CloudFence: Data Flow Tracking as a Cloud Service

Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou, Nitis Polychronakis, and
Angelos D. Keromytis

Computer Science Department, Columbia University
{vpappas, vpk, azavou, m kepo, angel os} @s. col unbi a. edu

Abstract. The risk of unauthorized private data access is among tmeapyi
concerns for users of cloud-based services. For the comatbingsin which the
infrastructure provider and the service provider are diife, users have to trust
their data to both parties, although they interact solehie latter. In this pa-
per we propose CloudFence, a framework for cloud hostingr@amwents that
providestransparent fine-graineddata tracking capabilities to both service pro-
viders, as well as their users. CloudFence allows userglagpendenthaudit the
treatment of their data by third-party services, throughittiervention of the in-
frastructure provider that hosts these services. Cloucd-aiso enables service
providers to confine the use of sensitive data in well-defis@ehains, offering
additional protection against inadvertent informatioakigge and unauthorized
access. The results of our evaluation demonstrate the Emseorating Cloud-
Fence on existing real-world applications, its effecte®snin preventing a wide
range of security breaches, and its modest performancheagion real settings.

Keywords: data auditing, data flow tracking, information confinement

1 Introduction

The multifaceted benefits of cloud computing to both serpia®/iders and end users
have led to its rapid adoption for the deployment of onlinevises and applications.
As businesses and individuals increasingly rely on thedslsame of their private data
is handled and stored on systems outside of their admitii&reontrol. In this setting,
data confidentiality becomes a growing concern, especidilgn taking into account
the recent spate of security breaches in major online ®3\i¢15,41,42]. In lack of
an alternative option (other than not using the servicelptrabst users eventually trust
the service provider to keep their data safe.

Unfortunately, relying solely on reputable service pr@rgldoes not mitigate the
risk. Most feature-rich cloud-based services are quitepdery and are usually built
by “glueing” together a multitude of components. Bugs anbhetabilities in existing
code, misconfigurations and incorrect assumptions abeuntaraction between differ-
ent components, or even simple causes like the careles$iipotiaccess credentials,
can lead to the accidental exposure of critical data or ldasystem vulnerable to data
theft. At the same time, cloud computing encourages ragiiagiion deployment, and
time-to-market pressure sometimes makes data safety adsagriority.

In this work, we seek to reinforce the confidence of end useréhe safety of their
data, beyond any assurances offered by the online serwiagiying users the ability

2 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

to audit their cloud-resident data through a different—and pogdigtimore trustful—
entity than the actual provider of the service. This can théexed by taking advantage
of the multi-party trust relationships that exist in tydictdoud environments1?], in
which the service provider is different than the providethaf infrastructure on which
the service is hosted.

As a step towards this goal, we present CloudFence, a datarfoking (DFT)
framework for cloud-based applications. CloudFence isrefi by cloud hosting pro-
viders as a service to their tenants, as well as to the usettseaienants’ services.
Through a simple API, service providers can easily integdaita flow tracking in their
services and mark sensitive user data that needs to be f@at&mnd users can then
monitor the propagation of their data directly through tleaid hosting provider, ensure
that all sensitive data is treated as expected, and spotemigtibns. Service providers
can also take advantage of data flow tracking for enablinglditianal layer of protec-
tion against data leaks, by preventing the propagation okettdata beyond a set of
specified network and file system locations, as well as fotgoting their own digital
assets (e.g., configuration files or back-end database$acilibate the monitoring of
user data, end users have access to a web-based dashiawitf meaningful log
messages and a visual representation of the audit traitenfdata.

A major challenge in supporting data auditing for servicéh & very large number
of users is the need for concurrent propagation of taggealttiat carry different tags
for each user. At the same time, data tracking must be peddana fine-grained level
to allow for precise tracking of user data as small as a cozdlit number. CloudFence
introduces a novel data flow tracking framework based orimenbinary instrumenta-
tion that supportbyte-leveldata tagging, an82-bit widetags per byte, enabling fine-
grained data tracking for up to four billion users. Crospiaation and cross-host tag
propagation is handled transparently, without requirimgraodifications to application
code. Despite the significant increase in tag space, thememiverhead of CloudFence
is comparable to existing byte-level data flow tracking egst that support just a sin-
gle [9,13,34] or up to eight R3,35,36] tags, and an order of magnitude lower compared
to systems that support arbitrarily many ta@4, BQ].

We evaluate the performance and effectiveness of Clou@Hesing two real-world
applications, and two publicly disclosed data leakage enahilities in those applica-
tions. CloudFence can be easily integrated in both apmicathrough the placement
of just a few API calls, while it offers effective protecti@against a wide range of data
theft threats, including SQL injection and arbitrary fil@deattacks.

Our work makes the following main contributions:

— We propose the use of data flow tracking as a service offerecldud hosting
providers i) for users, to independently audit their claadident data, and ii) for
service providers, to confine data propagation within wdefined domains.

— We present the design and implementation of a novel data femking framework
that uses 32-bit wide tags per byte, and introduces newriesasuch as lazy tag
propagation and persistent tagging on disk and across therie

— We have implemented CloudFence, a prototype implementatiche proposed
concept that allows service providers to easily integrata flow tracking in their
applications through a simple API.

CloudFence 3

Use@

/

/
4

5

Cloud Provider

{é}{é}

Service Providers

\ NSea———

Fig. 1. Users explicitly trust their data to service providers, blgo implicitly trust the cloud
provider that hosts these services. CloudFence leverhgesust relationship to enable users to
audit their data directly through the cloud provider.

— We have evaluated CloudFence using real applications amomtgrate its effec-
tiveness and practicality.

2 Approach

Users of online services trust the providers of those sesvto securely handle and
protect their data. Credit card numbers, private files, ahdrcsensitive data is stored
in back-end databases and file systems, beyond user cdnttatn, service provid-
ers place their trust in the cloud infrastructure that htst& services. The traditional
provider-user relationship is thus transformed into a ipdtty system 12], in which
users are often not aware of the cloud infrastructure pematlall (unless it is the same
entity that also offers the service, as for example is the gath many of the services
offered by Google or Amazon). In this work, we refer to botfrastructure and plat-
form “as a service” (laaS/PaaS) providershmid providers Their infrastructure hosts
the applications o$ervice providerswhich are delivered as servicesand users

From the users’ perspective, there is an inherent shargdmsibility between the
cloud and the service providers regarding the securityapiaes of the provided ser-
vice. Although end users do not interact directly with clqurdviders, they implicitly
trust their infrastructure—the systems in which their datakept. CloudFence aims to
exploit this implicit trust for the benefit of all parties hytioducing airectrelationship
between end users and cloud providers, as shown in Figivith data flow tracking as
the basic underlying mechanism, the cloud provider enalsless to directly inspect the
audit trail of sensitive data that was handled by servicesdtbon the cloud provider’s
infrastructure.

Incentives While the trust relationship between users and serviceigeos is not al-

tered, CloudFence gives users an elevated degree of cordidgnallowing them to
independently monitor their private data as it propagatesugh the cloud. In fact,
users are more likely to trust a large, well known, and higkjyutable cloud provider,
as opposed to a lesser-known developer or company (amortgdhsands that offer
applications and services through online applicatiorrithistion platforms).

