register spilling that usually occurs by larger instrumentation code that needs
more registers [28]. Finally, tag information is kept into an array-like data structure,
indexed by tag value. For every tag, we store whether it is basic or compound, and in
the latter case, the tag values it stems from. Compound tags can be traced back to the
basic tags they are made of, by recursively querying this data structure.

4.3 Tag Persistence

Accurate data flow tracking throughout a cloud-based application requires persistent
data tags and tag propagation across different processes, which may run on different
(physical or virtual) hosts. To this end, we have built a layer on top of our prototype for
supporting tag propagation across BSD sockets, Unix pipes,files, and shared memory.

Sockets and Pipes.Exchange of tag information over sockets and pipes is handled
by embedding all relevant data tags along with the actual data that is being transferred.
Maintaining the tag propagation logic completely transparent to existing applications,
without modifying them or breaking the semantics of their communication, is the most
challenging part of this effort. In our prototype, the exchanged tag information consists
of a copy of the relevant area of the shadow memory that CloudFence maintains for the
transmitted data, encoded in RLE (Run Length Encoding). Recall that only a very small
part of data is usually tagged, so most of the time there will be minimal communication
overhead—just a header field that contains the number of triplets.

Synchronous I/O.We hook thewrite, send, andwritev system calls using
Pin’s hooking API, and transmit tag information before the actual data of the original
system call. Similarly, we hook theread, recv, andreadv system calls, and read

10 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

the tag information before the actual data. Messages can be received (i) at once, (ii)
split in multiple parts, or (iii) interleaved. In the first case, the tag data and the original
data are received within the same receiving operation, so they are simply decoded and
attached to the original data. For messages received through several read operations,
the receiver initially buffers the tag information, and each time a new part is received,
its corresponding tag information is appended until the whole message is received. The
most difficult case is when the size of the send buffer does notmatch the size of the
receive buffer. Such cases are handled by changing the return value of the read operation
to match the end of the current message.

Non-blocking I/O.For non-blocking I/O, the above system calls may return a special
error code as if the requested operation would block (EAGAIN). If such an error occurs
when trying to read the embedded tag information, control returns immediately to the
application, as if its read operation failed. If some, but not all, of the tag data is available,
the available part is buffered and CloudFence emulates a “would block” error, as if the
read operation would block. Similarly, for write operations, we keep accounting of the
relevant encoded shadow memory data that is actually sent, and emulateEAGAIN errors
until all relevant shadow data has been completely transmitted.

Multiplexed I/O.Forselect, poll, andepoll, we chose to trade a small per-
formance overhead in favor of a safer hooking implementation. Before read or write
operations, the system blocks until all tag information is received or sent, as in syn-
chronous I/O. A more robust implementation would check if any of the ready-to-read
file descriptors are waiting to receive a new message, and attempt to first retrieve its
tag information. If only partial information is available,we can buffer it, and remove
the file descriptor from the returned set ofselect or poll, as if it were not ready to
be read. However, such an implementation could break application semantics, since the
actual intention of the application after aselect or poll invocation is not known in
advance, e.g., the application could userecvmsg, or not read any data at all.

Files. Tag information should persist even when data is written into files, so that it
can be later retrieved by the same or other processes. CloudFence supports persistent
tagging of file data by employing shadow files. Whenever a file is opened using one
of theopen or creat system calls, CloudFence creates a second shadow file, which
is mapped to memory and is associated with the original file descriptor. Whenever a
process writes a file usingwrite, writev, or pwrite, the tag information of the
relevant buffer (or buffers, in case ofwritev) is also written in the appropriate offset
of the mapped shadow file. Similarly, after a read operation usingread, readv, or
pread, the relevant tag information from the corresponding shadow file is represented
at the destination buffer. To limit space requirements, we take advantage of sparse files,
which are supported by most modern OSs. For the common case ofa file with just a
few tagged bytes, the shadow file will consume just 4× the sizeof only the tagged data,
while shadow files that contain no tag information require noextra space at all.

Shared Memory.Our current implementation supports shared memory regionsal-
located withmmap, but it can be easily extended to cover POSIX API calls (e.g.,
shm open) or SysV API calls (e.g.,shmget). CloudFence hooks calls tommap, and
for each shared memory region, it creates a shadow copy to hold tag information.

