
Crawling BitTorrent DHTs for Fun and Profit

Scott Wolchok and J. Alex Halderman

The University of Michigan
{swolchok, jhalderm}@eecs.umich.edu

Abstract
This paper presents two kinds of attacks based on crawl-
ing the DHTs used for distributed BitTorrent tracking.
First, we show how pirates can use crawling to rebuild
BitTorrent search engines just a few hours after they are
shut down (crawling for fun). Second, we show how
content owners can use related techniques to monitor pi-
rates’ behavior in preparation for legal attacks and negate
any perceived anonymity of the decentralized BitTorrent
architecture (crawling for profit).

We validate these attacks and measure their perfor-
mance with a crawler we developed for the Vuze DHT.
We find that we can establish a search engine with over
one million torrents in under two hours using a single
desktop PC. We also track 7.9 million IP addresses down-
loading 1.5 million torrents over 16 days. These results
imply that shifting from centralized BitTorrent tracking
to DHT-based tracking will have mixed results for the file
sharing arms race. While it will likely make illicit torrents
harder to quash, it will not help users hide their activities.

1 Introduction

The BitTorrent protocol is used to distribute a wide range
of content to millions of people. BitTorrent’s core de-
sign uses centralized but diverse “trackers” to coordinate
peers sharing sets of files, referred to as “torrents.” Users
discover content out of band, often through Web-based
torrent search engines and indexes that we will refer to as
“torrent discovery sites.”

Both trackers and torrent discovery sites have come
under mounting legal pressure from major content own-
ers [6, 7, 14, 19, 23, 25], who have in the past success-
fully shuttered popular services such as suprnova.org [5],
OiNK [16], and TorrentSpy [18]. BitTorrent users also
face surveillance by content owners, who are increasingly
making legal threats against individuals [8, 9]. Recent
work has shown that large-scale monitoring of both the

major torrent discovery sites and the major trackers [1,29]
is feasible. Though a boon to copyright enforcement, this
capability reduces the privacy of BitTorrent downloaders
by making it much harder to “hide in the crowd.”

The BitTorrent community has responded to these
trends by deploying decentralizing tracking systems based
on distributed hash tables (DHTs). So far, their impact
on privacy and copyright enforcement has been unclear.
Distributed tracking is harder to disrupt through legal
threats, but users still rely on centralized torrent discov-
ery sites that remain relatively easy targets. Some might
expect that decentralizing the tracking architecture would
enhance privacy by making monitoring more difficult, but
the question has received little research attention to date.

In this work, we demonstrate how deployed distributed
tracking systems can be exploited by both sides in the Bit-
Torrent arms race. Each can attack the other by employing
recent techniques for rapidly crawling the DHTs.

On one hand, we find that DHT crawling can be used
to bootstrap torrent discovery sites quickly, allowing new
sites to spring up almost immediately when existing ones
become inaccessible. Using only a single machine, we
can create a BitTorrent search engine indexing over one
million torrents in under two hours with this technique.

On the other hand, we show that it is possible to effi-
ciently monitor BitTorrent user activity by crawling only
the DHTs and not the centralized tracker infrastructure
or torrent discovery sites. In 16 days of monitoring, we
were able to observe 1.5 million torrents downloaded by
7.9 million IP addresses. Effectively, this lets us measure
what content each user is sharing.

We validate our monitoring and search results by com-
paring them to results from previous work by other
groups [1, 29] that measured the centralized BitTorrent
infrastructure. In addition, we categorize our sample of
torrents and confirm that the distribution is similar to
previous categorizations of BitTorrent content.

The remainder of this paper is organized as follows.
Section 2 introduces BitTorrent, distributed tracking, and

our previous work on crawling DHTs. Section 3 explains
our technique for bootstrapping BitTorrent search en-
gines. Section 4 presents our method for profiling BitTor-
rent downloaders. Section 5 describes our experimental
setup, Section 6 evaluates the performance of our rapid-
bootstrapped search engine, and Section 7 presents the
results of our user and content profiling. Section 8 surveys
related work, and Section 9 concludes.

2 Background

This section provides overviews of BitTorrent, distributed
tracking, and our DHT crawling methods, with a focus on
details that will be relevant in our attacks.

The BitTorrent Protocol BitTorrent [2] is a peer-to-
peer file sharing protocol that makes up a substantial
proportion of traffic on today’s Internet. One recent
study [15] found that it comprised a majority (50% to
70%) of traffic in several geographic locations. The key
innovation of BitTorrent is its ability to use peers’ often
otherwise unused upload bandwidth to share pieces of
files among peers before the entire “torrent,” which is the
term used to refer to both a set of files being shared and
the set of peers downloading and sharing those files, has
finished downloading. Torrent metadata, such as the list
of files contained in the torrent and checksums for each
chunk or “piece” of each file, are contained in .torrent
files, which users usually obtain from torrent discovery
sites or other websites.