4 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

CloudFence offers service providers two main benefitst,Rirgh minimal effort,
it allows them to provide an extra feature that reinforcestthst relationship with their
users. This can also be considered as a competitive adearampng two competing
services, privacy-conscious users may prefer the Cloutf~enabled one, knowing
that they will have an additional way of monitoring their daSecond, it empowers
service providers with the ability to confine the use of siresuser data in well-defined
network and file system domains, and thus prevent inadwdegeks or unauthorized
data access. Besides guarding user data, service procae@so take advantage of
CloudFence to implement an additional level of protectimntheir own digital assets,
such as back-end credentials, source code, or configufdéen

Finally, by integrating CloudFence in its infrastructueecloud provider offers
added value to both its tenants and their users, potentélling to a larger customer
base. Given the shared responsibility between cloud andceeproviders regarding
the safety of user data, both have an incentive to adopt amsyigte CloudFence as a
means of providing an additional level of assurance to ttigtomers.

Security Model Our goal is to support benign service providers, who aremglto
integrate CloudFence in their applications to enhanceebargy of the provided ser-
vices. Note that this situation is typical for cloud-basedvices. End users have to
implicitly trust their data to both the service provider ghd cloud hosting provider in
order to use these services. The current implementatiodafdEence is built on top
of a user-level data flow tracking framework based on runtdmary instrumentation,
which is directly integrated into the components of the @cted service through an API
provided by the cloud provider. In such a setting, applaratievelopers are responsible
for specifying the sources of sensitive user input, so thatexessary data is always
being marked and tracked appropriately.

Our approach offers protection against many classes akatthat can lead to unau-
thorized data access (but which do not allow arbitrary codsgtion), such as SQL
injection, command substitution, parameter tamperinggadory traversal, and other
prevalent web attacks that are seen in the wild. In case adlets who gain arbitrary
code execution, we can no longer guarantee accurate dekingjasince they can not
only compromise our framework, but can also exfiltrate dataugh covert channels.
Finally, besides protecting against external attacksgaiaky important goal of Cloud-
Fence is to bring into users’ and service providers’ attenéiny unintended data expo-
sure that may lead to unauthorized access. For examplétigedata can accidentally
be recorded in error logs or included into memory dumps afitesipplication crash.

System Overview Figure2 shows the main interactions among the different parties
that are involved in CloudFence-enabled services. Ihitiabers register with the cloud
provider (1) and acquire a universally unique ID, distinetwithin the vicinity of the
cloud provider’s infrastructure. Then, they use the on8irevices offered by various
service providers by providing the ID acquired from the jwas step (2).

The actual mechanism used for conveying user IDs to CloutH-ismot addressed
in this work. As possible solutions, the service provider e@her request from users
to provide their ID during the sign up process on the corradptg application, or in

CloudFence 5

@' Users
App1 App2
{6}‘ %’} Service
CloudFence {@ @} Providers
User Interface
7 ad

4] / H

] O | o

Provider

Audit Information

Fig. 2. Main interactions between the different parties involvecCioudFence-enabled applica-
tions. Users register with the cloud provider (1), and thea the services offered by various
service providers using the same set of credentials (2)siBendata are tagged and tracked
transparently throughout the cloud infrastructure (3)etdscan audit their data through a web
interface exposed directly by the cloud provider (4).

case a cloud-wide identity management system is in plaeeapiplication can access
the respective ID transparently by requesting it direattynf the cloud provider (after
the user has successfully authenticated). Such functigigigaining traction among
cloud providers. Indicatively, Amazon recently launchieel t_ogin with Amazon” fea-
ture [2], which allows users to login to Amazon-hosted servicefaisingle account,
while it also supports federated login using Google and Fack identities 1].

Sensitive data is tagged by the service provider with thelsegh user ID, and is
tracked throughout the cloud infrastructure, while audfoimation is gathered and
stored at the cloud provider (3). At any time, users can nootfite audit trails of data
directly through the cloud provider using a user-friendlgbninterface (4). Service
providers also have read access to the collected audit lni@iagh a specialized API.
Besides user data, CloudFence can be used to protect theesgroviders’ own assets,
such as back-end credentials, configuration files, and smade. This can be achieved
by tagging them as sensitive, tracking their propagatioobh the cloud infrastructure,
and enforcing fine-grained perimetric access control basdtie applied tags.

Challenges The on-demand consolidation of computing elements in cleettings
allows service providers to easily “glue” together funotdity and content from third-
party sources, and build feature-rich applications. Astibeefits of this approach are
numerous, it is critical not to interfere with that paradigiile enabling data tracking.
We consider this as thgansparent trackingequirement. The applied DFT method
should support incremental deployment by not requiringusive changes, such as
manually annotating source cod8], custom 0Ss48], or modified hypervisorsq0].
Second, tracking granularity plays a crucial role in theeefffzeness of DFT. A
service provider can choose between tracking data as ssnabiagle byte30], which
enables robust protection against extreme cases of d&i@gleaor employing a more
coarse-grained (and hence error-prone) appra2@htiowever, fine-grained DFT has
a significant performance cost, as tracking logic becomee intricate (e.g., consider

6 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

the case of two 32-bit numbers with only some of their bitskedras sensitive). We
consider this as thitne-grained trackingequirement, which suggests performing DFT
at the appropriate granularity for balancing overhead acdracy.

Third, given the range of cloud delivery mechanisms wittiedént compositional
characteristics (e.g., laaS, PaaS), it is important torerthat dynamic collaboration is
taken into consideration when performing DFT. Tuenain-wide trackingequirement
refers to the precise monitoring of data flows beyond the ggedoundary.Examples
include intra-host application elements that communitiateugh the file system or
OS-level IPC, or consolidated application componentsinman remote endpoints.

Finally, the main concept behind CloudFence requires thiggnal data are marked
with a respective user ID. The goal is to support applicatiwith apractically unlim-
ited number of usersand thus the DFT component should be able to handle a respec-
tively large number of tags. This requirementis highly &vading, as most DFT frame-
works provide either a single ta§,[L3,34] or just a few—usually eightq3, 35, 36].

3 Design

CloudFence consists of three main componentsdtta flow tracking(DFT) subsys-
tem, theAPI stubh and theaudit trails generation componenthe DFT subsystem per-
forms fine-grained, byte-level explicit data flow trackinghwut requiring any modifi-
cation to applications or the underlying OS, while at thestime handleg3? different
tags. Our DFT component supports tracking across processasg on the same or
remote hosts. Specifically,piggybacks$ags on the data exchanged through IPC mecha-
nisms or network I/O channels, keeps persistent tag infdom#r marked data written
to files, and handles (un)marshalling transparently. Binte low ratio of tagged data
allows for further optimizations, like lazily propagatittte tags when possible.

The API stub allows service providerstiy, i.e., attach metadata information, on
sensitive user data that enters their applications. Clend& does not require appli-
cation modifications regarding data tracking (e.g., extensnnotations). However, it
requires small changes to application code for markingigemaformation. Figure3
illustrates the overall architecture of CloudFence. The processes in the upper part
of the figure represent components of a consolidated apiplicavhile the rest of the
components are part of the cloud provider’s infrastructNiae that for the rest of our
discussion, we assume that the service provider relies dasshdelivery mechanism,
and in this example both processes run on the same (virtoat) RHlowever, Cloud-
Fence can be seamlessly employed in PaaS and SaaS setupshddaire tagged as
sensitive (denoted by the solid line in the figure) is trackerbss all local files, host-
wide IPC mechanisms, and selected network sockets. Tagdes that are written to
storage devices, or transmitted to remote hosts, resutt audit message.

