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ABSTRACT

Malicious domains are key components to a variety of cyber
attacks. Several recent techniques are proposed to identify
malicious domains through analysis of DNS data. The gen-
eral approach is to build classifiers based on DNS-related
local domain features. One potential problem is that many
local features, e.g., domain name patterns and temporal pat-
terns, tend to be not robust. Attackers could easily alter
these features to evade detection without affecting much
their attack capabilities.

In this paper, we take a complementary approach. Instead
of focusing on local features, we propose to discover and ana-
lyze global associations among domains. The key challenges
are (1) to build meaningful associations among domains; and
(2) to use these associations to reason about the potential
maliciousness of domains. For the first challenge, we take
advantage of the modus operandi of attackers. To avoid de-
tection, malicious domains exhibit dynamic behavior by, for
example, frequently changing the malicious domain-IP reso-
lutions and creating new domains. This makes it very likely
for attackers to reuse resources. It is indeed commonly
observed that over a period of time multiple malicious do-
mains are hosted on the same IPs and multiple IPs host
the same malicious domains, which creates intrinsic associ-
ation among them. For the second challenge, we develop
a graph-based inference technique over associated domains.
Our approach is based on the intuition that a domain having
strong associations with known malicious domains is likely
to be malicious. Carefully established associations enable
the discovery of a large set of new malicious domains using
a very small set of previously known malicious ones.  Our
experiments over a public passive DNS database show that
the proposed technique can achieve high true positive rates
(over 95%) while maintaining low false positive rates (less
than 0.5%). Further, even with a small set of known ma-
licious domains (a couple of hundreds), our technique can
discover a large set of potential malicious domains (in the
scale of up to ten thousands).
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1. INTRODUCTION

Malicious domains are key components to a variety of
cyber attacks, e.g., phishing, botnet command and control
and spams. It is therefore important to be able to discover
and block access to these attack enablers. Many techniques
have been proposed in the literature to identify malicious
domains, utilizing different types of local network and host
information [1,3,8]. DNS data have been exploited in some
of these efforts. The general approaches extract multi-
ple features from DNS records as well as DNS queries and
responses, which may further be enhanced with historical
patterns and network traffic features of local hosts (those
issuing DNS queries). Based on these features and some
training datasets, a classifier can be built to distinguish ma-
licious domains from benign ones. Such approaches are ef-
fective as long as the features used in the classifier are not
manipulated. However, it has been shown that many of the
features used are not robust [12], that is, attackers could
change the features of malicious domains or infected hosts
to evade detection. For example, patterns in domain names
(e.g., number of characters or pronounceable words) can ob-
viously be altered easily [5,6] without affecting attacking
capabilities; similarly, attackers can also change TTL for
DNS query caching if it is used as a feature for detection.
The essential reason is that many of the proposed features
in existing work are local features about a single domain or
host. Therefore, it is not hard to coordinately alter these
features so that malicious domains do not conform to the
patterns specified in a classifier.

In this paper we take a complementary approach. Instead
of focusing on local features, we propose to discover and an-
alyze global associations among domains. We derive such
global associations mainly from passive DNS data, though
other data sources (such as server logs and WHOIS records)
could be integrated to enhance confidence of such associ-
ations. Our observation is that, though many features of
DNS records can be altered per individual domains, attack-
ers have to host malicious domains on IPs that they control
or have access to. Additionally, tactics implemented by ma-
licious domains (e.g., frequent creation of new domains and
fast fluxing), in the continuous struggle to evade detection,
makes them exhibit dynamic characteristics among groups of
malicious domains instead of individual domains. For exam-
ple, Cova et al. [4] offered a longitudinal analysis of the rogue
antivirus threat ecosystem. Their analysis shows that mali-
cious domains used in such campaigns are moving through-
out the Internet space over time, usually in bulk, while
sharing a number of varying features among them. Con-



sequently, it is very likely that multiple malicious domains
may end up being hosted at the same IPs, and similarly, mul-
tiple IPs are used to host the same malicious domains over
time, which creates intrinsic associations among them. To
eliminate such associations, attackers would have to make
sure that each malicious domain is hosted by very few IPs,
and each IP hosts very few malicious domains. These kinds
of tactics greatly limit the utilization of resources available
to attackers, incur heavy costs, and curb their profits. We
thus submit that the associations between domains and IPs
offer a robust way to study how attackers organize and de-
ploy malicious resources, which can further help us discover
new malicious domains from known ones.

Our approach is based on the intuition that a domain
having strong associations with known malicious domains is
likely to be malicious. Given a set S of known malicious do-
mains, we could assess other domains based on the strength
of their associations with those in S. To make this idea
effective, we need to address several key issues: first, how
to define the association between domains. As mentioned
earlier, such association should not be easily avoided by at-
tackers without greatly affecting their attacking capabilities.
Further, it should reflect non-trivial relationships between
domains; second, given such associations and known ma-
licious domains, how to assess the maliciousness of other
related domains and how to combine such malicious scores
into a global measure, as a domain may be connected with
several malicious ones directly or indirectly; third, as we
focus on global patterns instead of local ones, we need to
ensure that the inference process is efficient and scalable.