BitTorrent Tracking The original BitTorrent protocol
relies on centralized servers known as “trackers” to in-
form peers about each other. To join a torrent, a peer P
announces itself to the tracker listed in the .torrent file.
The tracker records P’s presence and replies with a partial
list of the peers currently downloading the torrent. P then
connects to these peers using the BitTorrent peer protocol
and begins exchanging pieces with them.

In response to legal pressure from content owners, Bit-
Torrent developers have created extension protocols to
locate and track peers in a distributed fashion, rather than
relying on legally-vulnerable central servers. For our
purposes, the principal distributed tracking methods of
interest are the BitTorrent distributed hash tables (DHTs).

Distributed Hash Tables A distributed hash table is
a decentralized key-value store that is implemented as a
peer-to-peer network. Nodes and content have numeric
identifiers in the same key space, and each node is re-
sponsible for hosting a replica of the content it is close
to in the space. The principal DHT design used in file
sharing applications today is Kademlia [21]. Kademlia
nodes communicate over UDP using simple RPCs, includ-
ing: STORE, which stores a set of key-value pairs at the

receiving node; FIND-NODE, which requests the k closest
contacts to a given ID from the receiver’s routing table;
and FIND-VALUE, which causes the receiver to return any
values it is storing for a requested key. Nodes periodically
replicate the values they store to the k peers closest to
each key. The parameter k is specific to each Kademlia
implementation.

BitTorrent has two separate Kademlia implementations:
the Mainline DHT [20] and the Vuze DHT [26]. Several
BitTorrent clients support the Mainline DHT, which is the
larger of the two. The Vuze DHT was developed sepa-
rately for the popular Vuze BitTorrent client, and typically
contains about 25–50% as many nodes as Mainline. We
focus on the Vuze DHT, as Section 3 explains, but our
results could be extended to the Mainline DHT.

Distributed Tracking Both BitTorrent DHTs use the
same general design for distributed tracking: rather than
finding other peers using a tracker, a peer joins a torrent by
looking up the hash of the “info” section of the .torrent
file (known as the “infohash”) as a key in the DHT and
using peers from the associated value, which is simply
a list of members of the torrent with that infohash. The
announcement to the tracker is likewise replaced with a
STORE(infohash, peer_address) operation.

In order to support fully distributed tracking, the Bit-
Torrent community is converging [13] on a method for
describing DHT-tracked torrents with a single hyper-
link known as a “magnet link” instead of a traditional
.torrent file. A magnet link contains a torrent’s info-
hash together with minimal optional metadata, but, to
keep the link short, it omits other metadata items that are
necessary for downloading the files and checking their
integrity. To solve this problem, BitTorrent developers
have implemented several metadata exchange protocols
that allow peers to query each other for a .torrent given
its infohash. Centralized services such as torrage.com and
torcache.com also allow users to download .torrent
files given their infohashes.

BitTorrent DHT Crawler In previous work [27], we
developed a crawler that rapidly captures the contents of
the Vuze DHT. (We employed it in a context unrelated
to BitTorrent: attacking a self-destructing data system
called Vanish [11].) We briefly describe it here, referring
interested readers to our earlier paper for the full details.

Our crawler, ClearView, is a C-based reimplementation
of the Vuze DHT protocol. It harvests content by means
of a Sybil attack [3], inserting many clients into the DHT
and waiting for content to be replicated to them by nearby
peers. It can efficiently host thousands of DHT clients
in a single process. After most nearby content has been
replicated, the clients “hop” to new locations in the DHT
address space, allowing ClearView to capture more data
with fewer resources.

ClearView Log

processor

Vuze clients

1) Crawl

2) Extract torrent descriptions

 and peers

Local disk

Search requests & results

Web server

Search queries

.torrent

crawler

3) read infohashes

 and peers

4) metadata request/response

5) write metadata

Figure 1: SuperSeed Architecture — Our system rapidly bootstraps a BitTorrent search engine using data from the
Vuze DHT. First it surveys the DHT using our ClearView crawler and logs torrent descriptions and peer records stored
there (1). Then it processes this data to build a search index (2–5), which users query through a browser-based interface.

Originally, ClearView relied on the replicate-on-join
behavior of the Vuze DHT, so it only waited 3 minutes
between hops. After we developed ClearView, Vuze re-
moved the replicate-on-join behavior [10] to provide bet-
ter security for Vanish. However, key-value pairs are still
replicated every 30 minutes, so for this work, we config-
ured ClearView to wait 30 minutes between hops and to
use ten times as many clients per hop, yielding about the
same effective coverage. Although these changes moder-
ately increase the cost of running ClearView, our results
show that crawling the Vuze DHT from a single machine
is still feasible.

3 Bootstrapping BitTorrent Search

Search is a key part of the BitTorrent infrastructure. Un-
less users can find content, BitTorrent’s remarkable capa-
bility to make sharing it efficient is useless. This property
makes torrent discovery sites an attractive target for legal
attacks from content owners, and most of today’s popu-
lar search services are highly susceptible to such attacks
because they are large-scale, centralized operations. DHT-
based tracking has a surprising potential to change this
by removing the central point-of-failure not only from
tracking but from torrent discovery as well.

