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Abstract—Web spam is an abusive search engine optimization
technique that artificially boosts the search result rank of pages
promoted in the spam content. A popular form of Web spam
today relies upon automated spinning to avoid duplicate detection.
Spinning replaces words or phrases in an input article to
create new versions with vaguely similar meaning but sufficiently
different appearance to avoid plagiarism detectors. With just a
few clicks, spammers can use automated tools to spin a selected
article thousands of times and then use posting services via
proxies to spam the spun content on hundreds of target sites.
The goal of this paper is to develop effective techniques to detect
automatically spun content on the Web. Our approach is directly
tied to the underlying mechanism used by automated spinning
tools: we use a technique based upon immutables, words or
phrases that spinning tools do not modify when generating spun
content. We implement this immutable method in a tool called
DSpin, which identifies automatically spun Web articles. We then
apply DSpin to two data sets of crawled articles to study the extent
to which spammers use automated spinning to create and post
content, as well as their spamming behavior.

I. INTRODUCTION

Web sites fervently compete for traffic. Since many users
visit sites as a result of searching, sites naturally compete for
high rank in search results using a variety of search engine
optimization (SEO) techniques believed to impact how search
engines rank pages. While there are many valid, recommended
methods for performing SEO, from improving content to
improving performance, some “black hat” methods use abusive
means to gain advantage. One increasingly popular black hat
technique is generating and posting Web spam using spinning.

Spinning replaces words or restructures original content to
create new versions with similar meaning but different appear-
ance. In effect, spinning is yet another means for disguising
plagiarized content as original and unique. However, the spun
content itself does not have to be polished, just sufficiently
different to evade detection as duplicate content. The most
common use of spinning in SEO is to create many different
versions of a single seed article, and to post those versions
on multiple Web sites with links pointing to a site being

promoted. The belief is that these “backlinks”, as well as
keywords, will increase the page rank of the promoted sites
in Web search results, and consequently attract more traffic to
the promoted sites. Search engines seek to identify duplicate
pages with artificial backlinks to penalize them in the page
rank calculation, but spinning evades detection by producing
artificial content that masquerades as original.

There are two ways content can be spun. The first is to
employ humans to spin the content, as exemplified by the
many spinning jobs listed on pay-for-hire Web sites such as
Fiverr and Freelancer [26]. Although articles spun by humans
might have better quality, an alternative, cheaper approach is
to use automated spinning tools. For example, a typical job on
Freelancer might pay as much as $2–$8 per hour for manually
spinning articles [13], whereas others advertise automatically
spinning and posting 500 articles for $5 [12]. Or spammers can
simply purchase and use the tools themselves using popular
tools such as XRumer [30], SEnuke, and The Best Spinner.
For example, The Best Spinner sells for $77 a year. These
article spinners take an original article as input, and replace
words and phrases in the article with synonyms to evade copy
detection; some can even rearrange sentences. Spammers using
automated spinning tools can select an existing article and spin
it hundreds or thousands of times with just a few clicks, and
then use posting services via proxies to spam the spun content
on hundreds of target sites (also available for purchase) all over
the Web. Automated spinning appears to be a popular option
for spammers: in a set of 427, 881 pages from heavily-abused
wiki sites, of the English content pages 52% of them were
automatically-generated spun articles.

The goal of this paper is to develop effective techniques to
detect automatically spun content on the Web. We consider the
problem in the context of a search engine crawler. The input is
a set of article pages crawled from various Web sites, and the
output is a set of pages flagged as automatically spun content.
Although not necessarily required operationally, we also use
clustering to group together articles likely spun from the same
original text. This clustering enables us to study the behavior of
spammers on two crawled data sets as they post spun content
with backlinks as part of SEO campaigns to promote Web sites.
Our approach is directly tied to the underlying mechanism used
by automated spinning tools: we use precisely what the tools
use to evade duplicate detection as the basis for detecting their
output. As a result, we also explore in detail the operation of
a popular automated spinning tool.

In summary, we believe our work offers three contributions
to the problem of detecting spun content:
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Spinning characterization. We describe the operation of
The Best Spinner (TBS), purportedly the most popular au-
tomated spinning tool in use today. TBS enables spammers
to select an input article, specify various settings for spinning
(e.g., the frequency at which TBS substitutes words in the input
article), generate an arbitrary number of spun output articles,
and optionally validate that the spun content does not trigger
detection by defensive services like the CopyScape plagiarism
checker.

Spun content detection. We propose and evaluate a tech-
nique for detecting automatically spun content based upon
immutables, words or phrases that spinning tools do not modify
when generating spun content. We identify immutables using
the tools themselves. The heart of an automated spinning tool
like TBS is a so-called synonym dictionary, a manually-crafted
dictionary used to perform word substitutions. Since tools
operate locally, each instance has a copy of the dictionary
(and, indeed, downloads the latest version on start) and we
reverse engineer TBS to understand how to access its synonym
dictionary. When examining an article, we use this dictionary
to partition the article text into mutables (words or phrases
in the synonym dictionary) and immutables. When comparing
two articles for similarity, we then compare them primarily
based upon the immutables that they share.

Behavior of article spammers. We implement this im-
mutable method in a tool called DSpin, which, given a
synonym dictionary as a basis, identifies automatically spun
Web articles. We then apply DSpin to two data sets of crawled
articles to study the extent to which spammers use automated
spinning to create and post content, as well as their spamming
behavior: the number of spun articles generated in a campaign,
the number of sites targeted, the topics of the spun content,
and the sites being promoted. For valid pages from abused
wiki sites, DSpin identifies 68% as SEO spam, 32% as exact
duplicates and 36% as spun content.

The remainder of this paper is structured as follows.
Section II describes the role of spinning in Web spam SEO
campaigns, and discusses related work in detecting Web spam
and duplicate content on the Web. Section III describes the
operation of the The Best Spinner and how we obtain its
synonym dictionary. Section IV describes and evaluates a
variety of similarity metrics for determining when two articles
are spun from the same source, and motivates the development
and implementation of the immutable method. In Section VI,
we apply DSpin to examine spun content on two data sets
of crawled articles from the Web. Section VII discusses how
spammers might respond to the use of DSpin, and Section VIII
concludes.

II. BACKGROUND AND PREVIOUS WORK

As background, we first describe the role of spinning in
black-hat SEO practices involving Web spam, and then discuss
related work in both detecting Web spam and identifying near-
duplicate content on the Web.

A. Spinning Overview

Search engine optimization (SEO) techniques seek to
improve the page rank of a promoted Web site in search
engine results, with the goal of increasing the traffic and

Fig. 1. Example of articles spun from the same source and posted to different
wiki sites as part of the same SEO campaign.

users visiting the site. There are many valid and officially
recommended ways to improve search engine page rank by
improving keywords, meta tags, site structure, site speed,
etc. [16]. Indeed, an active service market of books, courses,
companies, and conferences exists for optimizing one’s Web
presence. However, there is also a thriving underground in-
dustry that supports black-hat SEO, which can vary from
violating recommended practices (e.g., keyword stuffing) to
breaking laws (e.g., compromising Web sites to poison search
results [22], [25], [35], [36]).

One popular abusive method of black-hat SEO is to post
Web spam across many sites with “backlinks” to a promoted
site. Such backlinks add perceived value when search engines
calculate the page rank of a promoted site: conventional SEO
wisdom holds that the more backlinks to a site, the higher
its rank in search results. Search engines like Google have
responded to such SEO techniques in updates to their page
rank algorithm, such as Panda [32] and Penguin [4], which
penalize pages with duplicate or manipulated content. Such
algorithmic changes, however, rely on effective techniques to
identify manipulated content. Thus, spammers have responded
by making content manipulation harder to detect.