Data Flow Tracking Although our DFT componentis inspired by previously pragmbs
DFT tools P, 23], for reasons that are explained in detail in Sectlpwe built it from
scratch to provide a transparent, fine-grained, and domae-tracking framework
suitable for the target cloud environment. We employ IstBin 28], a dynamic binary
instrumentation toolkit. Pin injects a tiny user-leveltual machine monitor (VMM) in

CloudFence 7

25 === Tagged Data
{é} | Proccess1 | | Proccess2 |
==== Audit Info
| API Stub }
I
& | —/ 05 | Audit Data
| NIC | | DISK |

Fig. 3. CloudFence architecture.

the address space of a running process, or in a programtimatias itself, and provides
an extensive API that CloudFence uses for inspecting andfyirngl (dynamically at
run-time) the process’ code at the instruction level.

In particular, CloudFence uses Pin to analyze all instomstthat move or combine
data to determine data dependencies. Then, based on tlwetlisd dependencies, it
instruments program code by injecting the respective tagggation logideforethe
corresponding instructions. Both the original and the tholdil instrumentation code,
i.e., the data tracking logic, are re-translated usingsHimst-in-time compiler. How-
ever, this process is performed only once, right before wkeg a previously unseen
sequence of instructions, and the instrumented code isgliato a code cache to avoid
paying the translation cost multiple times.

API The CloudFence API consists of three functions (C protatypedd_t ag() ,
del tag() andcopy-tag() . Theadd-t ag function is used for associating a 32-
bit tag to every byte whilelel _t ag is used for unlabeling data. Tle®py_t ag func-
tion propagates the tag information for the dat@ &src, &src+l en] to[&dst,
&dst +l en] . The functionality is necessary for aiding the service @erin dealing
with cases of unintended unlabeling, also knownitewashingwhich we further
discuss in Sectio®. CloudFence also provides appropriate wrappers for hilgivet
languages, which are commonly used in web applicationsattiqular, for some of
the applications used in our evaluation, we developed a Bit#hsion that provides
data tagging to string arguments (other types can be swggplikewise), by internally
calling the lower-level C functions exported by the Cloudé@API.

Audit Trails Generation The main purpose of CloudFence’s auditing mechanism is
to generateletailed audit trailsfor tagged data. Therefore, we implemented a generic
“verbose” logging mechanism that collects information fagged data accesses and
generates audit logs. The generated trails are stored itabatze outside the vicinity of
the service provider in an “append-only” fashion to prexantpering of archived audit
trails. The DFT component pushes audit information to thditaaomponent whenever
tagged data is written to a cloud storage device or passdhrd@® channels to end-
points inside or outside the cloud.

8 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

4 Implementation

From a high-level perspective, most of CloudFence’s fumgtlity is built around the

DFT component, except the user interface, which is a usssaile web application
coupled with a back-end database. Our current prototy pggkeimented using Pin 2.10,
and works with unmodified applications running on x86-64uxnThe data auditing

component is layered on top of CloudFence using systemriatgosition.

4.1 32-bit Wide Tags and 64-bit Support

Theshadow memorysed for keeping data tag information plays a crucial rolesim
time performance. Previously proposed DFT systems maisdytwo approaches for
tagging memory: (i) bit-sized tag84], whereby every byte of addressable memory is
tagged using a single bit in the shadow memory, and (ii) lsyzed tags 9, 13, 23],
whereby each byte of program memory has a sibling in the shadena. In between,
systems like Umbra36] and TEMU [40] allow for various byte-to-byte and byte-to-bit
configurations, as well as for lossy encodings (e.g., fotedpf addressable memory
can be tagged using one byte). TEMU, in particular, enabdeg flexible tagging, by
supporting tag values of arbitrary size, at the expensegifdriruntime performance
overhead44]. CloudFence trades some of this flexibility for a lower iiome slowdown.

Implementing 32-bit wide tags requires re-designing thadstv memory from
scratch. Driven by the fact that data from different sourcasrying dissimilar tags,
are rarely combined in our context (e.g., the memory bytéwofdifferent credit card
numbers are unlikely to be combined), we opted for a soluti@h greatly increases
the number of tags stored per datum, but unavoidably alseases the overhead of tag
combination operations. More precisely, each tag valumigd as a different number,
and when two tags are combinednewtag value is created. Still, incorporating this
change alone in commodity DFT systen®23] would only increase the number of
tags from 8 to 256, using byte-size tagging. Hence, our riegtwas to expand the tag
size from one to four bytes, allowing fof2tags.

The transition to 64-bit not only helps overcoming avaiafolemory limits, but also
enables further optimizations. The relatively expensiaaglation that involves shadow
page table lookups is replaced by a faster one. Taking aalgardf the ample address
space, we split it in two parts: the shadow memory and theadptocess memory. This
is achieved by reserving the shadow memory as soon as thegsrixstarted, forcing
it to allocate memory only in its own part. Address translatihen becomes as simple
as scaling the virtual address and adding an offset. For pbearthe memory tags of
addreswvaddr can be obtained as followsaddr = (vaddr << 2) + toff,
wheret of f corresponds to the offset of the shadow memory. CloudFesserves
16TB of user space for the application and 64TB for the shad@mory, resulting
in an offset value 0Dx100000000000. However, it allocates pages in the shadow
region on demand, i.e., only when a page contains tag infimmaAs every byte of
tracked program data needs four more bytes for its tag, fdheophysical memory
footprint of a process increases by a factor of four.

CloudFence 9

4.2 Lazy Tag Propagation

Most x86-64 instructions fall into one of two major categari arithmetic and data
transfer. For the latter, tags are always propagated follpthe flow of data, i.e., we
alwayscopy the tags of the source operand over the tags of the d#stioperand. On
the other hand, whenever the destination operand is defriveda combination of its
own value and that of the source operand, there are threéfgsases, each having a
different impact in terms of performance:

/+ arithnetic instructions */

if (shadow[src] != 0)
if (shadow dst] == 0)
shadow dst] = shadow src];
else if (shadow dst] != shadow| src])

shadow dst] = conbi ne(shadowf src], shadow{dst]);

Starting from the worst casegl(se i f), if both operands have differenttags, a lookup
is performed and aewtag is generated. If only the source operand is tagged,dts ta
is copied to the destination. If the source operand is nagddgno action needs to
be taken. Given that only a small amount of data is usuallgegdgn our scenarios
(recall that we care for discrete pieces of sensitive infitfam), we optimized our de-
sign for the last case using Pin’s API for fast conditionatinmentation. Arithmetic
instructions are instrumented with a lightweight check dether the source operand
is tagged fast path. In case it is, the appropriate propagation actions aréopaed
according to the code snippet abogko(v path). This avoids in the common case the
excessive register spilling that usually occurs by largstrumentation code that needs
more registersqg|. Finally, tag information is kept into an array-like datausture,
indexed by tag value. For every tag, we store whether it isckmscompound, and in
the latter case, the tag values it stems from. Compound &ybe traced back to the
basic tags they are made of, by recursively querying this staticture.