In this section, we describe how users can crawl BitTor-
rent DHTs to create and populate torrent search engines
faster than they could possibly be taken down through le-
gal attacks. This can be done using only a single machine
and relying only on features already present in production

BitTorrent clients. The resulting search engine could be
made public, used only by its creator, or shared privately
among a group of friends.

To demonstrate this approach, we built SuperSeed, a
prototype rapid-bootstrapped torrent search engine. As
shown in Figure 1, we use ClearView, our crawler for
the Vuze DHT, to discover torrents. We then index them
using whatever metadata we can learn using the DHT
and associated protocols. This can include the names of
the files contained in the torrent, their sizes, the peers
participating in the torrent, and occasionally some free
text to describe the torrent’s contents.

The system handles user queries by treating the con-
catenation of each torrent’s filenames and description as
a document in the typical information retrieval model and
using an inverted index to match keywords to torrents.
This has the advantage of being well supported by pop-
ular open-source relational DBMSs. We rank the search
results according to the popularity of the torrent, which
we can infer from the number of peers listed in the DHT.

SuperSeed uses a standard crawl-index-search design.
We describe each stage in detail below.

3.1 Crawling

For users to be able to download the torrents we index,
we need to provide either a .torrent file or its info-
hash in the form of a magnet link (which can be used
to retrieve the .torrent file from peers). Obtaining in-
fohashes presented a challenge: in the Vuze DHT, peer
lists are linked not to the actual torrent infohashes but

to the SHA-1 hashes of the infohashes. We came across
a solution when we noticed an additional class of DHT
records associated with many torrents. These “torrent
description” records contain the infohash along with the
torrent name, its size, and counts of seeders (peers with
completed downloads) and leechers (peers that have not
yet downloaded the whole torrent). They are created by
a prototype related-content-and-search feature in recent
versions of the Vuze DHT client, which generate one for
a torrent when a user downloads both it and some other
torrent during the same execution of the client.

In principle, our design could also use the Mainline
DHT if ClearView were extended to support it. Although
the Mainline DHT does not explicitly support replication
(which ClearView is designed to exploit), data must still
be republished periodically, and this exposes it to crawl-
ing. We chose to demonstrate our proof of concept only
on Vuze due to the significant additional complexity of
supporting two DHTs in the crawler.

While Mainline does not contain torrent descriptions,
its peer lists are keyed by the torrent infohashes them-
selves, so no additional machinery would be needed to
discover infohashes. However, some method would be
needed to discover torrent names, such as downloading
.torrent files directly from peers using the metadata
exchange protocol.

To explore this possibility, we built a prototype
.torrent crawler. Since we are operating in the context
of the Vuze DHT, our DHT crawler needs to obtain both
a torrent description and a peer list before the .torrent
crawler can contact the appropriate peers with the correct
infohash. However, the .torrent files contain useful
additional data, including the full listing of files contained
in the torrent, and SuperSeed can provide them to users
in place of a magnet link for BitTorrent clients that lack
DHT support.

3.2 Indexing and Search

The indexing stage is largely straightforward. First, our
log processor examines the crawled keys and values to
identify torrent descriptions and lists of peers, which it
stores in a relational DBMS (we use PostgreSQL 8.3 for
our prototype). Second, we index the data and expose
it to users via a browser-based interface powered by the
DBMS’s built-in full-text keyword search facility. For
each torrent, SuperSeed’s interface provides a magnet
link constructed directly from the title and infohash found
in its torrent description.

4 Monitoring BitTorrent Downloaders

While SuperSeed demonstrates that DHT crawling could
make torrent discovery sites harder to quash, we observe

that crawlers can also be used by content owners to moni-
tor infringing activities. Although monitoring can also be
accomplished by targeting the discovery sites and central-
ized trackers, it is easier to rate-limit or blacklist machines
used for copyright enforcement in these centralized set-
tings. The same data that we rely on for search—what
content is available and from whom it can be obtained—
can provide a basis for monitoring users in preparation
for targeted enforcement actions.

In this section, we describe how content owners can
crawl BitTorrent DHTs to monitor and track BitTorrent
content and users. Like search, this can be done using
only a single machine. The crawl itself is identical to that
needed for search—BitTorrent DHTs cannot allow one
and prevent the other.

The primary difference between monitoring and search
is the length of time over which the process tracks DHT
contents. For search, users are only interested in what is
available now, so the important aspects of a BitTorrent
search engine are how quickly it can be updated and what
fraction of torrents it covers. In contrast, rightsholders
desire to track user behavior for a specific set of content
on an ongoing basis. They are interested in what content
is being shared, how many users are sharing it, and who
those users are.