A popular form of Web spam today relies upon spin-
ning to avoid duplicate detection. Spinning replaces words or
phrases in an input article to create new versions with vaguely
similar meaning but sufficiently different appearance to avoid
plagiarism detectors. Figure 1 shows two examples of spun
articles generated during the same SEO campaign that have
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Fig. 2. The role of spinning in the workflow of abusive search engine
optimization.

been posted to open wiki sites. We cut the pages short due to
space constraints, but these pages both backlink to:

http://evasivemosaic6837.wordpress.com/2012/

11/28/how-to-locate-the-best-digital-camera/

a site relating to cameras with links to adult webcam sites.
Note that the spun content is in English, but has been posted
to German and Japanese wikis.

Figure 2 shows the workflow of a spammer using spinning
software to spam pages across the Web with backlinks to
promote a particular site. The spammer uses an SEO software
suite, such as SEnuke or XRumer, to orchestrate the SEO
campaign. The SEO tool first helps automate the selection
of original article content via an online directory of article
collections, such as EzineArticles.com. Once the spammer has
selected an article, often unrelated to the promoted site, the
SEO tool sends the content to a content spinner such as The
Best Spinner. The spinner changes words and phrases in the
original article to generate repeated variations, and ensures
that the spun content avoids triggering duplicate detection by
submitting it to plagiarism services such as CopyScape. The
spinner returns viable spun content back to the SEO software
suite, which then spams target sites with the spun articles —
typically via proxy services to obscure the spammer and to
minimize the number of articles posted per IP address. Target
lists and proxy services are heavily advertised by third-party
sellers, and are easily integrated into the SEO tools.

As a result of this SEO campaign, search engine crawlers
download the spun content across numerous sites. But, they
cannot easily identify the spun articles as duplicate content
since each article instance is sufficiently different from the
others.

B. Article Spam Detection

Web spam taxonomies [17] typically distinguish between
content spam and link spam, and article spinning can poten-
tially fall in either.

The goal of content spam is to craft the content of a
Web page to achieve high search engine rank for specific,
targeted search terms. Techniques for detecting content spam
pages include statistical methods incorporating features of
the URL and host name, page properties, link structure, and
revision behavior [14]; and more recently, statistical methods
began incorporating features based upon a page’s content,
including page length, length of words, compressibility, phrase
appearance likelihoods, etc. [28].

Additionally, other research focuses on techniques for de-
tecting a specific form of content spam called “quilted pages”,
in which, the sentences and phrases that make up a page are
stitched together from multiple sources on the Web [15] [27].
Fundamentally, these techniques work similarly — they begin
with a large corpus of pages, split each page into overlapping
n-grams, and detect a quilted page when a certain percentage
of the n-grams from the candidate page are also found on other
pages.

The link spam category distributes backlinks throughout
spam pages to increase the page rank of a promoted site,
rather than have the spam pages themselves appear higher in
search results. Link spam has received substantial attention
over the years. Since the primary value of link spam is the set
of the backlinks they create, many approaches naturally focus
on the link graph. Link farms, for example, form recognizable
clusters of densely connected pages [37]. Other techniques
such as TrustRank [18], ParentRank [38], and BadRank [21],
[33] formalize a notion of Web page “reputation”. Starting
with training sets of good and bad pages, they propagate
reputation scores along the link graph as part of the PageRank
computation. Pages with resulting low reputation scores are
considered spam and demoted in page rank.

Oftentimes, spun aritcles contain backlinks, which favor
their classifcation as link spam. However, spun articles some-
times contain rich content that has been carefully modified
from an original source, and so one might classify such articles
as content spam. Given this dependence on the nature of the
particular spinning campaign, classification should be made on
a case-by-case basis.

C. Near-duplicate Document Detection

The description of Google’s approach for near-duplicate
document detection by Manku et al. [23] contains an excellent
breakdown and discussion of the general body of work in the
area. Generally speaking, the most common approaches for
detecting near-duplicate documents on the Web use fingerprints
to reduce storage and computation costs for performing what
is naively an n⇥n comparison problem. The classic work is by
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Broder et al. who developed an approach based on shingles [7].
Shingles are n-grams in a document hashed to provide a fixed
storage size and to make comparisons and lookups efficient.
Sketches are random selections of shingles that provide a fixed-
size representation for each document. Similar documents
share the majority of the shingles in their sketches with each
other, enabling the identification of documents that share most
of their content while allowing for minor differences. This
approach enables a graph representation for similarity among
pages, with pages as nodes and edges between two pages that
share shingles above a threshold. The graph yields clusters of
similar documents that either share an edge or have a path of
edges that connect them.

Subsequent work has explored a variety of enhancements
and variations to this baseline approach. Broder et al. in their
original work proposed “super shingles”, essentially shingles
of shingles, to further condense and scale implementations. I-
Match calculates inverse document frequencies for each word,
and removes both the very infrequent and the very common
words from all documents [10]. It then computes one hash for
each remaining document, and those documents with identical
hashes are considered duplicates of each other. Rather than
choosing shingles randomly, SpotSigs [34] refines the selection
of fingerprints to chains of words following “antecedents”,
natural textual anchors such as stop words. Two documents
are then similar if their Jaccard similarity scores for their sets
of word chains are above a configurable threshold.

With simhash, Charikar described a hashing technique
for fingerprinting documents with the attractive property that
hashes for similar documents differ by only a few bits [9]. Hen-
zinger combined this technique with shingling and explored the
effectiveness of such a hybrid approach on a very large Google
corpus [19]. Subsequently, Manku et al. developed practical
techniques to optimize the simhash approach with an opera-
tional context in mind, and demonstrated their effectiveness
on the largest document corpus to date, Google’s crawl of the
Web [23].

While we use the fingerprinting work as a source of inspi-
ration for DSpin, and borrow some implementation techniques
(Section V-C), DSpin addresses a fundamentally different
problem. These approaches identify near-duplicate content,
which by design automated spinning tools specifically aim to
avoid.

III. THE BEST SPINNER

The goal of this work is to understand the current practices
of state of the art software spinning tools as a basis for
developing better detection techniques. This section examines
the functionality of the most popular spinning suite, The Best
Spinner (TBS), and leverages this examination to create a
scalable technique for detecting spun content in the wild.
In particular, we reverse engineer TBS to gain access to its
synonym database, and later use the database to identify words
likely unchanged by spinning software.

A. The Best Spinner

The first step of this study is to understand how articles
are spun, and we start by examining how spinners work. There
are multiple vendors online that provide spinning services. To

Fig. 3. The Best Spinner

select a service, we browsed underground SEO forums such
as BlackHatWorld.com and selected The Best Spinner (TBS).
The blackhat SEO forums frequently mention TBS as the de-
facto spinning tool, and notably other popular SEO software
such as SEnuke and XRumer [30] provide plugins for it.

We downloaded TBS for $77, which requires registration
with a username and password. TBS requires credentials at
runtime to allow the tool to download an updated version of a
synonym dictionary. We installed TBS in a virtual machine
running Windows 7. The application itself appears similar
to any word processing application. Once the user loads a
document, TBS generates a “spintax” for it. Spintax is a
format where selective sets of words are grouped together
with alternate words of similar meaning. During the actual
spinning process, TBS replaces the original words with one of
the alternates. Each set of words, including the original and
synonym words, are enclosed in curly braces and separated by
a “|”.