4.3 Tag Persistence

Accurate data flow tracking throughout a cloud-based agftio requires persistent
data tags and tag propagation across different procesbés) way run on different
(physical or virtual) hosts. To this end, we have built a fayetop of our prototype for
supporting tag propagation across BSD sockets, Unix pfifes, and shared memory.

Sockets and Pipe&xchange of tag information over sockets and pipes is hdndle
by embedding all relevant data tags along with the actual thedt is being transferred.
Maintaining the tag propagation logic completely trangpato existing applications,
without modifying them or breaking the semantics of theimoounication, is the most
challenging part of this effort. In our prototype, the exabad tag information consists
of a copy of the relevant area of the shadow memory that Clendé& maintains for the
transmitted data, encoded in RLE (Run Length Encoding)aRR#at only a very small
part of data is usually tagged, so most of the time there wilininimal communication
overhead—ijust a header field that contains the number ¢étsip

Synchronous I/OWe hook thewri t e, send, andwri t ev system calls using
Pin’s hooking API, and transmit tag information before tlctual data of the original
system call. Similarly, we hook theead, r ecv, andr eadv system calls, and read

10 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

the tag information before the actual data. Messages cardaéved (i) at once, (ii)
split in multiple parts, or (iii) interleaved. In the first®m, the tag data and the original
data are received within the same receiving operation,epdhe simply decoded and
attached to the original data. For messages received threexgral read operations,
the receiver initially buffers the tag information, and ledicne a new part is received,
its corresponding tag information is appended until the lvhtessage is received. The
most difficult case is when the size of the send buffer doesnwaith the size of the
receive buffer. Such cases are handled by changing thenetlue of the read operation
to match the end of the current message.

Non-blocking I/OFor non-blocking I/O, the above system calls may return aigpe
error code as if the requested operation would bl&4GAl N). If such an error occurs
when trying to read the embedded tag information, contrtoirns immediately to the
application, as if its read operation failed. If some, butaih of the tag data is available,
the available part is buffered and CloudFence emulates althdock” error, as if the
read operation would block. Similarly, for write operatipmve keep accounting of the
relevant encoded shadow memory data that is actually seheraulatdEAGAI Nerrors
until all relevant shadow data has been completely tratschit

Multiplexed I/O.Forsel ect, pol | , andepol | , we chose to trade a small per-
formance overhead in favor of a safer hooking implementatRefore read or write
operations, the system blocks until all tag informationeseived or sent, as in syn-
chronous 1/0. A more robust implementation would check if ahthe ready-to-read
file descriptors are waiting to receive a new message, arthpttto first retrieve its
tag information. If only partial information is availableie can buffer it, and remove
the file descriptor from the returned sets#l ect orpol | , as if it were not ready to
be read. However, such an implementation could break agijgitsemantics, since the
actual intention of the application aftes&| ect orpol | invocation is not known in
advance, e.g., the application could ugEvnsg, or not read any data at all.

Files. Tag information should persist even when data is writtea fifk¢s, so that it
can be later retrieved by the same or other processes. GlogdFsupports persistent
tagging of file data by employing shadow files. Whenever a $ilepened using one
of theopen or cr eat system calls, CloudFence creates a second shadow file, which
is mapped to memory and is associated with the original ficidietor. Whenever a
process writes a file usingrite, witev, orpwite, the tag information of the
relevant buffer (or buffers, in case of i t ev) is also written in the appropriate offset
of the mapped shadow file. Similarly, after a read operatigingr ead, r eadv, or
pr ead, the relevant tag information from the corresponding shafile is represented
at the destination buffer. To limit space requirements,ake tadvantage of sparse files,
which are supported by most modern OSs. For the common casdilefwith just a
few tagged bytes, the shadow file will consume just 4x theainmly the tagged data,
while shadow files that contain no tag information requireertva space at all.

Shared MemoryOur current implementation supports shared memory regbns
located withmmap, but it can be easily extended to cover POSIX API calls (e.g.,
shmopen) or SysV API calls (e.gshnyget). CloudFence hooks calls tarap, and
for each shared memory region, it creates a shadow copy datéglinformation.

CloudFence 11

4.4 Data Flow Domain

Data flow tracking is performed within the boundaries of alvdeffineddata flow do-
main, according to the components of the online service. Wharsame tagged data
crosses through the defined boundary, e.g., when a destirfdé or host does not be-
long to the specified domain, CloudFence logs the actionenatidit database, and,
depending on the configuration, may block it.

To automate the configuration of tag propagation betweeogsses that exchange
data through the network, CloudFence maintains a globa@trggf active sockets for
the domain by hooking theonnect andaccept system calls. For each connection
attempt, the initiator’s IP address and port are recordedist of endpoints that support
tag propagation. At the same time, the other endpoint’ses$ds queried in the list, and
if it exists, this means that both endpoints support it, amsequently tag propagation
is enabled for this connection. At the server side, upon kteaccept , and before
the call actually returns, the server’s address is insémtée list of sockets that support
tag propagation (if not already present). Afsrcept returns, the client’s address is
queried in the list, and if it exists, then tag propagatioensibled. Note that service
providers must only specify the programs that comprise linedcapplication, and then
the rest of the tag propagation logic is determined autaakhyi

4.5 User Interface

CloudFence’s user interface leverages Cloudogély i web-based data auditing dash-
board. Cloudopsy uses visualization and automated awgldanalysis to provide users
who lack technical background with a more comprehensil@eaf audit information.
For example, the event of a user’s credit card number beimgsan external host other
than those included in the trusted domain, which could beta leéak incident, would
be clearly depicted in the audit graph presented to the insgarticular, this suspicious
data flow would be presented in the audit graph by a direatédriia pre-defined color
(e.g., red) indicating the possible data leak. Details ndigg the different formats of
the audit graphs presented to the end users and the seroiddgms are out of the scope
of this paper but are discussed in our papii].[Although this service targets mostly
end users, it also provides administrators with a graptueatlook of the overall ap-
plication dependencies and data flows of the service. Thalimmtion of audit events
allows for the immediate verification of legitimate opeoat and the identification of
unexpected transmissions, which otherwise might have iresdaidden much longer
in the reams of raw audit logs, thus reducing decision ancticralatency.

5 Evaluation

We evaluate CloudFence in terms of ease of deployment itiriapplications, run-
time performance, and effectiveness against data leaktagks, using two real-world
applications: an e-commerce framework and a bookmark sgnctation service. Our
experimental environment consists of three servers, equipged with two 2.66GHz
quad core Intel Xeon X5500 CPUs and 24GB of RAM, interconaettirough a Giga-
bit switch. To better match a cloud infrastructure enviremt two of the servers run

12 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

VMWare ESXiv4.1, and all CloudFence-enabled applicatiwage installed in virtual
machines. The third server was used to simulate clients ewe the experiments. In
all cases, the operating system was 64-bit Debian 6.