Our monitoring design reuses the first two stages of our
search design. It runs ClearView periodically and invokes
SuperSeed’s log processor, which stores the logs in a
DBMS. It then derives content-to-IP and IP-to-content
mappings from the peer lists and torrent descriptions by
joining the corresponding database tables based on the
infohashes. To build a longer-term picture of BitTorrent
activity, the system can combine data from many crawls,
just as a search engine might perform successive crawls
to keep the search index up to date.

5 Experimental Setup

To evaluate our proposals for monitoring and search, we
crawled the DHT for a period of 16 days from May 10
to May 25, 2010. We configured ClearView to run two
30-minute hops with 4000 Sybils each. An analytic model
for the fraction of the DHT captured [27] predicts that
this would record about 20% of stored values. Crawls
began at 5 AM, 1 PM, and 9 PM EDT each day to match
the Vuze DHT’s 8-hour expiration time for stored values.
The set of node IDs used by the Sybils was the same in
every crawl. We report data based on 47 crawls (the 9 PM
crawl on May 25 failed to complete because of an error).
We began retrieving .torrent files at 9 PM on May 14;
.torrent files were retrieved in a total of 33 crawls. All
tests were conducted on a machine at the University of
Michigan with a 4-core Intel Xeon processor, a 1 TB
SATA disk running at 3 Gb/s, and 12 GB of RAM.

Class Average (#)

Torrents with torrent descriptions 1,019,701
. . . and peer lists 249,371

. . . and .torrent files 56,590
Torrents with peer lists only 457,798

Table 1: Search Coverage — For search applications,
our goal is to index a large fraction of available torrents.
SuperSeed indexes torrents for which it finds a torrent
description: in our experiments, more than a million tor-
rents on average. Though obtaining .torrent files from
peers provides useful metadata, we could do so for only
a small fraction of these torrents. We can only retrieve
them when our crawl data contains a torrent description
and a peer list for the torrent, and even when we had both,
we often could not find any responsive peers.

6 Search Evaluation

In this section, we evaluate the performance of our Su-
perSeed search engine prototype based on data from our
crawls. The most important metrics are the resulting cov-
erage (how many torrents we discover and index in each
crawl) and the time it takes to bootstrap the search engine.

6.1 Search Coverage

The data collected in our crawls is summarized in Table 1.
As we described in Section 3.2, we can only index tor-
rents for which we recover a torrent description. Thus,
SuperSeed indexed 1,019,701 torrents on average. By
comparison, The Pirate Bay reported that its index con-
tained 2.8 million torrents shortly after our experiments,
and a crawl by Zhang et al. [29] counted 4.6 million tor-
rents on five popular torrent discovery sites. (Although
we did not measure what fraction of torrents could be
downloaded, a search of the Pirate Bay indicates that it
also indexes torrents that cannot be downloaded, such as
those with zero seeders.) Each crawl was expected to
recover about 20% of the values in the DHT, so this level
of coverage appears quite satisfactory.

Ideally, we would like to measure what fraction of all
available torrents were indexed, but determining the true
number of available torrents is not straightforward. One
way to estimate it is based on peer lists, which are spread
uniformly throughout the keyspace. We recovered about
1.5 million peer lists on average, so, assuming that our
crawler observed 20% of the values in the DHT, we esti-
mate that there are 1.5 million×5 = 7.5 million torrents
in the Vuze DHT on average. Based on this estimate, our
index covered an average of 13% of available torrents.
While this fraction may appear small, it is likely that we
cover a much larger portion of popular torrents, since the

Component Time (mins.)

ClearView crawl 81
Import descriptions and peers 13
.torrent crawl (optional)

Get fresh peers for crawler 23
Retrieve .torrents from peers 30

Build inverted index 6

Total (without .torrent crawl) 100
Total (with .torrent crawl) 153

Table 2: Rapid Bootstrapping — In a typical run, our
SuperSeed prototype bootstrapped a new torrent search
site in less than 100 minutes when targeting 20% DHT
coverage. An optional .torrent crawl to obtain extra
metadata added about 53 minutes.

number of torrent descriptions for each torrent is roughly
proportional to its recent downloads.

While peer lists are not strictly necessary for Super-
Seed’s operation on the Vuze DHT, we can combine
them with torrent descriptions to retrieve .torrent files,
which provide useful additional metadata not contained
in torrent descriptions. As Table 1 shows, we found an
average of nearly 1.5 million peer lists, and we also found
the corresponding torrent description for 249,371 torrents
on average. We were able to recover .torrent files for
an average of 56,590 (22.6%) of these torrents. Peer lists
and torrent descriptions are stored under unrelated keys,
so we could increase the overlap between these sets by
using a larger crawl to capture a greater fraction of the
DHT, or by performing a DHT LOOKUP to retrieve the
peer list for each torrent description we found.