CloudFence 11

4.4 Data Flow Domain

Data flow tracking is performed within the boundaries of a well-defineddata flow do-
main, according to the components of the online service. Whenever some tagged data
crosses through the defined boundary, e.g., when a destination file or host does not be-
long to the specified domain, CloudFence logs the action in the audit database, and,
depending on the configuration, may block it.

To automate the configuration of tag propagation between processes that exchange
data through the network, CloudFence maintains a global registry of active sockets for
the domain by hooking theconnect andaccept system calls. For each connection
attempt, the initiator’s IP address and port are recorded ina list of endpoints that support
tag propagation. At the same time, the other endpoint’s address is queried in the list, and
if it exists, this means that both endpoints support it, and consequently tag propagation
is enabled for this connection. At the server side, upon a call to accept, and before
the call actually returns, the server’s address is insertedin the list of sockets that support
tag propagation (if not already present). Afteraccept returns, the client’s address is
queried in the list, and if it exists, then tag propagation isenabled. Note that service
providers must only specify the programs that comprise the cloud application, and then
the rest of the tag propagation logic is determined automatically.

4.5 User Interface

CloudFence’s user interface leverages Cloudopsy [46], a web-based data auditing dash-
board. Cloudopsy uses visualization and automated audit log analysis to provide users
who lack technical background with a more comprehensible view of audit information.
For example, the event of a user’s credit card number being sent to an external host other
than those included in the trusted domain, which could be a data leak incident, would
be clearly depicted in the audit graph presented to the user.In particular, this suspicious
data flow would be presented in the audit graph by a directed link in a pre-defined color
(e.g., red) indicating the possible data leak. Details regarding the different formats of
the audit graphs presented to the end users and the service providers are out of the scope
of this paper but are discussed in our paper [46]. Although this service targets mostly
end users, it also provides administrators with a graphicaloverlook of the overall ap-
plication dependencies and data flows of the service. The visualization of audit events
allows for the immediate verification of legitimate operations and the identification of
unexpected transmissions, which otherwise might have remained hidden much longer
in the reams of raw audit logs, thus reducing decision and reaction latency.

5 Evaluation

We evaluate CloudFence in terms of ease of deployment in existing applications, run-
time performance, and effectiveness against data leakage attacks, using two real-world
applications: an e-commerce framework and a bookmark synchronization service. Our
experimental environment consists of three servers, each equipped with two 2.66GHz
quad core Intel Xeon X5500 CPUs and 24GB of RAM, interconnected through a Giga-
bit switch. To better match a cloud infrastructure environment, two of the servers run

12 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

VMWare ESXi v4.1, and all CloudFence-enabled applicationswere installed in virtual
machines. The third server was used to simulate clients and drive the experiments. In
all cases, the operating system was 64-bit Debian 6.

5.1 Deploying CloudFence

Online Store The first scenario we consider is an online store hosted on a cloud-based
infrastructure. Typically, during a purchase transaction, sensitive information, such as
the credit card number and the recipient’s postal and email address, is transmitted to
the online store, and from there, usually to third-party payment processors. The service
provider can incorporate CloudFence in the e-store application to allow users to monitor
their data, as well as to restrict the use of sensitive data within the application’s domain.
The developers of the e-store know in advance the entry points of sensitive user data, as
well as which processes and hosts should be allowed to accessthis data. For instance,
after users input their credit card information through thee-store front end, it should
only be accessed by the e-store’s processes, e.g., its web and database servers. The only
external channel through which it can be legitimately transmitted is a connection to the
third-party payment processor, i.e., a well-known remote server address.

The application we chose for this scenario, called VirtueMart, is an open source
e-commerce framework developed as a Joomla component, and is typically used in
PHP/MySQL environments. We configured VirtueMart to acceptpayments only through
credit card, and set up actual electronic payments through the Authorize.Net payment
gateway service using a test account. To incorporate CloudFence, we had to add just a
few lines of code at the user registration and order checkoutmodules. Specifically, we
added a new input field in the registration form for the user’sunique ID, a new column
in the user’s database table, and a few lines of code for storing the ID in the database
along with the user’s info. For the checkout phase, we added afew lines of code in the
script that processes the payment information. First, the user ID for the current session
is queried from the database. Then, the HTTP POST variable that holds the credit card
number is tagged by calling theadd tag API function through a PHP wrapper. Fi-
nally, the data flow domain of the application comprises the web server, the database
server, and any other processes these two may spawn.