5.1 Deploying CloudFence

Online Store The first scenario we consider is an online store hosted ooualdbased
infrastructure. Typically, during a purchase transactssmsitive information, such as
the credit card number and the recipient’s postal and endditess, is transmitted to
the online store, and from there, usually to third-partyrpapt processors. The service
provider can incorporate CloudFence in the e-store agit#o allow users to monitor
their data, as well as to restrict the use of sensitive datamthe application’s domain.
The developers of the e-store know in advance the entry pofrgensitive user data, as
well as which processes and hosts should be allowed to attissfata. For instance,
after users input their credit card information through ¢hstore front end, it should
only be accessed by the e-store’s processes, e.g., its wetatabase servers. The only
external channel through which it can be legitimately traitied is a connection to the
third-party payment processor, i.e., a well-known remetser address.

The application we chose for this scenario, called Virtugiia an open source
e-commerce framework developed as a Joomla componentsaygically used in
PHP/MySQL environments. We configured VirtueMart to acg@gytments only through
credit card, and set up actual electronic payments thraugli\tithorize.Net payment
gateway service using a test account. To incorporate Clencd; we had to add just a
few lines of code at the user registration and order cheakmatules. Specifically, we
added a new input field in the registration form for the usen&ue ID, a new column
in the user’s database table, and a few lines of code fomgtdinie ID in the database
along with the user’s info. For the checkout phase, we added ¢ines of code in the
script that processes the payment information. First, #ee LD for the current session
is queried from the database. Then, the HTTP POST variabteéntiids the credit card
number is tagged by calling treedd_t ag API function through a PHP wrapper. Fi-
nally, the data flow domain of the application comprises tled werver, the database
server, and any other processes these two may spawn.

Bookmark Synchronization This use case stems from the increased demand for data
synchronization services, as users typically have maryniet-connected devices. The
scenario in this case is to host a bookmark synchronizagorice on the cloud based
on SiteBar, an online bookmark manager written in PHP. Wideling a link to SiteBar,
users have the option to set it as public or private, and mapgh it later. From the
side of the service provider, we would like to tag any priVatks as sensitive.

Incorporating CloudFence in SiteBar was very similar toghevious case, as both
applications are written in PHP and use MySQL as a databadedyal. On the other
hand, changing the source code to tag the sensitive datalifusemarked as private)
was slightly more elaborate, as the sensitivity level ofadzdn change dynamically.
Thus, we had to change the code that adds a link so as to tagasait is marked as
private, as well as the code for editing a link. It is esséntiaipdate the copy in the
database on edit, in order for the change to be persistent.

CloudFence 13

5.2 Effectiveness

To evaluate the effectiveness of CloudFence, we testechehigtcan identify illegiti-
mate data accesses performed as a result of attacks. Wexjdeitiseagainst two pub-
licly disclosed vulnerabilities in the studied applicaiso The first allows authenticated
users of SiteBar versions earlier than v3.3.8 to read arlifiles [3]. This is the result
of insufficiently checking a user-supplied value throughdhr argument, which was
used as the base directory for reading language specificddeshown below:

sprintf($dir.’/local e/ %/ %’ , $varl, $var2);

Passing a file name that ends with the URL-encoded value &ozé¢ho byte ¥00)
causes thepen system call to ignore any characters after it and read theligaifile:

http://SB_APP/ transl at or. php?downl oad&di r=/ var/|i b/ mysql / SCHEMA/ TABLE. MYDY®0

Using SiteBar v3.3.8 on top of PHP v5.2.3, we repeatedly fideslby exploiting this
bug through a browser on a remote machine. CloudFence egpsuitcessfully all ac-
cesses to data with persistent tags in the file system, whiolbiii case corresponded to
files belonging to MySQL.

Another type of attack that usually leads to informatiorkbege is SQL injection.
The main cause, again, is the insufficient user input vabidaTo demonstrate the effec-
tiveness of CloudFence on preventing this type of attacksused another real-world
vulnerability in VirtueMart version 1.1.44]. The value of the HTTP GET parameter
or der _st at us_i d is not properly sanitized, allowing malicious users to dethe
SQL SELECT query by using a URL like the following:

http:// VM APP/ i ndex. php?opti on=com vi rtuenart &age=or der. order _status_form
&order_status_id=-1" UNION ALL SELECT ... where order_id="5

which results in the execution of the following query:

SELECT * FROM jos_vm order WHERE order_status_id=-1" UNION ALL SELECT ...
FROM j os_vm or der _paynent where order_id="5";

The above query returns a row from thes_vmor der _paynent table, which holds
the credit card numbers, instead of the tgbdes _vmor der . As in the previous case,
we installed the vulnerable version of VirtueMart on top ¢1APv5.3.3, and tried to
access the credit card numbers by exploiting this bug. kcealkés, CloudFence identified
the exfiltration attempt, as the relevant data had been tbggeensitive upon entry.

5.3 Performance

To assess the runtime overhead of CloudFence we compamggrisagibdft 23], a data
flow tracking framework for commodity systems, as well asithmodified application
in each case. We chose Libdft because it is publicly avadladmd it also uses Pin for
runtime binary instrumentation. Libdft maintains a shadoue for each byte of data,
and thus supports only eight tags per byte, representeddiidnal bits. Compared
to CloudFence, which uses four shadow bytes per actual lfydata, Libdft has thus
significantly lower shadow memory requirements. Furtheenmepresenting each tag

14 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

10 4
7 A
6 4 j

-0—r Libdft
-4~ CloudFence

Slowdown

0 T T T T
0 5 10 15 20

Combined tagged data (%)

Fig. 4. Slowdown as a function of the percentage of data with diffetags that must be combined
(worst case). CloudFence not only supportstags (instead of just eight for Libdft), but also is
faster for the cases we consider in our settixigl(%).

using a single bit allows Libdft to implement aggressiveimjtations for tag propaga-

tion using bitwise OR operations. In contrast, CloudFera®th synthesize a new tag
whenever two existing tags must be combined, and then niaith@ir association. As

we show in this section, despite the increased requireneé@oudFence in terms of

memory consumption and computation for supporting 32dytgropagation, its run-

time overhead is comparable to Libdft for the cloud-basediegtions we consider.

Microbenchmark We begin by focusing on the overhead of tag propagation, and
specifically exploring tagenerationwhich is the worst case scenario for CloudFence.
The test program we used allocates two buffbrs, .a andbuf _b, of the same size.
The bytes obuf _a are tagged with the valuke Each byte of a specified partbtif _b

is tagged with a different value, starting frain Then, each byte dbuf _a is added

to the corresponding byte inuf _b, and the process repeats for a number of times.
For each add operation, if the current bytéinf _b is not tagged, thebuf _a’s tag is
copied over, otherwise, their tags are combined and a news@enerated.

Figure4 shows the slowdown imposed by data flow tracking for CloudEesmd
Libdft. CloudFence not only provides extra functionalityat is crucial for cloud envi-
ronments, but at the same time it is even faster than Libdftife cases we consider,
i.e., minimal combination of data marked with differentsags the personal data of
different users are not likely to be intermixed. The extrezase in which each add
operation generates a new tag results in a 20x slowdown (lyoped).