6.2 Bootstrapping Time

The startup time of SuperSeed depends on the size, con-
tent, and behavior of the DHT, which may vary for each
run of the crawler, as well as the target level of cover-
age. Table 2 reports times for a representative execution,
which took about 2.5 hours in total for a 20% DHT cov-
erage target. As the table shows, the two key costs are
crawling the DHT and importing the data from disk into
PostgreSQL. The time spent to crawl the DHT is config-
urable and includes 21 minutes to enumerate nodes for
bootstrapping ClearView. Network bandwidth permitting,
the crawl time could be configured to be as low as in 35
to 45 minutes while maintaining the current coverage.

7 Monitoring Evaluation

Content owners are likely to be interested in two broad
questions: (1) What content is being shared? and (2) Who

is sharing it? This section evaluates how well our DHT
monitoring approach can provide answers.

7.1 Monitoring Coverage

For monitoring, we define coverage as the observed frac-
tion of torrent activity during the monitoring interval.
Monitoring coverage is summarized in Table 3. We found
15,113,700 peer lists that contained 10,354,067 unique IP
addresses and 14,756,483 unique IP:port combinations.
Over the entire period, we recovered both peer lists and
torrent descriptions for 1,538,522 torrents, to which we
were able to map 7,934,945 IP addresses (11,486,776
IP:port combinations) in 45,762,064 IP-torrent pairs. This
last figure can be roughly thought of as the number of
observed downloads.

There were 13,575,178 peer lists without correspond-
ing torrent descriptions; these can be archived in case
torrent descriptions are recovered at a later date but are of
no immediate use. We also recovered 2,046,794 torrent
descriptions without corresponding peer lists; these can
be used to provide a more complete picture of available
BitTorrent content but have no direct evidence about the
described torrents’ downloaders.

The overall .torrent retrieval coverage was dis-
appointing; we recovered .torrent files for 400,908
(26.1%) of the 1,538,522 torrents for which we discov-
ered both a torrent description and a peer list. However,
further analysis found that the 1,137,614 missed torrents
were extremely likely to have few peers: 343,983 had
only one peer, 514,096 had one or two peers, 622,505 had
no more than three peers, and 928,315 had ten peers or
fewer. Another way to see this result is to weight torrents
by their peer counts: our .torrent downloader retrieved
.torrent files corresponding to 37,682,371 (82%) of the
45,762,064 IP-torrent pairs for which ClearView recov-
ered both a torrent description and a peer list.

7.2 Characterizing Content

To illustrate how this monitoring facility might be used,
we characterize the available content. We begin by exam-
ining content popularity (i.e., the number of IPs associated
with each torrent). As shown in Figure 2, torrent popu-
larity follows a roughly Zipfian distribution. The most
popular torrents constitute a large fraction of usage, which
suggests that they should be the focus of our monitoring
effort.

Next, we consider the most popular torrents. The top
ten, representing less than 1% of downloads, are listed
in Table 4. These are likely not the only torrents con-
taining this content given its popularity, but they are the
largest found in our crawl. Nine of the ten torrents contain
video and half of them are recent episodes of television
shows. We observe that all of the top ten torrents appear

Class Total (#)

Torrents with torrent descriptions 3,585,316
. . . and peer lists 1,538,522

. . . and .torrent files 400,908
Torrents with peer lists only 13,575,178

Table 3: Monitoring Coverage — For monitoring, we
want to sample activity in the DHT over an extended
period of time. This table reports the total number of
distinct torrents for which we recovered each kind of data,
measured over all crawls. Torrents with peer lists only are
a much larger fraction than in search coverage, because
they tend to be unpopular and short lived.

Figure 2: Torrent Popularity — We sorted the observed
torrents by popularity and plotted torrent popularity vs.
popularity rank on a log-log scale. The resulting distribu-
tion appears roughly Zipfian.

Content Downloads

The Pacific, Part 9 (TV) 47,612
Iron Man (movie) 46,549
Alice in Wonderland (movie) 44,922
Lost, Ep. 16 (TV) 42,571
Dear John (movie) 42,562
The Back-up Plan (movie) 39,568
Lost, Ep. 13 (TV) 34,979
Desperate Housewives, Ep. 22 (TV) 34,783
The Moulin Rouge Soundtrack (music) 33,130
How I Met Your Mother, Ep. 22 (TV) 33,089

Table 4: Top Ten Torrents — We extracted the ten most
popular torrents (by number of associated IPs) from our
sample. All are apparently infringing, and half are recent
episodes of television shows.

to represent illegal distribution of copyrighted content.
To further investigate copyright infringement, we manu-
ally inspected the filenames of the top 1000 torrents for
which we were able to download .torrent files, repre-
senting 13% of observed downloads. Only one file was
obviously non-infringing—a Vuze data file representing
a subscription to a search for “XXX” on the BtJunkie
torrent discovery site—and it ranked 925th.

We used a simple rule-based classifier to categorize
the complete set of torrents for which we were able to
retrieve .torrent files. (We need the .torrent files to
determine the filenames and extensions inside each torrent
without having to download it.) The classifier examined
the name and file extensions in the metadata in order to
make its decision. The results of our classification are
shown in Table 5. They roughly correspond to those from
Zhang et al. [29] and work by Sahi and Felten [4], and
match our intuitions about popular BitTorrent content (i.e.,
it is predominately movies, TV, and music).