TBS permits the user to adjust a number of parameters
when generating the spintax:

Frequency: This parameter determines the spinning fre-
quency. The options are every word, or one in every second,
third, or fourth word. Typically, a lower number increases
the frequency of replacements within the document; when
selecting every third word, TBS tries to replace one in every
three words (phrases can also be replaced, so the frequency
is not exact). The manual and tutorial videos for TBS suggest
that spammers should change at least one of every four words.
The reason given is that popular duplicate detection tools, such
as CopyScape, use a shingle size of at least four because
shingle sizes of three or less have too many false positives.
The TBS manual recommends setting the default parameter
between every second and fourth word.

Remove original: This parameter removes the original word
from the spintax alternatives. In effect, it ensures that TBS
always chooses an alternate word to replace the original. For
example, if the spintax for the word “Home” is:

{Home|House|Residence|Household}
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then with Remove Original set it would be:

{House|Residence|Household}

Auto-select inside spun text: This is a check box parameter
that, when selected, spins already spun text. This feature
essentially implements nested spins, effectively increasing the
potential set of word replacements.

In addition to these parameters, the user may also manually
change the spintax by hand.

B. Reverse Engineering TBS

The core of TBS is its ability to replace words and phrases
with synonyms. Since TBS selects synonyms from a custom
synonym dictionary, the synonym dictionary is the foundation
of article spinning. For this study, we obtained access to the
dictionary by reverse engineering how the tool obtains it.

During every startup, TBS downloads the latest version of
the synonym dictionary. We found that TBS saves it in the
program directory as the file tbssf.dat in an encrypted
format. By inspection of the encrypted database, we found
that it is also obfuscated via base64 encoding. Since the TBS
binary is a .NET executable, we were able to to reverse-
engineer the binary into source using a .Net decompiler from
Telerik; Figure 4 shows the portion of the code responsible
for downloading and encrypting the synonym dictionary. It
downloads the synonym dictionary using an authentication
key, GlobalVarsm. unique, which is assigned at runtime during
login by making the following request using the login creden-
tials:

http://thebestspinner.com/?action=app_

login&email=email&password=password

Emulating TBS’s sequence of steps, we queried the server
to obtain the key, and directly downloaded the synonym
dictionary using the key mimicking the behavior of TBS. We
then xored it with the downloaded database, procuring the
synonym dictionary in text format. As of August 2013, the
decrypted synonym dictionary is 8.4 MB in size and has a
total of 750,114 synonyms grouped into 92,386 lines. Each
line begins with the word or phrase to replace, followed by a
set of words of similar meaning separated by “|”.

Note that the synonym dictionary does not have a one-to-
one mapping of words. If word ‘b’ is a synonym of ‘a’, and
word ‘c’ is a synonym of word ‘b’, there is no guarantee that
word ‘c’ is in the synonym group of word ‘a’. This artifact
increases the difficulty of article matching in the following
sense. If word a in article A is transformed into a1 in article
A1 and a2 in A2, we are unable to compare a1 and a2 directly
in the synonym dictionary; i.e., if we lookup a1 in the synonym
dictionary, a2 is not guaranteed to be in the set of synonym
of a1.

C. Controlled Experiments

We now perform a controlled experiment to compare
different similarity methods for detecting spun content.

To explore the effects of its various configuration param-
eters, we use TBS to generate spun articles under a variety

Frequency Max Synon 3 Max Synon 10 Max Synon 3 Max Synon 3
Auto-Select Rm. Orig.

4th 84.0 79.0 83.0 78.0
3rd 79.0 73.0 76.0 70.0
every other 70.0 63.0 69.0 61.0
all 49.0 37.0 69.0 35.0

TABLE I. TABLE SUMMARIZING THE PERCENT OF OVERLAP BETWEEN
THE ORIGINAL AND SPUN CONTENT.

of parameter settings. We downloaded an article from Ezin-
eArticles.com, a popular online article directory. The article
consists of 482 words on the topic of mobile advertising. To
exercise possible use case scenarios, we vary the spinning
configurations of Max synon (3 and 10) and Frequency (1–
4) during data set generation. We also toggle the Auto-select
inside and Remove original parameters. Each configuration
generates five spun articles in the test data set. We configure
TBS to spin Words and phrases as opposed to Phrases only to
maximize the variation between spun articles. We also add
a control group to this data set where we randomly pick
five different articles from EzineArticles unrelated to the spun
article. As a baseline, the pairwise word overlap of the articles
in this control set averages 26%.

To get a sense of the extent to which spinning modifies
an article, we calculate the percentage of the article that
remains unmodified for each configuration. We calculate this
percentage by taking the number of words that overlap between
the spun and original article, and dividing by the size of
the spun article. We compute this ratio across all five spun
articles for each configuration and report the average in Table I,
leading to four observations. First, increasing the Max Synon
parameter from three to ten causes more text (5–12%) to
be spun. Second, the Auto-Select parameter has little impact
on spun articles with minor changes for Frequency settings
from 4th to “every other” with an average difference of 1.7%.
However, when the Auto-select is set, there is no difference
between setting Frequency from every other to all. Third, the
Remove original option causes more text to be spun for all
frequency settings ranging from 6–14%. Last, as expected, the
Frequency parameter directly affects the amount of spun text,
causing as much as 34% more text to be spun.

Using this training set, we next evaluate how well different
algorithms perform.

IV. SIMILARITY

Determining whether two articles are related by spinning is
a specialized form of document similarity. As with approaches
for near-duplicate document detection, we compute a similarity
score for each pair of articles. The unit of comparison differs
depending on the technique. We first describe how it is defined
generally, followed by the details of how it is defined for each
technique. Table II summarizes the results.

A general comparison for the similarity of two sets, A and
B, is defined by the classic Jaccard Coefficient:

J (A,B) =
|A \B|
|A [B| (1)

The straightforward application of the Jaccard Coefficient (JC)
is to take all the words from the two documents, A and B, and
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Fig. 4. Source code for downloading and encrypting the synonym dictionary in TBS.

compute the set intersection over the set union across all the
words. Identical documents have a value of 1.0 and the closer
this ratio is to 0, the more dissimilar A is from B. We base
our definition for when two spun articles are similar on the
Jaccard Coefficient. The ideal case is to have a technique that
produces a Jaccard Coefficient as close to 1.0 as possible for
two documents that are spun from the same source document,
and to have a low Jaccard Coefficient for articles that are
different.

A. Methods Explored

Given the Jaccard Coefficient metric, one needs to decide
how to compute the intersection and size of two documents.
There is significant degree of freedom in this process. For
instance, one may choose to compare paragraphs, sentences,
words, or even characters. Shingling and parts-of-speech rep-
resent two popular bases of comparison [11].

1) Shingling: Shingling is a popular method for identifying
near duplicate pages. We implement shingling by computing
shingles, or n-grams, over the entire text with a shingle size
of four. We pick this size because the longer the n-gram, the
more probable that it will be over-sensitive to small alterations
as pointed out by [5], especially in the case of spun content.
The shingling procedure operates as a sliding window such
that the 4-gram shingle of a sentence “a b c d e f” is the set of
three elements “a b c d”, “b c d e”, and “c d e f”. Therefore,
the unit of comparison for shingling is a four-word tuple. The
metric for determining the Jaccard Coefficient with shingling
is:

shinglesN (A) \ shinglesN (B)

shinglesN (A) [ shinglesN (B)
(2)

where the intersection is the overlap of shingles between two
documents. As expected from Table II, shingling ranks two
articles that are derived from the same input with a relatively
low similarity between 21.1–60.7%. Since spinning replaces
one out of every N words, as long as the frequency of
word spinning occurs as often as the N-gram shingle then
the intersection of shingles will be quite low. Although useful
for document similarity, it is not useful for identifying spun
content given the low similarity scores. (Plagiarism tools are
believed to use some form of shingling, and spinning is

designed to precisely defeat such tools.) Shingling ranks some
spun content as low as non-spun articles in the control group.