Real-world Applications We decided to focus our experiments on VirtueMart, as it
represents the most complicated scenario among the chppéoagions. VirtueMart
stresses a larger part of CloudFence’s functionality, hedefore results in a larger but
more representative performance impact in comparisont&B8&i. In our experiment,
we measure the sustained throughput of user requests tia¢Mart can handle when
processing concurrent purchase transactions from mailtipérs. We installed two in-
stances of VirtueMart on virtual machines in our testbede @ms on top of Apache
using the PHP module, and the other was compiled after wamgfig the PHP to C++
using Facebook’s HipHop. In both cases, MySQL was the dagback-end. To gen-

CloudFence 15

D//M::
-5 Libdft

-O—C CloudFence

A/6=o=o=o=5:(\;©:©:';

le;

5 100

-0—+ Native
A/ Libdft
34 -O—- CloudFence

Requests/sec
Requests/sec
5

0 T T T T T 0 T T T T T
0 20 40 60 80 100 20 40 60 80 100

Number of concurrent clients Number of concurrent clients

o

Fig. 5.Request throughput for VirtueMart usingrig. 6. Request throughput for VirtueMart using
the default web server configuration. Facebook’s HipHop.

erate a realistic and intensive workload, we used a secostldomnected through a
Gigabit switch that emulated typical client requests fagptg product purchases. The
Gigabit network connection minimizes network latency,ressing this way the im-
posed stress on the server when emulating multiple conturser transactions.

Instead of performing the same request over and over, welaietumore realis-
tic conditions by replaying complete purchase transasti@ach transaction consists
of nine requests: retrieve the front page, login, navigathé product page for a spe-
cific item, add that item in the shopping cart, verify the @s of the shopping cart,
checkout, enter payment info, confirm the purchase, andulog@r each of these re-
quests, the web clients also download any external respusoeh as images, scripts,
and style files, emulating the behavior of a real browsehavit performing any client-
side caching. We should stress that VirtueMart was fullyficpmed as in a real produc-
tion setting, including properly working integration wiftuthorize.Net for processing
credit card payments using a test account.

Figure5 shows the sustained request throughput for a varying nuafleencurrent
web clients, when VirtueMart is running i) natively, ii) oog of Libdft, and iii) on top
of CloudFence. The request throughput was calculated bglidiy the number of re-
quests by the total duration of each experiment. In all reash client was configured
to perform three end-to-end transactions, so that the nuoflrequests per client re-
mains consistent across all experiments. We see that glthGloudFence reduces the
throughputin half, its performance is comparable to Lilol#f$pite its much more CPU
and memory intensive tag propagation logic. A significaatfion of the slowdown for
both systems can be attributed to Pin’s overhead for ruritimezry instrumentation. We
should note that the server throughput in the native casetisounded due to limited
computational resources, but rather due to the defaultganaiion of Apache, which
uses a pool of 10 processes for serving concurrent clietmss,to be more precise,
CloudFence took advantage of the available cycles and ietpadditional overhead.

Figure 6 shows the results of the same experiment using the compdesion of
VirtueMart and the built-in multi-threaded web server tbames with the HipHop code
transformer. This time, the native throughput is bound @u€PU saturation. In the
worst case, the request throughput is roughly 13 times slasien CloudFence is en-
abled. Another contributing factor to performance degtiadas concurrency increases
lies in the underlining binary instrumentation framewor&. provide thread-safe exe-

16 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

cution of system call hooks, Pin serializes their executising a process-level global
lock. This kind of hooks are used by both CloudFence and Lildfich again achieve
comparable performance.

6 Discussion

Over-taggingWe opted for a design that does not suffer from over-taggirtg@ pol-
lution. Specifically, CloudFence does not tag pointers h@ropagates tags due to
implicit flow, which prior work has shown to produce over-ggag [14, 39]. Moreover,
it takes into consideration that certain system calls vajtecific data to user-provided
buffers. For instance, considget t i meof day, which upon every call overwrites the
user space memory that corresponds to one, or $vouct ti neval data struc-
tures. Such system calls always result in sanitizing (ugita) the data being returned,
unless CloudFence has installed a callback that selegtiagé returned data.
Under-tagging.CloudFence only supports explicit data flows, which can lead
under-tagging whenever the service provider uses a codgfrochthat copies sensi-
tive data using branch statements. As an example, consideroide snippatf (i n
== 1) out = 1;. Although the value of n is copied toout , any tags associated
with it are not. DTA++ R2] addresses this issue by identifying implicit flows within
information-preserving transformations and generatitgsto add additional tags only
for a certain subset of control-flow dependencies. Duringevaluation, we identified
a couple of such cases, in AES encryption (used in SSL, My%@d the Suhosin PHP
hardening extension) and Base64 encoding. Such casesddbmiilandled manually
by the service provider, by hooking the corresponding fiomst and copying the tag
information from their source to the target operand usirgcthpy _t ag function.
Binary InstrumentationThe choice of a DFT framework based on binary instru-
mentation unavoidably comes with an increased runtime Ipertdowever, we have
managed to support 32-bit wide tags per byte while maimgir@ similar, or even
lower, overhead compared to existing systems, allowingpttaetical use of Cloud-
Fence in real settings. Alternative implementations of thihctionality within language
runtimes B, 8], or even at hardware, have been shown to degrade the imposdtkad.
Fine-grained TrackingCloudFence is a general framework designed for use with
all the components of a cloud-based service without modiifina. To achieve this, we
chose fine-grained over coarse-grained (process-legd) t#though this comes with
an increased overhead. Other implementati@® that tried to avoid this overhead
by coloring each time the entire process serving the HTTResifor user data with
the tag or color representing this specific user, ended kgepitra information in the
application level, when its processes where handling data fnultiple users at the
same time. As expected, in this case the process would bgnasdsa tag representing
both users, but if there was no merge of the data, this datédvetili carry the new tag
instead of the initial unique user tag. Therefore, the acatiiability provided to the end
users for their cloud-based data would not be as preciseicabe of process-level tags
as it is in our fine-grained implementation.
Alternative DFT ToolsCloudFence has been influenced by previous DFT propos-
als, with the closest being Libdf2], but none of them would suffice for our goal.

CloudFence 17

In particular, although CloudFence and Libdft share theesanderlying DBI frame-
work (Pin), they differ completely in (i) shadow memory dgsi (ii) tag propagation
logic, and (iii) I/O interface. Libdft uses dynamically atlated shadow memory (tracks
memory allocations) and a page-table-like structure fofgoming virtual-to-shadow
memory translations. CloudFence, on the other hand, res@art of the abundant 64-
bit address space for storing the 4-byte wide tags (per dypeogram memory), thus
making memory-to-tag translation without a lookup. Regagdhe low-level optimiza-
tion that Libdft uses, we retained what it considerd ast vcpu andhuge_t | b.
Finally, the system call interface of 64-bit Linux is slightifferent from the 32-bit
version and the system call numbers are shuffled. Hence/@hsybtem call descrip-
tors that CloudFence uses had to be adapted.

Universally-unique User IDsThe use of the same ID across all services may raise
privacy concerns, as this allows the cloud provider to traskr activity within its
premises. Although cloud providers could track users e¥endloud-wide user 1D
was not used, e.g., by combining user-identifying featsteh as browser fingerprints
and HTTP cookiesd5], a unique ID per user certainly makes tracking easier. €lou
providers, however, have already started offering acaebssted services through in-
house P] or third-party web identity providersl], and this trend is expected to con-
tinue, as it improves user experience by having to managerfaecounts.