Bookmark Synchronization This use case stems from the increased demand for data
synchronization services, as users typically have many internet-connected devices. The
scenario in this case is to host a bookmark synchronization service on the cloud based
on SiteBar, an online bookmark manager written in PHP. When adding a link to SiteBar,
users have the option to set it as public or private, and may change it later. From the
side of the service provider, we would like to tag any privatelinks as sensitive.

Incorporating CloudFence in SiteBar was very similar to theprevious case, as both
applications are written in PHP and use MySQL as a database back-end. On the other
hand, changing the source code to tag the sensitive data (user links marked as private)
was slightly more elaborate, as the sensitivity level of data can change dynamically.
Thus, we had to change the code that adds a link so as to tag it incase it is marked as
private, as well as the code for editing a link. It is essential to update the copy in the
database on edit, in order for the change to be persistent.

CloudFence 13

5.2 Effectiveness

To evaluate the effectiveness of CloudFence, we tested whether it can identify illegiti-
mate data accesses performed as a result of attacks. We used exploits against two pub-
licly disclosed vulnerabilities in the studied applications. The first allows authenticated
users of SiteBar versions earlier than v3.3.8 to read arbitrary files [3]. This is the result
of insufficiently checking a user-supplied value through thedir argument, which was
used as the base directory for reading language specific files, as shown below:

sprintf($dir.’/locale/%s/%s’,$var1,$var2);

Passing a file name that ends with the URL-encoded value for the zero byte (%00)
causes theopen system call to ignore any characters after it and read the supplied file:

http://SB_APP/translator.php?download&dir=/var/lib/mysql/SCHEMA/TABLE.MYD%00

Using SiteBar v3.3.8 on top of PHP v5.2.3, we repeatedly readfiles by exploiting this
bug through a browser on a remote machine. CloudFence reported successfully all ac-
cesses to data with persistent tags in the file system, which in our case corresponded to
files belonging to MySQL.

Another type of attack that usually leads to information leakage is SQL injection.
The main cause, again, is the insufficient user input validation. To demonstrate the effec-
tiveness of CloudFence on preventing this type of attacks, we used another real-world
vulnerability in VirtueMart version 1.1.4 [4]. The value of the HTTP GET parameter
order status id is not properly sanitized, allowing malicious users to change the
SQL SELECT query by using a URL like the following:

http://VM_APP/index.php?option=com_virtuemart&page=order.order_status_form
&order_status_id=-1’ UNION ALL SELECT ... where order_id=’5

which results in the execution of the following query:

SELECT * FROM jos_vm_order WHERE order_status_id=-1’ UNION ALL SELECT ...
FROM jos_vm_order_payment where order_id=’5’;

The above query returns a row from thejos vm order payment table, which holds
the credit card numbers, instead of the tablejos vm order. As in the previous case,
we installed the vulnerable version of VirtueMart on top of PHP v5.3.3, and tried to
access the credit card numbers by exploiting this bug. In allcases, CloudFence identified
the exfiltration attempt, as the relevant data had been tagged as sensitive upon entry.

5.3 Performance

To assess the runtime overhead of CloudFence we compare it against Libdft [23], a data
flow tracking framework for commodity systems, as well as theunmodified application
in each case. We chose Libdft because it is publicly available, and it also uses Pin for
runtime binary instrumentation. Libdft maintains a shadowbyte for each byte of data,
and thus supports only eight tags per byte, represented by individual bits. Compared
to CloudFence, which uses four shadow bytes per actual byte of data, Libdft has thus
significantly lower shadow memory requirements. Furthermore, representing each tag

14 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

S
lo

w
do

w
n

0

2

4

6

8

10

Combined tagged data (%)

0 5 10 15 20

Libdft
CloudFence

Fig. 4.Slowdown as a function of the percentage of data with different tags that must be combined
(worst case). CloudFence not only supports 232 tags (instead of just eight for Libdft), but also is
faster for the cases we consider in our setting (< 10%).

using a single bit allows Libdft to implement aggressive optimizations for tag propaga-
tion using bitwise OR operations. In contrast, CloudFence has to synthesize a new tag
whenever two existing tags must be combined, and then maintain their association. As
we show in this section, despite the increased requirementsof CloudFence in terms of
memory consumption and computation for supporting 32-bit tag propagation, its run-
time overhead is comparable to Libdft for the cloud-based applications we consider.