In this paper, we develop graph analysis techniques to dis-
cover new malicious domains given a seed of existing known
ones. Specifically, we make the following contributions:

e We develop a simple yet robust measure to reflect the
intrinsic associations between resources controlled by at-
tackers. Specifically, two domains are connected if they
are hosted by the same IPs during a period of time. Com-
pared with many existing features for malicious domain
detections, our scheme is tied to the key properties of how
malicious resources are utilized. Therefore, it is hard to
eliminate such connections without affecting the utiliza-
tion of malicious resources. We further develop heuristics
to enhance the confidence of such associations to better
reveal connections between malicious domains. We ac-
knowledge that domains may use the same IP without
being related to each other, especially in web hosting sce-
narios. We explain later how to deal with this issue.

e Based on the above associations, we construct graphs to
reflect the global correlations among domains, which en-
ables analysis well beyond those that only focus on a
host’s or a domain’s local properties. Associations be-
tween domains do not necessarily imply maliciousness.
In fact, they may happen due to legitimate management
of Internet resources. To discover malicious domains, we
propose a path-based mechanism to derive a malicious
score of each domain based on their topological connec-
tion to known malicious domains.

e We conduct extensive experiments to evaluate the effec-
tiveness of the proposed scheme based on a large-scale
publicly available passive DNS database as well as ground
truth collected from public sources. We evaluate the
practicality of our scheme through careful analysis of the

tradeoff between true positives and false positives for dif-
ferent parameter configurations. Our experimental re-
sults show that the proposed technique can achieve high
true positive rates (over 98%) while maintaining low false
positive rates (less than 0.5%). Further, even with a small
set of known malicious domains (a couple of hundreds),
our technique can discover a large set of potential mali-
cious domains (in the scale of tens of thousands).

We note that, though in this paper we focus on utiliz-
ing global association patterns to discover potential mali-
cious domains, we do not advocate discarding local features
proposed by existing efforts. Instead, we aim to offer an-
other dimension to detect malicious domains, and indeed
our scheme could be integrated with robust local features to
further improve its effectiveness. For example, besides rely-
ing on known malicious domains to bootstrap our scheme,
each domain may also have an initial score based on some lo-
cal features identified in past work. This score may then be
enhanced through (or combined with) the malicious scores
derived from our scheme, which we believe would offer a
promising approach that is both highly accurate and robust.

Meanwhile, different from many past efforts (e.g., [1,3]),
our approach is not a generic classification scheme, i.e., we
do not build a classifier that can label any given domain
as malicious or non-malicious. Instead, our scheme is de-
signed to discover new malicious domains associated with
known malicious ones, which can be limited (e.g., just a few
malicious domains found in the early phase of an emerging
spam campaign) or do not exhibit clear patterns of local fea-
tures to be successfully classified. In fact, our scheme can
be combined with classification-based schemes such that it
takes the output from a classifier as the seeds to discover
other malicious domains whose local features do not fit the
malicious profile of the classifier.

The rest of the paper is organized as follows. We pro-
vide a brief survey of related work on malicious domains in
section 2. Section 3 presents the technical details of the pro-
posed approach. Experiment setup and results are reported
in section 4. We conclude the paper in section 6.

2. RELATED WORK

Quite a few efforts have been dedicated to identifying ma-
licious domains in the literature, utilizing different types of
data and analysis techniques. Here we discuss briefly repre-
sentative work most relevant to our approach.

Notos [1] was a pioneer work to use passive DNS data
to identify malicious domains. Notos dynamically assigns
reputation scores of unknown domains based on features ex-
tracted from DNS queries. EXPOSURE [3] follows a similar
methodology , and overcomes some of the limitations of No-
tos (e.g., EXPOSURE requires less training time and less
training data). Moreover, EXPOSURE differentiates itself
by being agnostic to the kind of services that the malicious
domains provide (e.g., botnet, Phishing, Fast-flux).

Our approach is complementary to EXPOSURE and No-
tos by focusing on global topologies of the deployment of
malicious domains over IPs instead of their local features.
EXPOSURE and Notos perform best when they can get
access to individual DNS queries, which could be quite sen-
sitive. Our approach meanwhile works on public aggregated
passive DNS data, and thus will not cause privacy concerns.
We elaborate this point further in section 4.1.



Phoenix [10] utilizes passive DNS data to differentiate
between DGA and non-DGA malicious domains. Phoenix
models pronounceable domains, likely generated by humans,
and considers domains that violate the model as DGA gen-
erated. While our approach is to detect unknown mali-
cious domains, Phoenix is mainly concerned with tracking
and intelligence beyond detection. In fact the output of our
scheme can be used as input feed to Phoenix.