2) Parts-of-speech: Parts-of-speech identifies spun content
based on the article’s parts-of-speech and sentence structure.
The intuition is that if a substitution is made with a synonym,
it would be substituted with the same part of speech. We
implement this technique by identifying the parts-of-speech
for every word in the document using the Stanford NLP
package [2]. We pass the entire document, one sentence at a
time, to the NLP parser. For each sentence, the NLP parser
returns the original sentence with parts-of-speech tags for
every word. We strip the original words, and use the parts-
of-speech lists as the comparison unit. A document with N
sentences therefore has N lists, each list containing parts-of-
speech for the original sentence, and the corresponding Jaccard
Coefficient is defined as:

pos (sentences (A)) \ pos (sentences (B))

pos (sentences (A)) [ pos (sentences (B))
(3)

When experimenting with articles spun with TBS, words are
not necessarily being replaced with words of the same parts-
of-speech. Furthermore, TBS can replace single words with
phrases, and phrases comprised of multiple words can be spun
into a single word. Table II reflects these observations, showing
very low similarity scores ranging from 20.8% to 38.8%.
Further, the similarity scores for spun content are nearly
indistinguishable from the control group of different articles.
Hence, we also do not consider this technique promising.

B. The Immutable Method

The key to the immutable method is to use the reverse-
engineered synonym dictionary to aid in identifying spun con-
tent. In this method, we extract the text of a page and separate
each article’s words into those that appear in the synonym
dictionary, mutables, and those that do not, immutables. We
then focus entirely on the list of immutable words from two
articles to determine if they are similar. Since the immutables
are not spun, they serve as ideal anchors for detecting articles
spun from the same input (as well as the input article itself).
We exclude links in this analysis, as links can vary from one
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Max Synon 3 Max Synon 10 Max Synon 3 Auto-Select Max Synon 3 Removed Original Control

experiment 4th 3rd other all 4th 3rd other all 4th 3rd other all 4th 3rd other all control

shingles 50.1 47.5 30.5 23.2 40.9 31.9 25.3 21.1 54.9 40.7 38.0 30.3 60.7 44.9 35.1 24.9 20.1
POS 31.5 34.1 24.0 22.1 24.3 22.9 22.3 21.0 36.5 25.1 30.9 24.0 38.8 26.3 24.2 20.8 20.1
immutables 93.5 92.4 94.6 80.2 97.7 92.5 86.6 78.3 96.6 94.4 93.4 93.4 96.6 94.5 90.8 74.9 27.8
mutables 90.4 90.0 86.0 82.3 86.0 83.0 79.3 77.0 91.5 89.0 88.7 87.6 93.0 89.3 87.6 82.6 59.4

TABLE II. AVERAGE MATCH RATE FOR SHINGLING, PARTS OF SPEECH, AND IMMUTABLES UNDER DIFFERENT SETTINGS FOR TBS.

spun version to another.1 We treat each immutable as unique;
a page has a set of unique immutables instead of a list of
immutables. We differentiate between duplicate immutables by
adding a suffix. With immutables, the Jaccard Coefficient is
defined as:

immutables (A) \ immutables (B)

immutables (A) [ immutables (B)
(4)

Applying the immutable method to the training data set,
Table II shows that using immutables to compute the Jaccard
Coefficient results in ratios well above 90% for most spun
content when using recommended spinning parameters. Under
the most challenging parameters, spinning every word and/or
removing the original mutable words, the immutable method
still produces a similarity score as high as 74.9%. Furthermore,
unlike the previous methods, it scores spun content with a high
value while scoring articles that are different in the control
group with a low coefficient of 27.8%. It thus provides a clear
separation between spun and non-spun content.

The reason this technique does not produce a 100% Jaccard
Coefficient is due to the behavior of spinning in which both
words and phrases can be spun. We use a greedy implementa-
tion that scans the document from beginning to end. For every
word, we see if the word is in the synonym dictionary, and
if it is, we mark it as mutable. If not, we look up the word
combined with zero to five subsequent words to see if the word
or phrase is present in the synonym dictionary. Due to the
greedy nature of this implementation, we may inadvertently
mark mutable phrases as a series of immutable words. For
example if {a,b,c} is a phrase, and both {a} and {a,b,c} are
in the synonym dictionary, then we mark only {a} as mutable
while marking {b} and {c} as immutable. However, Table II
indicates that this greedy approach still produces very good
results for detecting spun content.

In the control experiment, the synonym dictionary used
to spin content and detect content are the same. In practice,
when examining content on the Web, the synonym dictionaries
may differ between the times of spun content generation
and detection. To gauge the rate of change in the synonym
dictionary over time for TBS, we downloaded two versions
of the synonym dictionary 138 days apart and measured the
overlap between the two. We found that 94% of the words in
the synonym dictionary stayed the same, indicating that the
degree of change in the dictionary is small.

One benefit of using the immutable method is that, in
addition to its accuracy, it also greatly decreases the number of
bytes needed for comparison by reducing the representation of
each article by an order of magnitude. The average ratio of the
number of immutables versus the number of total words in the

1Kolari et al. studied identifying blog spam via examining link based
features [20].
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Fig. 5. Ratio of original document word count versus immutable word count

original document is 6%. We disregard content that has one
immutable or less, as one immutable would not provide enough
confidence to determine whether two articles are related via
spinning. The reduction in size of our data (Section V-A) is
illustrated in Figure 5. The figure shows that more that 90%
of pages we evaluate have an 80% reduction in the number
of words that needs to be compared versus the original. More
than 65% of the content has a 90% reduction. We find similar
ratios in our GoArticles data set.

C. Verification Process

To further test the immutable method, we generated a 600-
article test data set. We select five articles from five different
popular article directories, and one directory containing five
articles randomly selected from Google news. We spin each
article 20 times using the bulk spin option in TBS. We selected
the word replacement frequency of one out of every three
words as suggested by the TBS spinning tutorial [3]. We apply
the immutable method on this data set, and all the spun content
is identified and correctly matched together with the original
source.

Although the immutable method produces very accurate
classification of spun content in our experimental data set, it is
agnostic towards analyzing mutable content. Since the mutable
words can account for 80% or more of the text on a page,
ignoring them completely can cause false positives in cases
where foreign text or symbols will bias two otherwise different
pages to be identified as spun. To address this concern, we
add another layer of verification to the immutable technique,
which we call the mutable verifier. At a high level, the mutable
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verifier cross-references the mutable words, words that appear
in the synonym dictionary, among two pages.

The mutable verifier computes the overlap of the mutables
in the following steps:

• First, it sums all the words that are common between
the two pages, and adds it to the total overlap count.

• Second, it compares the first level synonyms. It com-
putes the synonyms of the remaining words from one
page and determines if they match the words of the
other page, and vice versa. Matches are added to the
overlap count.

• Third, it computes the second level synonyms by
taking the synonyms of the synonyms of the remaining
words and comparing them in a similar fashion to step
two.

As with immutables, the score the mutable verifier pro-
duces is the overlap over the union of the mutable words. We
use a overlap threshold of 70%.