7 Related Work

A common approach for degrading the impact of data leaks $$ai@ important data
in an encrypted form on the remote serv&g,[19,43]. Even though encryption allevi-
ates the problem of secure storage in the cloud, it does M fioe issue when also
processing on this data on the remote infrastructure isiredurhe homomorphic en-
cryption schemeZ1], although promising it is for now computationally prohibe for
real-world applications.

Information flow tracking (IFT) is another common approaghgdrotection against
information leakage. IFT implementations range from perepss 14, 31, 34,51] and
singe-host trackingll6, 32, 44] to the more recent cross-host taint tracking systebns [
17,18,24,47,50]. These designs were well suited for the contexts in whidy there
proposed, butin contrast to our approach, they are diffiotapt in different environ-
ments. Jif B3] and Resin 45| extend the Java and PHP language runtimes, respectively,
with IFT abilities to enable user privacy constraints anevent information leakage.
Although they allow better performance numbers for the DBmponent, they require
complete application rewrites and suffer from the inhetnitation of labeling and
tracking at the coarse-level of objects, in contrast to oarenfine-grained and appli-
cation agnostic approach. DSt&9 and Flume R7] are alternative IFT mechanisms
for distributed systems, which though do not meet our negd® ghey cannot track
granularities smaller than high-level objects, i.e., fileocesses and sockets, or they
would require rewriting of the monitored applications taabte the tracking mecha-
nism. Vanish Q] follows a different approach to information leakage pri@n, by
ensuring that all copies of sensitive data become unreaddiglr a user-specified time,

18 V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

without the need of any trusted third party for performing tteletion. Vanish meets
this challenge by integrating cryptographic techniqueh distributed systems.

When focusing on the problem of data leakage for cloud-bssedces, most works
reflect continuations of established lines of security aes® such as web security and
secure data outsourcing and assurance, rather than appsoaith an exclusive focus
on cloud security, with a few exception&g, 29, 37]. Among them is Silverline29], a
system close to our vision, with the goal of enabling clounhviers with auditing and
data leaks prevention capabilities. Although we share éineesgoal, the process-level
tainting they support, is rather coarse-grained for thetrmnosimon web-applications,
and as such it is not applicable to a wide-range of cloud eafiins. Similar in spirit
to our work, the W5 projectdg] although it introduces some of the concepts used in
CloudFence, we offer a working implementation which supgparmore fine-grained
labeling and data tracking approach, able to handle meltigers per process — as in
most common web-applications.

Brown et al. [L1] tried to address the problem of trustworthy cloud-hostrgises
even when the service provider is not trusted, by involvinguated cloud provider
attesting service application code to end-users. Like @f@mce, this work also tries
to give insights to the end-users regarding the processitited sensitive data by the
cloud-hosted services, but the focus is on code attestatidrthe service provider is a
Paas client of the cloud, whereas CloudFence can be empioydidnodels of cloud
services. Finally, Santos et aBg] also worked on the issue of a trusted cloud computing
platform (TCCP) but their approach relies on TPM attestatioains.

8 Conclusion

One of the most highly cited concerns regarding cloud-fibs&vices is the fear of
unauthorized exposure of sensitive user data. Users haugstdhe efforts of both the
third-party service provider and the cloud infrastructoirevider for properly handling
their private data as intended. In this work, we take a stejutds increasing the con-
fidence of users for the safety of their cloud-resident dgtantsoducing a new direct
relationship between end users and the cloud infrastreigrovider. CloudFence is a
service provided by the cloud infrastructure, that offemtadlow tracking abilities to
both service providers and their users for user data celieit the realm of cloud-
based services. In particular, CloudFence allows usersigpendently audit their data
by the cloud-based services, and additionally enablesceepvoviders to confine data
propagation and protect their digital assets within welliaed domains. Our evaluation
using real-world applications demonstrates that CloudEean be integrated easily in
existing applications, can protect against informaticsthtisure attacks, and imposes
a modest performance overhead that allows its practicalnussal environments. Our
prototype implementation is open source and freely avigilab

Acknowledgements.This work was supported by DARPA and the National Science
Foundation through Contract FA8651-11-C-7190 and GranS8QR-28748, respec-
tively, with additional support from Intel and Google. Anpinions, findings, conclu-
sions or recommendations expressed herein are those afttihars, and do not neces-
sarily reflect those of the US Government, DARPA, NSF, IrdelGoogle.

CloudFence 19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

. AWS taps social networks for identity verificationt t p: / / www. t her egi st er. co. uk/ 2013/

05/ 29/ aws_social _identity_verification

. Login with Amazonht t p: // | ogi n. amazon. com
. SiteBar: Multiple issuedit t p: / / www. securi tyf ocus. cont ar chi ve/ 1/ 483364
. VirtueMart Multiple SQL Injection Vulnerabilitiesht t p: // www. securi t yf ocus. cont bi d/

37963

. Attariyan, M., Flinn, J.: Automating configuration trdabhooting with dynamic information flow analy-

sis. In: Proc. of OSDI (2010)

. Bello, L., Russo, A.: Towards a Taint Mode for Cloud ConipgitWeb Applications. In: Proc. of PLAS.

pp. 1-12 (2012)

. Berghel, H.: Identity Theft and Financial Fraud: Some&geness in the Proportions. Computer 45(1),

86-89 (Jan 2012)

. Bisht, P., Hinrichs, T., Skrupsky, N., VenkatakrishneilN.: WAPTEC: Whitebox Analysis of Web Ap-

plications for Parameter Tampering Exploit ConstructionProc. of CCS. pp. 575-586 (2011)

. Bosman, E., Slowinska, A., Bos, H.: Minemu: The World'steat Taint Tracker. In: Proc. of RAID. pp.

1-20 (2011)

Bowers, K.D., Juels, A., Oprea, A.: HAIL: a High-Availaty and Integrity Layer for Cloud Storage. In:
Proc. of CCS. pp. 187-198 (2009)

Brown, A., Chase, J.: Trusted Platform-as-a-Serviceodndation for Trustworthy Cloud-Hosted Appli-
cations. In: Proc. of CCSW. pp. 15-20 (2011)

Chen, Y., Paxson, V., Katz, R.H.: What's New About Clowh@®uting Security? Tech. Rep. UCB/EECS-
2010-5, EECS Department, University of California, Beekel(Jan 2010)htt p: // www. eecs.
ber kel ey. edu/ Pubs/ TechRpt s/ 2010/ EECS- 2010- 5. ht m

Cheng, W., Zhao, Q., Yu, B., Hiroshige, S.: TaintTrac#icient Flow Tracing with Dynamic Binary
Rewriting. In: Proc. of ISCC. pp. 749-754 (2006)

Clause, J., Li, W., Orso, A.: Dytan: A Generic Dynamicriftéinalysis Framework. In: Proc. of ISSTA.
pp. 196-206 (2007)