Content owners may also be interested in monitoring
how download activity changes over time for particu-
lar files. To demonstrate this capability, we examined
changes in the popularity of the fourth most popular tor-
rent in our dataset by considering each crawl separately.
That torrent was the penultimate episode of TV’s Lost,
which aired on Tuesday, May 18. As shown in Figure 3,
the episode became available in the crawl period immedi-
ately after the one during which it aired, and its popularity
peaked during our evening crawl on the Friday of the
week in which it aired, suggesting that users may have
used BitTorrent in part to shift their viewing of the show
to the weekend.

7.3 Identifying Peers

We also studied the extent to which crawl data can be
used for identifying the peers sharing each item of con-
tent. Le Blond et al. [1] observed that identifying the
most active peers is challenging because BitTorrent users
often hide behind proxies of various kinds in an attempt
to remain anonymous. We performed a similar analysis to
confirm that Vuze users in particular exhibit this behavior.
Figure 4 plots the top 10,000 IP addresses by the number
of torrents they joined and the number of ports they used.
It is apparent that many nodes, including the four outliers
in the upper right of the figure, follow a linear relation
between torrents and ports, suggesting that they are prox-
ies or NAT devices that support many users. The four
outliers in particular are machines in the same /24 subnet
that belong to anchorfree.com, an SSL VPN provider.

Content owners might want to distinguish proxy ser-
vices from individual downloaders who access large vol-
umes of content. Each of these two classes has a distinct,
recognizable signature in Figure 4. While proxies clus-

Category Size

Video 216,178 (53.9%)
Audio 92,128 (23.0%)
Unclassified archive 29,050 (7.2%)
Software 17,837 (4.4%)
Books 16,658 (4.2%)
Unclassified disk image 8390 (2.1%)
Games 7444 (1.9%)
Unclassified 5316 (1.3%)
Images 4216 (1.1%)
Other 3691 (0.9%)

Table 5: Torrent Categorization — We categorized our
sample of torrents using a simple rule-based classifier.

Figure 3: Popularity Over Time — The fourth most pop-
ular torrent in our sample was the penultimate episode of
the TV show Lost, which aired on Tuesday, May 18th. It
first appeared in our 5 AM crawl on May 19th and peaked
during our 9 PM crawl on Friday, May 21st.

Figure 4: Classifying IPs — Here we plot the top 10,000
IPs by the number of torrents they joined and the number
of ports they used. Outliers to the right belong to an
anonymizing proxy service. Large values along the y-axis
are likely individual heavy users or monitoring efforts.

ter around the line y = x away from the origin, IPs that
are likely to be individual heavy downloaders appear as
points that hug the y-axis. These IPs access hundreds or
even thousands of torrents on a small number of ports.
(Another possibility is that some of these IPs are part
of efforts to monitor torrent users by participating in the
torrents. DHT-based monitoring can let us watch the
watchers!)

To demonstrate our technique’s ability to monitor indi-
vidual users, we inspected the sets of torrents downloaded
by some of the top 10,000 IP addresses that used only
a single port. Individual patterns of use were clearly
discernible. One user we examined was only observed
downloading content that was obviously pornographic. A
second user downloaded two of the top ten torrents (Iron
Man and The Back-up Plan) as well as other recognizable
popular content.

8 Related Work

We divide related work into two categories: searching
BitTorrent content and monitoring BitTorrent at scale.

Search SuperSeed shows that BitTorrent users can re-
spond to attacks on centralized search engines by using
data in a DHT to quickly bootstrap new search sites. An
alternative approach that has been widely investigated in
the literature is to distribute the search functionality. For
example, the usual approach to distributing search using a
DHT is with an inverted index, by storing each (keyword,
list of matching documents) pair as a key-value pair in the
DHT. Joung et al. [17] describe this approach and point
out its performance problems: the Zipf distribution of key-
words among files results in very skewed load balance,
document information is replicated once for each keyword
in the document, and it is difficult to rank documents in a
distributed environment. There are several proposals for
improving on this basic scheme (e.g., [17,24,28]), but our
approach has the advantage of relative simplicity, which
is essential for the widespread adoption of a design within
the greater P2P community.

Grunthal [12] concurrently developed an efficient
.torrent indexer for the Mainline DHT. Similarly to
our approach, Grunthal inserts multiple virtual nodes
into the DHT, but he takes greater care not to disturb
the DHT, using tens of nodes spread across multiple IP
addresses rather than thousands. In contrast to our design,
the nodes passively record infohashes seen in incoming
FIND-VALUE requests and then actively look up the cor-
responding peer lists, rather than relying on incoming
STOREs to deliver peer lists directly. Grunthal’s crawler
achieves better .torrent downloading performance than
SuperSeed in absolute numbers, retrieving 500,000 new
.torrent files in one week (compared to 400,000 in

16 days), although we stress that the Mainline and Vuze
DHTs have different performance and usage characteris-
tics, so a direct comparison is difficult.