The mutable verifier rates spun content in our training data
set as detailed in Table II. It produces a high rate for spun
content with scores between 77% to 93% for spun pages, and
a similarity score of 59.4% for non-spun pages. We do not
employ the mutable verifier on the entire data set because it
has a much higher overhead, as the algorithm compares all the
words in the documents for two levels of synonyms. Instead,
we rely on this to verify content which our immutable method
identifies as spun to filter out false positives. Since the mutable
verifier only runs in the verification phase, it only needs to take
two documents at a time, enabling easy parallelization.

V. METHODOLOGY

Given a means of detecting the similarity of two potentially
spun articles, we implement the immutable method in the
Hadoop framework. We first discuss how we acquire two
data sets from domains that are known to have spam. We
then sanitize the data sets sanitized for the purpose or article
comparison, removing foreign text, link spam, invisible text,
and exact duplicates. Then we optimize duplicate detection to
better scale to larger data set sizes.

A. Data Sets

We evaluate the immutable method on two data sets.
The first is a set of crawled wiki pages actively targeted by
spammers. The second is a popular article directory, GoArti-
cles.com, which spammers use as both a source of articles for
spinning as well as a target for spamming.

1) Spammed Wikis: The wiki data set is a collection of wiki
article spam that we collected over a month between December
1, 2012 through December 31, 2012. The wikis themselves are
benign, but their permissions leave them open for abuse by
spammers. Figure 1 shows a typical example of spam posted
as a wiki article.

To populate the wiki data set, we use a set of wikis
discovered to have article spam. We identified this set of wikis
by purchasing a Fiverr job offering to create 15K+ legitimate

backlinks.2 At the end of the job, the seller returned a list of
URLs (not as legitimate as advertised) pointing to wiki article
spam for inspection. From this list, we identified 797 distinct
wikis apparently targeted by a wide range of spammers.

On an hourly basis, we then crawled the recent posts on
each of the wikis, the majority of which are spam articles.
Because the wikis all use the MediaWiki [24] platform, we
use the following URL:

http://mediawikiexample/&Special:

RecentChanges&limit=500&hideminor=0

to fetch links for the 500 most-recent changes to the wiki. Note
that we ignore any recent changes that do not occur within
the hour to avoid fetching content that overlaps with previous
crawls. We crawl 55K pages on average per hour, and in total
we crawl 37M pages for December 2012.

2) GoArticles: The GoArticles data set is a collection of
articles from GoArticles.com, a large article directory with
over 4.6M articles. An article directory is a Web site in which
users post articles on various topics, e.g., business, health and
law. Some high quality article directories even pay authors
for their contributions. In general, article directories forbid
duplicate and spun content. The goal of the article directory is
to attract readers and to make money from advertising. These
directories enable users to submit unique articles and embed
links to other relevant Web sites. Authors may use these pages
to generate backlinks to their own personal sites.

We select this article directory for several reasons. First,
GoArticles.com is one of the top search results returned by
Google for the query “article directory”. Furthermore, we
observe that the site is targeted by members of the black hat
SEO forums [1], who are lured by the fact that the site allows
users to build backlinks as “dofollow” that can affect search
engine page rankings. Often, sites that allow users to create
backlinks in the form of HTML anchors can specify that all
links created by users should be labeled “nofollow”, indicating
to search engines that they should disregard the link when
ranking the linked page. The use of “nofollow” therefore acts
as a deterrent to spamming a site with SEO backlinks. In the
SEO vernacular, links not labeled as “nofollow” are considered
“dofollow” and, as such, sites that allow them are highly prized
by article spammers.

We populate the GoArticles data set by first enumerating
1M unique URLs pointing to articles on the site, and then
crawling each article pointed to by the URL. To enumerate
URLs, we take advantage of the URL format followed by the
site, shown below, in which title refers to the title of the article
and id refers to a seven-digit unique identifier for the article:

http://goarticles.com/<title>/<id>/

We found that the site ignores the title field and returns
the article that matches the id. As a result, crawlers can fetch
articles between id ranges while using random strings for the
title. In addition, the site assigns ids to articles in chronological
order. Thus, we can fetch all articles for a time period if we

2Fiverr is an online community where services are offered for hire at some
predetermined cost.
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know the corresponding id for the start and end of an interval
of time.

Using this technique, we crawl over 1M articles over a
month from the id range 6M–7M, which corresponds to articles
posted between January 2012 to May 2013. We crawl at a rate
of 2.7 URLs per second to limit the load on the site. This data
set overlaps in time with the wiki data set that spans the month
of January of 2013.

B. Filters

Before analyzing the posted articles for spun content, we
apply several pre-filters to the data set. These pre-filters remove
pages that lack substantive English text. These pages would
likely be filtered during a search engine page rank algorithm.
We apply each filter in sequence on both data sets to reduce
the overall processing required.

Visible text: We remove all pages that do not contain any
visible text on the page. We detect visibly blank pages by
first stripping all HTML tags. If no visible text remains, we
remove the page from the data set.

Content tag: The pages in each set share a common HTML
tag that embeds the content of interest. For pages in the Wiki
data set, the tag is a div labeled “bodyContent”. For pages
from GoArticles, the tag is a div with “class=article”. If a
crawled page lacks the appropriate tag, such as index page,
we remove the page from the data set.

Word count: We discard small pages from analysis. Pages
with a small number number of words often result in false
positives with similarity algorithms. From manually examining
article pages, we find it rare that spammers post spun article
content using small articles. Unlike manual spinning, there
is no incentive in automated spinning to favor small pages.
Consequently, although small pages might contain spam, in
our experience, little of that spam is generated using spinning
tools. We find more short posts contain unintelligible words
interlaced with lots of links. From experimentation, we find
that a threshold of 50 words was a good balance between false
positives and negatives.

Link density: We also discard pages with an unusually high link
density. Again, we find that spammers using spun article pages
typically do not litter the page with large numbers of links in
the spun text, perhaps to avoid other detection algorithms that
specifically look for such features. Thus we discard any page
that has a link density of every fifth word or higher.

Foreign text: Since we reverse engineer only the English
synonym dictionary from TBS, we only evaluate the immutable
method on pages with mostly English text. (Otherwise, ef-
fectively every word is labeled as an immutable.) We use
a language detector library [31] to identify the language of
each page, and discard any page not identified as English.
Since there is nothing inherent about the immutable method
that ties it to English, we believe it would readily extend to
other languages given access to synonym dictionaries for those
languages.

C. Inverted Indexing

A naive pairwise comparison of two documents leads to
O(n2) comparisons, which is infeasible for processing data at

scale. Therefore, we implement the immutable method using
inverted indexes, similar to the method described in [6]. For
every immutable in the text, we generate a pair:

< id, immu > (5)

The id is a unique index corresponding to an article, and immu
is an immutable that occurs in id. We differentiate duplicate
immutables by marking each with a unique suffix number to
simplify document comparison. Next, we perform a “group
by” on the immutables:

< immu, group < ids >> (6)

Each group represents all document ids that contain the
immutable. We decompose each group into a pairwise id key
and a “1”. Each pairwise id, idi : idj , indicates a single shared
immutable between two documents. Each group with N ids
therefore has N2/2 pairs. The key-value pairs appear as:

< idi : idj , 1 > (7)

Last, we “group by” idi : idj and count the number of ones,
yielding:

< idi : idj , count > (8)

The count represents the total number of immutables that
overlap between idi and idj . This format is also convenient
for finding the total number of immutables in the original
document. For a document idi, the number of its immutables
is given by idi : idi, namely the number of total overlapping
immutables an article has with itself. From the list of pairs
< idi : idj , count >, we calculate the similarity score between
each two pages. We set the threshold for the similarity score to
be 75%. We determine this threshold from the training data set,
in which the lowest similarity score we found for any cluster
was 74.9%.