Microbenchmark We begin by focusing on the overhead of tag propagation, and
specifically exploring taggeneration, which is the worst case scenario for CloudFence.
The test program we used allocates two buffers,buf a andbuf b, of the same size.
The bytes ofbuf a are tagged with the value1. Each byte of a specified part ofbuf b
is tagged with a different value, starting from2. Then, each byte ofbuf a is added
to the corresponding byte inbuf b, and the process repeats for a number of times.
For each add operation, if the current byte inbuf b is not tagged, thenbuf a’s tag is
copied over, otherwise, their tags are combined and a new oneis generated.

Figure4 shows the slowdown imposed by data flow tracking for CloudFence and
Libdft. CloudFence not only provides extra functionality that is crucial for cloud envi-
ronments, but at the same time it is even faster than Libdft for the cases we consider,
i.e., minimal combination of data marked with different tags, as the personal data of
different users are not likely to be intermixed. The extremecase in which each add
operation generates a new tag results in a 20× slowdown (upper bound).

Real-world Applications We decided to focus our experiments on VirtueMart, as it
represents the most complicated scenario among the chosen applications. VirtueMart
stresses a larger part of CloudFence’s functionality, and therefore results in a larger but
more representative performance impact in comparison to SiteBar. In our experiment,
we measure the sustained throughput of user requests that VirtueMart can handle when
processing concurrent purchase transactions from multiple users. We installed two in-
stances of VirtueMart on virtual machines in our testbed. One runs on top of Apache
using the PHP module, and the other was compiled after transforming the PHP to C++
using Facebook’s HipHop. In both cases, MySQL was the database back-end. To gen-

CloudFence 15

R
eq

ue
st

s/
se

c

0

1

2

3

4

5

Number of concurrent clients

0 20 40 60 80 100

Native
Libdft
CloudFence

Fig. 5.Request throughput for VirtueMart using
the default web server configuration.

R
eq

ue
st

s/
se

c

0

1

10

100

Number of concurrent clients

0 20 40 60 80 100

Native
Libdft
CloudFence

Fig. 6.Request throughput for VirtueMart using
Facebook’s HipHop.

erate a realistic and intensive workload, we used a second host connected through a
Gigabit switch that emulated typical client requests for placing product purchases. The
Gigabit network connection minimizes network latency, increasing this way the im-
posed stress on the server when emulating multiple concurrent user transactions.

Instead of performing the same request over and over, we simulated more realis-
tic conditions by replaying complete purchase transactions. Each transaction consists
of nine requests: retrieve the front page, login, navigate to the product page for a spe-
cific item, add that item in the shopping cart, verify the contents of the shopping cart,
checkout, enter payment info, confirm the purchase, and logout. For each of these re-
quests, the web clients also download any external resources, such as images, scripts,
and style files, emulating the behavior of a real browser, without performing any client-
side caching. We should stress that VirtueMart was fully configured as in a real produc-
tion setting, including properly working integration withAuthorize.Net for processing
credit card payments using a test account.

Figure5 shows the sustained request throughput for a varying numberof concurrent
web clients, when VirtueMart is running i) natively, ii) on top of Libdft, and iii) on top
of CloudFence. The request throughput was calculated by dividing the number of re-
quests by the total duration of each experiment. In all runs,each client was configured
to perform three end-to-end transactions, so that the number of requests per client re-
mains consistent across all experiments. We see that although CloudFence reduces the
throughput in half, its performance is comparable to Libdftdespite its much more CPU
and memory intensive tag propagation logic. A significant fraction of the slowdown for
both systems can be attributed to Pin’s overhead for runtimebinary instrumentation. We
should note that the server throughput in the native case is not bounded due to limited
computational resources, but rather due to the default configuration of Apache, which
uses a pool of 10 processes for serving concurrent clients. Thus, to be more precise,
CloudFence took advantage of the available cycles and imposed additional overhead.

Figure6 shows the results of the same experiment using the compiled version of
VirtueMart and the built-in multi-threaded web server thatcomes with the HipHop code
transformer. This time, the native throughput is bound due to CPU saturation. In the
worst case, the request throughput is roughly 13 times slower when CloudFence is en-
abled. Another contributing factor to performance degradation as concurrency increases
lies in the underlining binary instrumentation framework.To provide thread-safe exe-

16 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

cution of system call hooks, Pin serializes their executionusing a process-level global
lock. This kind of hooks are used by both CloudFence and Libdft, which again achieve
comparable performance.