Monitoring To the best of our knowledge, this is the
first work to monitor BitTorrent content and downloaders
at large scale using DHTs. However, much other work
has focused on measuring BitTorrent at scale.

Work on large-scale monitoring by Le Blond et al. [1]
is the most similar to ours. They crawled the centralized
Pirate Bay tracker and associated torrent discovery site
as well as the Mininova torrent discovery site, collecting
148 million IP addresses and about 2 million torrents over
103 days. Their crawler uses a single machine and is
able to identify content providers and highly-active users.
Although they state that they could also use the DHTs
for this purpose, they provide no details to support their
assertion. A major contribution of our work is that such
monitoring is still possible even if one entirely ignores
centralized BitTorrent infrastructure. (Indeed, the Pirate
Bay tracker has since been shuttered and Mininova has
been forced to filter copyrighted content, highlighting
centralized infrastructure’s vulnerability to attack.)

Zhang et al. [29] also crawled centralized torrent sites
and trackers at large scale and obtained similar results
about the feasibility of monitoring BitTorrent, although
they used multiple machines. They also obtained peer lists
from the Vuze and Mainline DHTs for a random sample
of six torrents. Piatek, Kohno, and Krishnamurthy [22]
also crawled torrent discovery sites and trackers in order
to investigate content owners’ monitoring of torrents.

9 Conclusion

BitTorrent’s increasing usage of DHTs for decentralized
tracking has significant implications for both sides of the
file sharing arms race. Crawling the DHTs can be used to
quickly bootstrap BitTorrent search engines as well as to
monitor user activity. In our experiments, we indexed an
average of over one million torrents in a single two-hour
crawl, and, over the course of 16 days, we monitored
nearly eight million IP addresses downloading 1.5 million
torrents.

We believe that the feasibility of crawling suggests that
recent legal battles over centralized torrent distribution
sites are, in some sense, a distraction. Even if content own-
ers successfully shut down these sites, BitTorrent users
can easily replace them. In the long term, rightsholders
may find more success by making file sharing a lower-
reward, higher-risk activity through increased efforts to
poison content and to take legal action against individual
infringers.

Acknowledgments

The authors wish to thank Ed Felten, Kristen LeFevre,
and the anonymous reviewers for valuable suggestions
and feedback.

References

[1] BLOND, S. L., LEGOUT, A., LEFESSANT, F., DABBOUS,
W., AND KAAFAR, M. A. Spying the world from your
laptop – identifying and profiling content providers and
big downloaders in BitTorrent. In Proc. 3rd USENIX
Workshop on Large-Scale Exploits and Emergent Threats
(LEET) (Apr. 2010).

[2] COHEN, B. The BitTorrent protocol specification. http://
www.bittorrent.org/beps/bep_0003.html.

[3] DOUCEUR, J. R. The Sybil attack. In Proc. Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS) (2002),
pp. 251–260.

[4] FELTEN, E. Census of files available via Bit-
Torrent. http://www.freedom-to-tinker.com/blog/felten/
census-files-available-bittorrent, Jan. 2010.

[5] FISHER, K. The death of suprnova.org. http://arstechnica.
com/staff/palatine/2005/12/2153.ars, Dec. 2005.

[6] FUNG, G. isoHunt sues CRIA on legality of search en-
gines. http://isohunt.com/forum/viewtopic.php?t=141381,
September 2008.

[7] FUNG, G. isoHunt sues CRIA in self defense, round
2. http://isohunt.com/forum/viewtopic.php?t=335281,
November 2009.

[8] GARDNER, E. ‘Hurt Locker’ producer files massive an-
tipiracy lawsuit. The Hollywood Reporter (May 2010).

[9] GARDNER, E. New litigation campaign quietly targets
tens of thousands of movie downloaders. The Hollywood
Reporter (Mar. 2010).

[10] GEAMBASU, R., FALKNER, J., GARDNER, P., KOHNO,
T., KRISHNAMURTHY, A., AND LEVY, H. M. Experi-
ences building security applications on DHTs. Tech. rep.,
University of Washington Computer Science and Engi-
neering, September 2009.

[11] GEAMBASU, R., KOHNO, T., LEVY, A., AND LEVY,
H. M. Vanish: Increasing data privacy with self-
destructing data. In USENIX Security (2009), pp. 299–
314.

[12] GRUNTHAL, A. Efficient indexing of the BitTorrent dis-
tributed hash table. Unpublished manuscript, Esslingen
University of Applied Sciences.

[13] HAZEL, G., AND NORBERG, A. BEP 9: Extension for
peers to send metadata files. http://www.bittorrent.org/
beps/bep_0009.html.

[14] IONESCU, D. Torrent site Mininova forced to go legit.
PCWorld (November 2009).