D. Clustering

The id pairs can be transformed into clusters to convey
more information. We cluster duplicate content, near duplicate
content and spun content as detailed in Section VI both
for filtering and also for assessing the behavior of spam
campaigns.

To transform pairs into clusters, we use a graph represen-
tation where each page is a node and each pair has an edge in
the graph. Each connected subgraph represents a cluster. We
first build the graph using pairs or edges as input and the ids
as nodes. For each node, we traverse all reachable nodes using
breadth-first search and mark every node traversed as visited.
We continually process unvisited nodes until every node has
been visited. The results are disjoint clusters of ids.

E. Exact Duplicates and Near Duplicates

Advice posted in SEO forums advises against posting iden-
tical content with backlinks across multiple sites since search
engines are capable of detecting such duplicate content [23].
In practice, we find that spammers continue to post identical
content. By default, the various similarity algorithms discussed
in Section IV would detect exact duplicates as spun content.
Since our focus is spun content, we separate exact duplicates
from the analysis of spun content in experiments.
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We identify exact duplicates by generating a hash over each
page in the form of an MD5 sum: two articles are identical if
their MD5 sums match. We add this sum to the immutables
list for each page. When analyzing a two-page pair, we first
determine if the two pages are identical. This is done by
determining if their similarity score is 100%; the MD5 sums
must match to obtain this value, since the immutables include
this hash. Anything less than 100% implies that the pages are
not exact duplicates. If the pages are not exact duplicates,
we adjust the similarity score calculation to account for the
extra MD5 sum by subtracting two from the denominator, and
recompute the similarity score using this modified version.
This method gives us the same similarity score as if the hash
sums are not added.

We also attempt to identify near duplicates and to separate
them from our spinning analysis. We achieve this using the
mutable verifier. In the results, we find articles with a 100%
mutable match, but with mismatching MD5 sums. Manual
examination of examples shows that these are near duplicate
pages where the text on the two pages are identical, with minor
differences in the links or spacing, which we characterize as
near duplicates in our data set. Recall in Table II, no spun
page has a mutable similarity score of 100% match. Thus we
separate these pages from the spun page analysis as well.

F. Hardware

We run our experiments on a shared cluster with 24
physical nodes running Fedora Core 14. Each node has a single
Xeon X3470 Quad-Core 2.93GHz CPU and 24 GB of memory.
The experiments are written in Java, and run as a combination
of Hadoop 1.1.2 and Pig 0.11.1 jobs.

VI. SPINNING IN THE WILD

We next use DSpin to identify spun content in the two
crawled data sets. We examine the amount of spun content,
characteristics of the clusters of spun pages including size,
content, and number of sites targeted, and finally look at the
relationship between the wiki sites and the article directory for
spinning and spamming.

A. Volume

First, we report the total volume of spun content found
using the immutable method for both the wiki and GoArticles
data sets. For each data set, we apply filters that, in sequence,
remove articles that have no visible text (visible), no expected
content tag (body), insufficient word count (wc), too many
links (link), or a language other than English (english) as
discussed in Section V-B. After applying filters, we obtain all
page pairs that match according to the immutable method.

We divide these pairs into exact and non-exact duplicates.
We form clusters of the exact duplicates, and use the smallest
alpha-numeric ID to represent each duplicate cluster. Next, we
cluster all non-duplicate pairs. During this clustering phase,
we remove all IDs found in the duplicate clusters with the
exception of the smallest alpha-numeric ID.

After removing exact duplicates, we validate each edge (an
edge represents a match between two pages) with the mutable
verifier discussed in Section IV-C. The mutable verification
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Fig. 6. Effect of applying filters on the wiki and GoArticles data sets. The
last column shows the final number of spun pages identified.

process removes unmatched pairs, identifies near-duplicate
pairs, and removes them as well. Figure 6 shows the size of the
data set after each step of filtering for the wiki and GoArticles
data sets, as well as applying the mutable filter. Finally, the
last column reports the total number of spun pages found.

Wiki data set: The wiki data set contains the first crawl of
each day over a month, yielding 1, 233, 595 initial pages of
the 37M total. To make data processing time reasonable, we
did not use all crawled pages in the analysis. And we chose
one of the crawls each day to get a longer-term sample over
time (rather than many of the crawls per day). Each of the
filters has a notable impact on the data set (e.g., there are
many empty, tiny, or non-English postings), leaving 632, 966
after filtering as our baseline set of pages. Of these, 205, 085
are duplicates and removing them yields 427, 881 pages with
substantive content. Of those, the immutable method labels
244, 107 pages as potentially spun. After applying the mutable
verifier, which verifies the pages and removes near duplicates,
DSpin identified a total of 225, 070 spun pages.

GoArticles data set: We crawled 1, 239, 700 GoArticles
pages over the time period from January 2012 to May 2013.
Most of the pages have substantive content, so the filters affect
this data set less. As an article directory, GoArticles has much
less spam on it than the abused wikis. Applying the filters and
removing exact duplicates leaves 1, 003, 317 pages. Of those,
the immutable method labels 100, 181 as likely spun. With the
mutable verifier and near duplicates removed, DSpin identified
71, 876 spun pages.

In summary, after filtering the wiki pages DSpin identified
a majority of the pages, 68.0%, as SEO spam. Of these,
32.4% are exact duplicates and 35.6% are spun content. The
GoArticles data set has drastically less spun content (7.0%)
than the wiki data set. These results align with expectations.
The GoArticles data set is a legitimate article directory that
purportedly tries to filter spam content, whereas the wiki data
set contains sites known to be targets for spammers. From this
point forward we will focus our discussion on the spun content
only.
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Fig. 7. CDF of cluster sizes for the wiki data set.

B. False Positives

We examined the false positive rate of the clustered data
set. To this end, we randomly sampled 99 clusters from both
the GoArticles and wiki data sets. For each cluster, we chose
two pages at random, inspected them visually, and determined
if the two articles appear to be spun from a common source.
Using this methodology, we examined a total of 396 articles
and found no evidence of false positives, where a false positive
is defined as two articles that appear in the same cluster but
are unrelated.

However, we find some clusters contain articles with
mostly duplicate content. These texts are mostly the same with
differences in adding a title and/or footer. In the wiki dataset,
27 out of 72 article pairs are mostly duplicates; while in the
GoArticles dataset, 14 out of 85 samples are mostly duplicates.

Further, manual inspection of the cluster samples reveals
that there were some differences between spun articles. Some
spun articles appear mechanically spun, as the sentences read
awkwardly or have semantic deficiencies. Other articles appear
to have benefited from human intervention, as the sentences
read smoothly and are meaningful. We consider the problem
of classifying spun content into machine and human categories
to be an interesting challenge for future work.

C. Cluster Sizes

SEO folklore holds that the more backlinks a promoted
page has, the more effective the SEO campaign. Next we
measure the scale at which spammers post spun content, pre-
sumably reflecting the scale at which they perceive backlinks
are necessary for effective SEO. In particular, we look at the
distribution of cluster sizes for both the wiki data set and the
GoArticles data set, shown in Figures 7 and 8. Each cluster
represents the set of spun pages generated from a given source
page. We find a total of 12, 783 clusters from the wiki data set
compared with 27, 141 clusters from the GoArticles data set.
Even though the wiki data set has more spun pages, it has
fewer clusters. This results from more spun pages per cluster.