6 Discussion

Over-tagging.We opted for a design that does not suffer from over-tagging or tag pol-
lution. Specifically, CloudFence does not tag pointers nor it propagates tags due to
implicit flow, which prior work has shown to produce over-tagging [14,39]. Moreover,
it takes into consideration that certain system calls writespecific data to user-provided
buffers. For instance, considergettimeofday, which upon every call overwrites the
user space memory that corresponds to one, or two,struct timeval data struc-
tures. Such system calls always result in sanitizing (untagging) the data being returned,
unless CloudFence has installed a callback that selectively tags returned data.

Under-tagging.CloudFence only supports explicit data flows, which can leadto
under-tagging whenever the service provider uses a code construct that copies sensi-
tive data using branch statements. As an example, consider the code snippetif (in
== 1) out = 1;. Although the value ofin is copied toout, any tags associated
with it are not. DTA++ [22] addresses this issue by identifying implicit flows within
information-preserving transformations and generating rules to add additional tags only
for a certain subset of control-flow dependencies. During our evaluation, we identified
a couple of such cases, in AES encryption (used in SSL, MySQL,and the Suhosin PHP
hardening extension) and Base64 encoding. Such cases should be handled manually
by the service provider, by hooking the corresponding functions and copying the tag
information from their source to the target operand using thecopy tag function.

Binary Instrumentation.The choice of a DFT framework based on binary instru-
mentation unavoidably comes with an increased runtime penalty. However, we have
managed to support 32-bit wide tags per byte while maintaining a similar, or even
lower, overhead compared to existing systems, allowing thepractical use of Cloud-
Fence in real settings. Alternative implementations of this functionality within language
runtimes [6,8], or even at hardware, have been shown to degrade the imposedoverhead.

Fine-grained Tracking.CloudFence is a general framework designed for use with
all the components of a cloud-based service without modifications. To achieve this, we
chose fine-grained over coarse-grained (process-level) tags, although this comes with
an increased overhead. Other implementations [29] that tried to avoid this overhead
by coloring each time the entire process serving the HTTP request for user data with
the tag or color representing this specific user, ended keeping extra information in the
application level, when its processes where handling data from multiple users at the
same time. As expected, in this case the process would be assigned a tag representing
both users, but if there was no merge of the data, this data would still carry the new tag
instead of the initial unique user tag. Therefore, the auditcapability provided to the end
users for their cloud-based data would not be as precise in the case of process-level tags
as it is in our fine-grained implementation.

Alternative DFT Tools.CloudFence has been influenced by previous DFT propos-
als, with the closest being Libdft [23], but none of them would suffice for our goal.

CloudFence 17

In particular, although CloudFence and Libdft share the same underlying DBI frame-
work (Pin), they differ completely in (i) shadow memory design, (ii) tag propagation
logic, and (iii) I/O interface. Libdft uses dynamically allocated shadow memory (tracks
memory allocations) and a page-table-like structure for performing virtual-to-shadow
memory translations. CloudFence, on the other hand, reserves part of the abundant 64-
bit address space for storing the 4-byte wide tags (per byte of program memory), thus
making memory-to-tag translation without a lookup. Regarding the low-level optimiza-
tion that Libdft uses, we retained what it considers asfast vcpu andhuge tlb.
Finally, the system call interface of 64-bit Linux is slightly different from the 32-bit
version and the system call numbers are shuffled. Hence, the I/O system call descrip-
tors that CloudFence uses had to be adapted.

Universally-unique User IDs.The use of the same ID across all services may raise
privacy concerns, as this allows the cloud provider to trackuser activity within its
premises. Although cloud providers could track users even if a cloud-wide user ID
was not used, e.g., by combining user-identifying featuressuch as browser fingerprints
and HTTP cookies [25], a unique ID per user certainly makes tracking easier. Cloud
providers, however, have already started offering access to hosted services through in-
house [2] or third-party web identity providers [1], and this trend is expected to con-
tinue, as it improves user experience by having to manage fewer accounts.