Computerworld: Microsoft BPOS cloud service hit withtaldreach (Dec 2010fat t p: // www.
comput erwor | d. coni s/ articl e/ 9202078/ M cr osof t _BPOS_cl oud_servi ce_hit _

wi t h_dat a_breach

Crandall, J.R., Chong, F.T.: Minos: Control Data Att&ilevention Orthogonal to Memory Model. In:
Proc. of MICRO. pp. 221-232 (2004)

Davis, B., Chen, H.: DBTaint: Cross-Application Infation Flow Tracking via Databases. In: Proc. of
WebApps (2010)

Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J..Dduiel, P., Sheth, A.N.: TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Ntoning on Smartphones. In: Proc. of OSDI
(2010)

Feldman, A.J., Zeller, W.P., Freedman, M.J., FelteW.ESPORC: Group Collaboration using Untrusted
Cloud Resources. In: Proc. of OSDI (2010)

Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanisitreasing Data Privacy with Self-Destructing
Data. In: Proc. of USENIX Sec. pp. 299-316 (2009)

Gentry, C.: Fully Homomorphic Encryption Using Ideatti@es. In: Proc. of STOC. pp. 169-178 (2009)
Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA¥namic Taint Analysis with Targeted
Control-Flow Propagation. In: Proc. of NDSS (2011)

Kemerlis, V.P., Portokalidis, G., Jee, K., KeromytisDA libdft: Practical Dynamic Data Flow Tracking
for Commodity Systems. In: Proc. of VEE (2012)

Kim, H.C., Keromytis, A.D., Covington, M., Sahita, R.agturing Information Flow with Concatenated
Dynamic Taint Analysis. In: Proc. of ARES. pp. 355-362 (2009

Kontaxis, G., Polychronakis, M., Keromytis, A.D., Mat&s, E.P.: Privacy-preserving social plugins. In:
Proceedings of the 21st USENIX Security Symposium (Aug0422

Krohn, M., Yip, A., Brodsky, M., Morris, R., Walfish, M.: Avorld Wide Web Without Walls. In: Proc.
of HotNets (2007)

Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Frans, M. dglie, K., Morris, K.R.: Information Flow Control
for Standard OS Abstractions. In: Proc. of SOSP. pp. 321{334d7)

http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://login.amazon.com/
http://www.securityfocus.com/archive/1/483364
http://www.securityfocus.com/bid/37963
http://www.securityfocus.com/bid/37963
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.html
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach

20

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

V. Pappas, V. P. Kemerlis, A. Zavou, M. Polychronakis, AKBromytis

Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Loey, G., Wallace, S., Reddi, V.J., Hazelwood,
K.: Pin: Building Customized Program Analysis Tools withtizmic Instrumentation. In: Proc. of PLDI.
pp. 190-200 (2005)

Mundada, Y., Ramachandran, A., Feamster, N.: SilverLidata and Network Isolation for Cloud Ser-
vices. In: Proc. of HotCloud (2011)

Nethercote, N., Seward, J.: How to Shadow Every Byte ahbky Used by a Program. In: Proc. of VEE.
pp. 65-74 (2007)

Newsome, J., Song, D.: Dynamic Taint Analysis for AutitmBetection, Analysis, and Signature Gen-
eration of Exploits on Commodity Software. In: Proc. of ND&B05)

Portokalidis, G., Slowinska, A., Bos, H.: Argos: an Eatal for Fingerprinting Zero-Day Attacks. In:
Proc. of EuroSys. pp. 15-27 (2006)

Preibusch, S.: Information Flow Control for Static Enefement of User-Defined Privacy Policies. In:
Proc. of POLICY. pp. 157-160 (2011)

Qin, F., Wang, C., Li, Z., Kim, H.s., Zhou, Y., Wu, Y.: LIEFA Low-Overhead Practical Information Flow
Tracking System for Detecting Security Attacks. In: PrddvidlCRO. pp. 135-148 (2006)

Qin Zhao and Derek Bruening and Saman Amarasinghe: étffidlemory Shadowing for 64-bit Archi-
tectures. In: Proc. of ISMM. pp. 93-102 (2010)

Qin Zhao and Derek Bruening and Saman Amarasinghe: Urgffieient and Scalable Memory Shad-
owing. In: Proc. of CGO. pp. 22-31 (2010)

Ristenpart, T., Tromer, E., Shacham, H., Savage, S,:Yoey Get Off of My Cloud! Exploring Informa-
tion Leakage in Third-Party Compute Clouds. In: Proc. of CQ{s 199-212 (2009)

Santos, N., Gummadi, K.P., Rodrigues, R.: Towards @du€tloud Computing. In: Proc. of HotCloud
(2009)

Slowinska, A., Bos, H.: Pointless Tainting? Evaluating Practicality of Pointer Tainting. In: Proc. of
EuroSys. pp. 61-74 (2008)

Song, D., Brumley, D., Yin, H., Caballero, J., Jageiang, M.G., Liang, Z., Newsome, J., Poosankam,
P., Saxena, P.: BitBlaze: A New Approach to Computer Secuié Binary Analysis. In: Proc. of ICISS.
pp. 1-25 (2008)

Sophos: Groupon subsidiary leaks 300k logins, fixes , failfails again
(2011 Jun), http:// nakedsecurity. sophos. com 2011/ 06/ 30/
groupon- subsi di ary- | eaks- 300k- | ogi ns-fi xes- fail-fails-again/

The Wall Street Journal: Google Discloses Privacy 8I{2009 Mar),ht t p: // bl ogs. wsj . com

di gi t s/ 2009/ 03/ 08/ 1214/

Wang, W.,, Li, Z., Owens, R., Bhargava, B.: Secure andiEfftcAccess to Outsourced Data. In: Proc. of
CCSW. pp. 55-66 (2009)

Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Pearoa: Capturing System-wide Information Flow
for Malware Detection and Analysis. In: Proc. of CCS. pp.-4157 (2007)

Yip, A., Wang, X., Zeldovich, N., Kaashoek, M.F.: Imphog Application Security with Data Flow As-
sertions. In: Proc. of SOSP. pp. 291-304 (2009)

Zavou, A., Pappas, V., Kemerlis, V.P., Polychronakis, Rbrtokalidis, G., Keromytis, A.D.: Cloudopsy:
an Autopsy of Data Flows in the Cloud. In: Proc. of HCII (2013)

Zavou, A., Portokalidis, G., Keromytis, A.D.: Taint-€hange: a Generic System for Cross-process and
Cross-host Taint Tracking. In: Proc. of IWSEC (2011)

Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazigr®.: Making Information Flow Explicit in HiStar.
In: Proc. of OSDI (2006)

Zeldovich, N., Boyd-Wickizer, S., Maziéres, D.: SengrDistributed Systems with Information Flow
Control. In: Proc. of NSDI. pp. 293-308 (2008)

Zhang, Q., McCullough, J., Ma, J., Schear, N., Vrable, Wahdat, A., Snoeren, A.C., Voelker, G.M.,
Savage, S.: Neon: System Support for Derived Data Manageme®roc. of VEE. pp. 63-74 (2010)
Zhu, D., Jung, J., Song, D., Kohno, T., Wetherall, D.nfliaser: Protecting Sensitive Data Leaks Using
Application-Level Taint Tracking. ACM Operating Systemeview 45(1), 142—-154 (2011)

http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
fail-fails-again/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/

	CloudFence: Data Flow Tracking as a Cloud Service