From Figure 7, a majority of spun pages resides in clusters
of size 600 pages or less for the wiki data set. But most clusters
are small: over 80% of the clusters have nine postings or
fewer. And as a single site, cluster sizes are even smaller on
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Fig. 8. CDF of cluster sizes for the GoArticles data set.

Topical Words (Wiki) Freq. Topical Words (GoArticles) Freq.

business 0.110% business 0.120%
internet 0.100% windshield 0.110%
company 0.095% online 0.110%
insurance 0.087% glass 0.110%
online 0.086% auto 0.094%
marketing 0.085% company 0.090%
information 0.072% car 0.084%
car 0.054% internet 0.084%
weight 0.053% information 0.062%
body 0.053% offer 0.061%

TABLE III. FREQUENT TOPICAL WORDS IN SPUN CONTENT.

GoArticles. Figure 8 highlights this point by annotating that
80% of clusters have two pages, and 90% of clusters have
three pages or less.

D. Content

If spinning campaigns manipulate a promoted page’s rank
via backlinks from spun pages with seemingly viable, non-
duplicated content, understanding the content of such spun
pages can indicate the affiliations of spun pages. To this end,
we calculate word frequencies on spun content found in the
GoArticles and wiki data sets. We extract frequent words, and
then remove any words that are not a noun, a verb, or an object.
Table III shows the top ten topical words, where a topical word
suggests the topic of an article.

Overall, most of the popular words appear to relate to sales
and services, some to particular markets (automobile, weight
loss). This is no surprise since a major incentive to increasing
a page’s search rank would be to encourage more traffic to a
Web site and increase sales opportunities.

E. Domains

Next we characterize the relationship between spun articles
and domains. If spammers post spun articles on pages within a
single domain, then the total set size considered for duplicate
detection algorithms would be greatly reduced. However, if
spammers post spun pages across many domains, then detec-
tion techniques would have to account for this behavior. We
evaluate this relationship for the wiki data set as all pages from
the GoArticles data set exist in the same domain.
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Fig. 9. CDF of the number of domains in clusters for the wiki data set.

Fig. 10. Number of pages per cluster versus number of domains per cluster
for the wiki data set.

1) Spun Content Across Domains: We map each page to
its domain, and compute the number of distinct domains that
appear within each cluster. Figure 9 displays a CDF of the
number of domains per cluster. The CDF shows that although
some clusters contain only one domain, the average cluster
spans across 12 ± 27 domains, with some clusters spanning
across as many as 228 domains. This result provides evidence
that spammers target multiple domains when posting spun
content, instead of a single site.

Further, Figure 10 shows the relationship between the
number of domains in a cluster and the number of pages in the
cluster. It indicates a strong, positive correlation between larger
scale spinning campaigns and a larger number of targeted
domains. For instance, the largest spinning campaign that spans
only a single domain has 44 pages, while the largest spinning
campaign that spans 228 domains contains 716 pages.

2) Spun Content per Domain: Spammers may target some
domains more heavily than others, for numerous reasons. In
Figure 11 we calculate the percentage of spun content per
domain, for all domains that contain spun content. For each
domain, we normalize the quantity of spun content to the total
number of pages from that domain. The bulk of the distribution
are when domains have 15%–65% spun content, showing that,
when a wiki is targeted for spamming, it is targeted heavily.

       
  
























Fig. 11. Percent of spun content per domain normalized by total URLs in
domain for the wiki data set.
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Fig. 12. CDF of duration in days of a spinning-based spam campaign in the
wiki data set.

F. Timing

This section examines spammer behaviour in terms of the
rate and duration at which spammers post spun articles during
a spinning campaign. It is possible that spammers may want
to post spun content over a longer duration of days, so as to
avoid raising suspicion about a rapid deluge of spun content.
However, a long-term spamming campaign may not be as
effective for SEO as a short-term one. We first describe how
we scrape the timing information for each spinning campaign
in the two data sets, and then discuss the results.

1) Wiki: Most wiki pages contain a last modified tag, and
we use this tag to extract the time of post. However, the
tag text itself does not have a uniform template, and many
are in languages other than English. We scrape this field
and use regular expressions to parse the date for common
templates in most languages. Some pages contain either no
timing information or a language not supported by the parser.
After we cluster pages of spun content, we parse 145, 885
pages out of 225, 070 that contain timing information. We find
the minimum and maximum date in each cluster to compute
the duration in days for each spam campaign.

Figure 12 shows a CDF of the duration in days of the
spinning-based spam campaigns in the wiki data set. Nearly
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Fig. 13. CDF of the duration in days of a spinning-based spam campaign in
the GoArticles data set.

75% of these campaigns last for less than a day. These results
confirm intuition. When spammers use automated tools to
post spun content, it is a short-term interactive process. Given
these results, the timing behavior of these campaigns might
be a useful additional feature in clustering spun pages into a
campaign, although we have yet to explore it.

2) GoArticles: Since all the pages in the GoArticles data
set are from a single site, extracting their post times is
straightforward. Figure 13 shows a CDF of the duration in
days of the spinning-based spam clusters in the set. The time
scales are substantially longer than the wiki data set. More than
40% of the clusters have durations of at least a week, and 20%
were a month.

One explanation for these long durations is that the clusters
we are identifying are not actually from the same spam
campaign. For the most part, the pages in a cluster are related
by spinning, but either one of the pages was used as a seed, or
the GoArticles site was spammed at different times by different
campaigns (perhaps sharing a seed page from another site).

G. Backlinks

A spinning campaign may contain backlinks to promote a
site through black hat SEO. There are two general strategies
to backlinking used by campaigns. In one strategy, spammers
can place the same backlink on every spun page. Here it
is straightforward to confirm that pages belong to the same
campaign by verifying that they promote the same site. How-
ever, there is another strategy, where spammers create spinning
campaigns with backlinks pointing to a variety of sites to
hinder spamming detection and prevent penalization of the
search engine ranking of a single monetization site.

To examine this scenario, we scrape the backlinks from
every page within a cluster and create a map of pages to a set of
backlinks. Figures 14 and 15 show the number of links, unique
links, and unique domains versus the number of pages per each
cluster for the wiki and GoArticles data sets, respectively.

1) Wiki: First, we observe that the number of links per
cluster closely tracks the number of pages per cluster (see Fig-
ure 14). Links occur on 99.97%± 1.41% of pages per cluster

Fig. 14. A scatter plot of links, unique links, and unique domains versus the
size of each spun cluster in the wiki data set.

on average. This data corroborates that spinning campaigns
contain backlinks.

Second, the number of unique links per cluster trends
below the number of links. On average, unique links occur
on 59.48% ± 34.27% of the pages per cluster. Only two
clusters that contain more than 100 pages contain all unique
links. However, many clusters that are smaller than 100 pages
have all unique links. Taken together, the unique links data
suggests that most spinning campaigns promote fewer sites
than the number of spun pages, but some spinners craft unique
backlinks for each spun page.

Third, we consider the number of unique domains pointed
to by backlinks versus the cluster size of the article. The
intention here is to capture incidents where a clever spammer
uses unique backlinks to avoid detection, but still needs to
point to a common domain. For clusters less than 100 pages,
most unique backlinks also point to unique domains (unique
domains occur on 55.53% ± 33.49% of such cluster pages
on average). However, as the cluster size reaches at least 100
pages, the number of unique domains trends smaller than
the number of unique backlinks (unique domains occur on
15.51%±19.90% of such cluster pages on average). This result
indicates that the larger spinning campaigns tend to target
a much smaller set of domains compared to the number of
pages in the campaign, such that unique domains occur on
53.82%± 34.00% of cluster pages on average.