7 Related Work

A common approach for degrading the impact of data leaks is tostore important data
in an encrypted form on the remote server [10,19,43]. Even though encryption allevi-
ates the problem of secure storage in the cloud, it does not solve the issue when also
processing on this data on the remote infrastructure is required. The homomorphic en-
cryption scheme [21], although promising it is for now computationally prohibitive for
real-world applications.

Information flow tracking (IFT) is another common approach for protection against
information leakage. IFT implementations range from per-process [14, 31, 34, 51] and
singe-host tracking [16,32,44] to the more recent cross-host taint tracking systems [5,
17,18,24,47,50]. These designs were well suited for the contexts in which they were
proposed, but in contrast to our approach, they are difficultto adapt in different environ-
ments. Jif [33] and Resin [45] extend the Java and PHP language runtimes, respectively,
with IFT abilities to enable user privacy constraints and prevent information leakage.
Although they allow better performance numbers for the DFT component, they require
complete application rewrites and suffer from the inherentlimitation of labeling and
tracking at the coarse-level of objects, in contrast to our more fine-grained and appli-
cation agnostic approach. DStar [49] and Flume [27] are alternative IFT mechanisms
for distributed systems, which though do not meet our needs since they cannot track
granularities smaller than high-level objects, i.e., files, processes and sockets, or they
would require rewriting of the monitored applications to enable the tracking mecha-
nism. Vanish [20] follows a different approach to information leakage prevention, by
ensuring that all copies of sensitive data become unreadable after a user-specified time,

18 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

without the need of any trusted third party for performing the deletion. Vanish meets
this challenge by integrating cryptographic techniques with distributed systems.

When focusing on the problem of data leakage for cloud-basedservices, most works
reflect continuations of established lines of security research, such as web security and
secure data outsourcing and assurance, rather than approaches with an exclusive focus
on cloud security, with a few exceptions [26,29,37]. Among them is Silverline [29], a
system close to our vision, with the goal of enabling cloud providers with auditing and
data leaks prevention capabilities. Although we share the same goal, the process-level
tainting they support, is rather coarse-grained for the most common web-applications,
and as such it is not applicable to a wide-range of cloud applications. Similar in spirit
to our work, the W5 project [26] although it introduces some of the concepts used in
CloudFence, we offer a working implementation which supports a more fine-grained
labeling and data tracking approach, able to handle multiple users per process — as in
most common web-applications.

Brown et al. [11] tried to address the problem of trustworthy cloud-hosted services
even when the service provider is not trusted, by involving atrusted cloud provider
attesting service application code to end-users. Like CloudFence, this work also tries
to give insights to the end-users regarding the processing of their sensitive data by the
cloud-hosted services, but the focus is on code attestationand the service provider is a
PaaS client of the cloud, whereas CloudFence can be employedin all models of cloud
services. Finally, Santos et al. [38] also worked on the issue of a trusted cloud computing
platform (TCCP) but their approach relies on TPM attestation chains.

8 Conclusion

One of the most highly cited concerns regarding cloud-hosted services is the fear of
unauthorized exposure of sensitive user data. Users have totrust the efforts of both the
third-party service provider and the cloud infrastructureprovider for properly handling
their private data as intended. In this work, we take a step towards increasing the con-
fidence of users for the safety of their cloud-resident data by introducing a new direct
relationship between end users and the cloud infrastructure provider. CloudFence is a
service provided by the cloud infrastructure, that offers data flow tracking abilities to
both service providers and their users for user data collected in the realm of cloud-
based services. In particular, CloudFence allows users to independently audit their data
by the cloud-based services, and additionally enables service providers to confine data
propagation and protect their digital assets within well-defined domains. Our evaluation
using real-world applications demonstrates that CloudFence can be integrated easily in
existing applications, can protect against information disclosure attacks, and imposes
a modest performance overhead that allows its practical usein real environments. Our
prototype implementation is open source and freely available.

Acknowledgements.This work was supported by DARPA and the National Science
Foundation through Contract FA8651-11-C-7190 and Grant CNS-12-28748, respec-
tively, with additional support from Intel and Google. Any opinions, findings, conclu-
sions or recommendations expressed herein are those of the authors, and do not neces-
sarily reflect those of the US Government, DARPA, NSF, Intel,or Google.