[15] IPOQUE. Internet study 2008/2009. http://www.
ipoque.com/resources/internet-studies/internet-study-
2008_2009.

[16] JOHNSON, B. Police shut down website after two-year
music piracy inquiry. The Guardian (Oct. 2007).

[17] JOUNG, Y.-J., FANG, C.-T., AND YANG, L.-W. Key-
word search in DHT-based peer-to-peer networks. In Proc.
25th International Conference on Distributed Computing
Systems (ICDCS) (2005), pp. 339–348.

[18] KRAVETS, D. TorrentSpy shutters in wake of court or-
der. http://www.wired.com/threatlevel/2008/03/torrentspy-
shut/, Mar. 2008.

[19] KRAVETS, D. Torrent search engines unlawful, U.S. judge
says. http://www.wired.com/threatlevel/2009/12/torrent-
searchengines-unlawful/, December 2009.

[20] LOEWENSTERN, A. BEP 5: DHT protocol. http://www.
bittorrent.org/beps/bep_0005.html.

[21] MAYMOUNKOV, P., AND MAZIÈRES, D. Kademlia: A
peer-to-peer information system based on the XOR met-
ric. In Proc. 1st International Workshop on Peer-to-Peer
Systems (IPTPS) (2002), pp. 52–56.

[22] PIATEK, M., KOHNO, T., AND KRISHNAMURTHY, A.
Challenges and directions for monitoring P2P file sharing
networks -or- why my printer received a DMCA takedown
notice. In Proc. 3rd USENIX Workshop on Hot Topics in
Security (HOTSEC) (2008), pp. 1–7.

[23] RICKNÄS, M. The Pirate Bay four found guilty. PCWorld
(April 2009).

[24] ROSENFELD, A., GOLDMAN, C. V., KAMINKA, G. A.,
AND KRAUS, S. An architecture for hybrid P2P free-
text search. In Proc. 11th International Workshop on
Cooperative Information Agents (CIA) (2007), Springer
Berlin / Heidelberg, pp. 57–71.

[25] SAR, E. V. D. The Pirate Bay goes down following le-
gal pressure. http://torrentfreak.com/the-pirate-bay-goes-
down-following-legal-pressure-100517/, May 2010.

[26] Vuze Wiki: Distributed hash table. http://wiki.vuze.com/
index.php/DHT.

[27] WOLCHOK, S., HOFFMANN, O. S., HENINGER, N., FEL-
TEN, E. W., HALDERMAN, J. A., ROSSBACH, C. J., WA-
TERS, B., AND WITCHEL, E. Defeating Vanish with low-
cost Sybil attacks against large DHTs. In Proc. 17th Net-
work and Distributed System Security Symposium (NDSS)
(2010), pp. 37–51.

[28] YANG, K.-H., AND HO, J.-M. Proof: A DHT-based peer-
to-peer search engine. In Proc. 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI) (Dec.
2006), pp. 702–708.

[29] ZHANG, C., DHUNGEL, P., WU, D., AND ROSS, K. W.
Unraveling the BitTorrent ecosystem. http://cis.poly.edu/
~ross/papers/PublicEcosystem.pdf, 2009.

http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://www.freedom-to-tinker.com/blog/felten/census-files-available-bittorrent
http://www.freedom-to-tinker.com/blog/felten/census-files-available-bittorrent
http://arstechnica.com/staff/palatine/2005/12/2153.ars
http://arstechnica.com/staff/palatine/2005/12/2153.ars
http://isohunt.com/forum/viewtopic.php?t=141381
http://isohunt.com/forum/viewtopic.php?t=335281
http://www.bittorrent.org/beps/bep_0009.html
http://www.bittorrent.org/beps/bep_0009.html
http://www.
ipoque.com/resources/internet-studies/internet-study-2008_2009
ipoque.com/resources/internet-studies/internet-study-2008_2009
http://www.wired.com/threatlevel/2008/03/torrentspy-shut/
http://www.wired.com/threatlevel/2008/03/torrentspy-shut/
http://www.wired.com/threatlevel/2009/12/torrent-searchengines-unlawful/
http://www.wired.com/threatlevel/2009/12/torrent-searchengines-unlawful/
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
http://torrentfreak.com/the-pirate-bay-goes-down-following-legal-pressure-100517/
http://torrentfreak.com/the-pirate-bay-goes-down-following-legal-pressure-100517/
http://wiki.vuze.com/index.php/DHT
http://wiki.vuze.com/index.php/DHT
http://cis.poly.edu/~ross/papers/PublicEcosystem.pdf
http://cis.poly.edu/~ross/papers/PublicEcosystem.pdf

	Introduction
	Background
	Bootstrapping BitTorrent Search
	Crawling
	Indexing and Search

	Monitoring BitTorrent Downloaders
	Experimental Setup
	Search Evaluation
	Search Coverage
	Bootstrapping Time

	Monitoring Evaluation
	Monitoring Coverage
	Characterizing Content
	Identifying Peers

	Related Work
	Conclusion