2) GoArticles: The GoArticles data set shares many of the
same trends as the wiki data set, but at smaller scale (see
Figure 15). Clusters containing less than 10 pages have an
equivalent number of links, unique links, and unique domains
in 33.70% of cases. However, clusters with at least 10 pages
tend to have several duplicate links and domains (only 7.10%
of clusters with at least 10 pages have an equivalent number
of links, unique links, and unique domains). This behavior
suggests different strategies, with larger spinning campaigns
generally targeting a smaller set of unique backlinks and
domains than the number of pages in the campaign, although
a few larger clusters contain all unique links and domains.

H. GoArticles as Seed Pages

Finally, we examine the relationship between spammed
wiki pages and the article directory. We look at the possibility
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Fig. 15. A scatter plot of links, unique links, and unique domains versus the
size of each spun cluster in the GoArticles data set.

Fig. 16. Composition of clusters containing pages from both the wiki and
GoArticles data sets.

that spammers use GoArticles as seed pages for spinning, and
then post the spun content on wiki pages. We explore this
question by examining the crossover of the two data sets.

We combine the month crawl of the wiki data set with the
GoArticles data set. If these two data sets are disjoint, then
every cluster of spun content would only contain articles from
one data set. In this case, the spun articles from the wiki and
GoArticles sites likely represent separate spam campaigns. On
the other hand, if spun clusters cross data set boundaries, this
overlap would indicate a spam campaign observed across both
data sets. If clusters do exhibit this behavior, one explanation
is that spammers share the same pool of spun articles and
post spun content ubiquitously across domains. Alternatively,
spammers may take content from article directories, and use
it to seed generation of spun content.

We look at two metrics in the overlap, the number of pages
from GoArticles and wiki in each cluster, and the times at
which the GoArticles and wiki pages are posted to the sites.

We found 229 clusters that contain both GoArticles and
wiki pages. Figure 16 plots the number of GoArticles (x-axis)
and wiki (y-axis) pages that occur for each cluster. The trend
indicates that the majority of cross domain clusters contain
many wiki pages (31.6 on average), compared with just 1.2
on average for GoArticles (82% of these clusters contain just
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Fig. 17. Time difference between wiki and GoArticles post times in
overlapping clusters with one page from GoArticles and the remaining pages
from the wiki set.

one). Furthermore, the low number of pages from GoArticles
in these clusters is independent of the number of wiki pages
in the clusters.

Timing is another indication. If spammers are taking ar-
ticles from article directories and using them as seeds for
spinning, the posting times from the article directory should
precede the times on the wiki pages; otherwise, the wiki and
article directory post times will often be uncorrelated with each
other. Figure 17 explores the posting times in detail. For each
cluster containing one GoArticles page and at least one wiki
page on the x-axis, it shows two points on the y-axis connected
by a line. The bottom point shows the earliest posting time of
a wiki page in the cluster relative to the posting time of the
GoArticles page, and the top point similarly shows the relative
posting time of the latest posted wiki page.

Most of the wiki pages (92%) are posted well after the
GoArticles page, and often by a very large gap of weeks to
months. In these cases, one conclusion is that the spammers
responsible for this crossover behavior are taking articles from
article directories, spinning them, and posting them on wiki
pages. There are a small number of exceptions, though. The
clusters with negative y values are when the post time in
GoArticles precedes the wiki pages. For these, we conclude
that the spammers used seed articles from somewhere else,
and GoArticles was simply another target site for posting spun
content.

VII. DISCUSSION

Automated spinning is directly a response to defensive
pressure: near-duplicate document detection by services like
Google [4], [32]. As shown in Section IV, spinning under-
mines shingle-based approaches and plagiarism detectors like
CopyScape. If services deploy defenses like DSpin against
automated spinning, spammers will similarly respond to such
pressure to evade detection. Likely responses fall into changing
how the tool spins content, where it spins the content, or how
much of the content it spins.

One spammer response might be to change the dictionary
frequently. As noted in Section IV-B, TBS does not currently
change its synonym dictionary much over time: 94% of the
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words in the dictionary remained the same over four months.
If it were to change the dictionary more frequently, it would
have to change the set of words it spun (the mutable set) and/or
the set of synonyms used for replacement. Since these changes
would likely result in a smaller dictionary at any particular
time, it might reduce the quality of spun content — although
likely still sufficient for the goals of posting spun articles for
link spam. DSpin is insensitive to some degree of dictionary
variation since it does not have to be precise; it is encouraging
that DSpin could identify automatically spun content in the
wild that was generated over a year and presumably by tools
other than TBS. However, if DSpin did need to precisely track
frequent changes to the synonym dictionary over time, then the
resulting burden would be the ease or difficulty of obtaining
updated dictionaries.

Currently tools like TBS download the dictionary locally to
produce spun content, making the dictionary vulnerable to au-
tomated download and analysis. Instead, tools could compute
spun content remotely so that clients do not have access to
the dictionary. Remote computation will increase cost, but the
availability of cheap compromised hosts [8] will unlikely un-
dermine the profibility of spinning tools. To counter, defenses
like DSpin could reverse-engineer immutables by generating
spun content and examining the output for invariant text, much
like techniques for inferring botnet email spam templates [29].
By using such inferrence a spinning detector would then also
automatically infer the synonym dictionary, obviating the need
to obtain it or update it over time.

Another set of questions concerns the generality of DSpin
in terms of other spinning tools, manual spinning, and scale.
For any dictionary-based spinning tool, in principle the im-
mutable method in DSpin should be able to detect their spun
output. The human-generated spun articles DSpin does detect
(Section VI-B), it likely does so coincidentally. However,
manual spinning likely still has immutable words that can be
used as anchors, and may be vulnerable to inference across
a set of samples [29]. We have not experimented with other
spinning tools or human-generated spun content, though, and
both remain open questions for future work.

In terms of scale, the workload we used to evaluate DSpin
is modest and an immediate question is whether DSpin could
detect spun content at Internet scale. Given that Google has
scaled its systems for detecting near-duplicate content to the
entire Web [23], we believe that there is no fundamental reason
why the immutable method in DSpin could not as well. In
one sense, the immutable method in DSpin is analogous to
near-duplicate detection (detecting duplicated immutables), yet
requires less data to compare since DSpin only compares
immutables — a much smaller fraction of any article (Sec-
tion IV-B). In fact, DSpin might be readily incorporated into
Google’s simhash-based approach by using immutables as the
features in document hashes. As a result, scale is of less
concern than how spammers might respond to evade spinning
detection.

VIII. CONCLUSION

In this paper we have proposed a method for detecting
automatically spun content on the Web. In this method, we use
the synonym dictionary that spinning tools use to create spun

content as a filter, reducing crawled pages to a much smaller
set of “anchor” words that remain unchanged and are common
among all of the spun pages generated from the same seed
page. We then implement this method in a tool called DSpin
that operates on sets of crawled Web pages to identify spun
content. Using controlled experiments, we show that DSpin
successfully identifies spun content, and moreover clusters
spun content according to the set of spun pages generated
together. We then apply DSpin to two crawled data sets, a
set of wiki pages known to be targets of Web spam and a
popular article directory.

With DSpin, we find that spinning is a popular spamming
technique on certain sites. A significant amount of the posted
content on the wikis is not only Web spam, but also spam
that consists of automatically spun content. We also find that
a portion of the clusters of spun content span both the wikis
and the article directory, with evidence that spammers do use
article directories as seed pages.
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