CloudFence 19

References

1. AWS taps social networks for identity verification,http://www.theregister.co.uk/2013/
05/29/aws_social_identity_verification

2. Login with Amazon,http://login.amazon.com/
3. SiteBar: Multiple issues,http://www.securityfocus.com/archive/1/483364
4. VirtueMart Multiple SQL Injection Vulnerabilities,http://www.securityfocus.com/bid/

37963

5. Attariyan, M., Flinn, J.: Automating configuration troubleshooting with dynamic information flow analy-
sis. In: Proc. of OSDI (2010)

6. Bello, L., Russo, A.: Towards a Taint Mode for Cloud Computing Web Applications. In: Proc. of PLAS.
pp. 1–12 (2012)

7. Berghel, H.: Identity Theft and Financial Fraud: Some Strangeness in the Proportions. Computer 45(1),
86–89 (Jan 2012)

8. Bisht, P., Hinrichs, T., Skrupsky, N., Venkatakrishnan,V.N.: WAPTEC: Whitebox Analysis of Web Ap-
plications for Parameter Tampering Exploit Construction.In: Proc. of CCS. pp. 575–586 (2011)

9. Bosman, E., Slowinska, A., Bos, H.: Minemu: The World’s Fastest Taint Tracker. In: Proc. of RAID. pp.
1–20 (2011)

10. Bowers, K.D., Juels, A., Oprea, A.: HAIL: a High-Availability and Integrity Layer for Cloud Storage. In:
Proc. of CCS. pp. 187–198 (2009)

11. Brown, A., Chase, J.: Trusted Platform-as-a-Service: AFoundation for Trustworthy Cloud-Hosted Appli-
cations. In: Proc. of CCSW. pp. 15–20 (2011)

12. Chen, Y., Paxson, V., Katz, R.H.: What’s New About Cloud Computing Security? Tech. Rep. UCB/EECS-
2010-5, EECS Department, University of California, Berkeley (Jan 2010),http://www.eecs.
berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html

13. Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: TaintTrace: Efficient Flow Tracing with Dynamic Binary
Rewriting. In: Proc. of ISCC. pp. 749–754 (2006)

14. Clause, J., Li, W., Orso, A.: Dytan: A Generic Dynamic Taint Analysis Framework. In: Proc. of ISSTA.
pp. 196–206 (2007)

15. Computerworld: Microsoft BPOS cloud service hit with data breach (Dec 2010),http://www.
computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_
with_data_breach

16. Crandall, J.R., Chong, F.T.: Minos: Control Data AttackPrevention Orthogonal to Memory Model. In:
Proc. of MICRO. pp. 221–232 (2004)

17. Davis, B., Chen, H.: DBTaint: Cross-Application Information Flow Tracking via Databases. In: Proc. of
WebApps (2010)

18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In: Proc. of OSDI
(2010)

19. Feldman, A.J., Zeller, W.P., Freedman, M.J., Felten, E.W.: SPORC: Group Collaboration using Untrusted
Cloud Resources. In: Proc. of OSDI (2010)

20. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish:Increasing Data Privacy with Self-Destructing
Data. In: Proc. of USENIX Sec. pp. 299–316 (2009)

21. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Proc. of STOC. pp. 169–178 (2009)
22. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: Dynamic Taint Analysis with Targeted

Control-Flow Propagation. In: Proc. of NDSS (2011)
23. Kemerlis, V.P., Portokalidis, G., Jee, K., Keromytis, A.D.: libdft: Practical Dynamic Data Flow Tracking

for Commodity Systems. In: Proc. of VEE (2012)
24. Kim, H.C., Keromytis, A.D., Covington, M., Sahita, R.: Capturing Information Flow with Concatenated

Dynamic Taint Analysis. In: Proc. of ARES. pp. 355–362 (2009)
25. Kontaxis, G., Polychronakis, M., Keromytis, A.D., Markatos, E.P.: Privacy-preserving social plugins. In:

Proceedings of the 21st USENIX Security Symposium (August 2012)
26. Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: AWorld Wide Web Without Walls. In: Proc.

of HotNets (2007)
27. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Frans, M., Eddie, K., Morris, K.R.: Information Flow Control

for Standard OS Abstractions. In: Proc. of SOSP. pp. 321–334(2007)

http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://login.amazon.com/
http://www.securityfocus.com/archive/1/483364
http://www.securityfocus.com/bid/37963
http://www.securityfocus.com/bid/37963
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach

20 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, A. D. Keromytis

28. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation. In: Proc. of PLDI.
pp. 190–200 (2005)

29. Mundada, Y., Ramachandran, A., Feamster, N.: SilverLine: Data and Network Isolation for Cloud Ser-
vices. In: Proc. of HotCloud (2011)

30. Nethercote, N., Seward, J.: How to Shadow Every Byte of Memory Used by a Program. In: Proc. of VEE.
pp. 65–74 (2007)

31. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Gen-
eration of Exploits on Commodity Software. In: Proc. of NDSS(2005)

32. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an Emulator for Fingerprinting Zero-Day Attacks. In:
Proc. of EuroSys. pp. 15–27 (2006)

33. Preibusch, S.: Information Flow Control for Static Enforcement of User-Defined Privacy Policies. In:
Proc. of POLICY. pp. 157–160 (2011)

34. Qin, F., Wang, C., Li, Z., Kim, H.s., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In: Proc. of MICRO. pp. 135–148 (2006)

35. Qin Zhao and Derek Bruening and Saman Amarasinghe: Efficient Memory Shadowing for 64-bit Archi-
tectures. In: Proc. of ISMM. pp. 93–102 (2010)

36. Qin Zhao and Derek Bruening and Saman Amarasinghe: Umbra: Efficient and Scalable Memory Shad-
owing. In: Proc. of CGO. pp. 22–31 (2010)

37. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My Cloud! Exploring Informa-
tion Leakage in Third-Party Compute Clouds. In: Proc. of CCS. pp. 199–212 (2009)

38. Santos, N., Gummadi, K.P., Rodrigues, R.: Towards Trusted Cloud Computing. In: Proc. of HotCloud
(2009)

39. Slowinska, A., Bos, H.: Pointless Tainting? Evaluatingthe Practicality of Pointer Tainting. In: Proc. of
EuroSys. pp. 61–74 (2008)

40. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I.,Kang, M.G., Liang, Z., Newsome, J., Poosankam,
P., Saxena, P.: BitBlaze: A New Approach to Computer Security via Binary Analysis. In: Proc. of ICISS.
pp. 1–25 (2008)

41. Sophos: Groupon subsidiary leaks 300k logins, fixes fail, fails again
(2011 Jun), http://nakedsecurity.sophos.com/2011/06/30/
groupon-subsidiary-leaks-300k-logins-fixes- fail-fails-again/

42. The Wall Street Journal: Google Discloses Privacy Glitch (2009 Mar),http://blogs.wsj.com/
digits/2009/03/08/1214/

43. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and Efficient Access to Outsourced Data. In: Proc. of
CCSW. pp. 55–66 (2009)

44. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing System-wide Information Flow
for Malware Detection and Analysis. In: Proc. of CCS. pp. 116–127 (2007)

45. Yip, A., Wang, X., Zeldovich, N., Kaashoek, M.F.: Improving Application Security with Data Flow As-
sertions. In: Proc. of SOSP. pp. 291–304 (2009)

46. Zavou, A., Pappas, V., Kemerlis, V.P., Polychronakis, M., Portokalidis, G., Keromytis, A.D.: Cloudopsy:
an Autopsy of Data Flows in the Cloud. In: Proc. of HCII (2013)

47. Zavou, A., Portokalidis, G., Keromytis, A.D.: Taint-Exchange: a Generic System for Cross-process and
Cross-host Taint Tracking. In: Proc. of IWSEC (2011)

48. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making Information Flow Explicit in HiStar.
In: Proc. of OSDI (2006)

49. Zeldovich, N., Boyd-Wickizer, S., Mazières, D.: Securing Distributed Systems with Information Flow
Control. In: Proc. of NSDI. pp. 293–308 (2008)

50. Zhang, Q., McCullough, J., Ma, J., Schear, N., Vrable, M., Vahdat, A., Snoeren, A.C., Voelker, G.M.,
Savage, S.: Neon: System Support for Derived Data Management. In: Proc. of VEE. pp. 63–74 (2010)

51. Zhu, D., Jung, J., Song, D., Kohno, T., Wetherall, D.: TaintEraser: Protecting Sensitive Data Leaks Using
Application-Level Taint Tracking. ACM Operating Systems Review 45(1), 142–154 (2011)

http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
fail-fails-again/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/

	CloudFence: Data Flow Tracking as a Cloud Service