Novel work by Antonakakis et al. [2] detects DGAs by
monitoring DNS traffic. The observation is that the exis-
tence of DGAs in a network will increase the amount of ob-
served Non-Existent Domain (NXDomain) responses in the
network trace. Our approach instead focuses on the analysis
of successful resolutions of domains.

Manadhata et al. [7] proposed to identify malicious do-
mains by analyzing DNS query logs. The main technique is
to build a bipartite host-domain graph (which hosts query
what domains), and then apply belief propagation to dis-
cover malicious domains based on known malicious and be-
nign domains. The rationale is that, if a host queries a
malicious domain, that host is more likely to be infected.
Similarly, a domain queried by an infected host is more likely
to be malicious. Passive DNS data can also be modeled as
a bipartite graph. It seems compelling to identify malicious
domains by applying belief propagation over passive DNS
data. However, we observe that the inference intuition in [7],
though working very well for host-domain graphs, does not
carry through well in passive DNS data. In section 4 we
experimentally compare our scheme with that in [7].

Rahbarinia et al. [8] proposed a behavior-based technique
to track malware-controlled domains. The main idea is to
extract user behavior patterns from DNS query logs beyond
the bipartite host-domain graph. As a contrast, our tech-
nique exploits passive DNS data instead of user DNS query
behavior. Features used in [8] are not applicable to passive
DNS data that we study.

SMASH [15] is an unsupervised approach to infer groups
of related servers involved in malware campaigns. It fo-
cuses on server side communication patterns extracted from
HTTP traffic to systematically mine relations among servers.
SMASH is novel in proposing a mechanism that utilizes con-
nections among malicious severs to detect malware cam-
paigns in contrast with classification schemes that solely
use individual server features. Our approach is similar to
SMASH in establishing server associations as bases for iden-
tifying new malicious servers, but complements SMASH by
utilizing passive DNS data, which offers privacy benefits.
Additionally, instead of using second-level domain names,
our approach establishes associations among fully qualified
domain names. This relaxes the assumption in SMASH that
servers with the same second-level domain belong to the
same organization and hence, our approach detects mali-
cious dynamic DNS servers.

Our path-based inference of malicious domains is par-
tially inspired by reputation management in decentralized
systems [11], where global trust are computed through feed-
backs on local interactions, though our application context
is totally different. In particular, we investigate malicious-
ness propagation along domain associations while reputation
systems rely on trust transitivity in social contexts.

3. PROPOSED APPROACH

3.1 Passive DNS Data

Our approach is a graph analysis technique of data from
passive DNS replication. Passive DNS replication captures
inter-server DNS messages through sensors that are vol-
untarily deployed by contributors in their DNS infrastruc-
tures. The captured DNS messages are further processed
and then stored in a central DNS record database which can
be queried for various purposes [14]. Though passive DNS
data contain rich information of different aspects of DNS, in
this work we focus on analyzing A records in the database.
Specifically, each record is of the form (d,, Ty, T;,c), mean-
ing domain d is resolved to IP i, and 7T} and 7; are the
timestamps when this resolution was observed for the first
and the last time respectively in the database, and c¢ is the
number of times that this resolution was observed via pas-
sive DNS replication. We call the period (Tf,T;) the ob-
servation window of the resolution. In practice, a domain
may be hosted in multiple IPs, and an IP may host multiple
domains during different periods of time. A unique record
exists for each different domain to IP resolution. Further
it is possible (in fact many such cases exist) in the passive
DNS database that two records have the same domain but
different IPs with overlapping observation windows, which
suggests that the domain is alternatively hosted in different
IPs. Similarly, records with the same IP but different do-
mains with overlapping observations windows may suggest
the IP hosts multiple domains at the same time. Given a
set of A records in the passive DNS database, we can easily
construct a domain-resolution graph, a bipartite graph with
one side corresponds to domains and the other side to IPs.
An edge is formed from a domain node u to an IP node ¢ if
record (d, 4, Ty, Ty, c) exists. Our goal is to identify malicious
domains based on a domain-resolution graph.

Several recent efforts propose to identify malicious do-
mains through host-domain graphs [7] (also called user query
behavior [8]), i.e., which host or user queries the DNS servers
about which domain in an enterprise or an ISP. Compared
with host-domain graphs, domain-resolution graphs offer sev-
eral practical advantages. First, passive DNS replication
collects data globally from a large group of contributors. It
offers a more comprehensive view of mapping between do-
mains and IPs, while host-domain graphs are usually limited
to the perspective of a single enterprise or an ISP. Second,
host-domain graphs contain private information about in-
dividual users, which tends to be very sensitive. It would
be hard to share such information without raising serious
privacy concerns. Domain-resolution graphs, on the other
hand, are aggregated information of domain-ip mapping in-
stead of about individuals. They are publicly available, and
any findings over them can be shared without privacy risks.
Third, the association revealed between domains through
domain-resolution graphs is not tightly coupled with the be-
havior of individual users, and therefore tends to be harder
to manipulate, which we will elaborate more in the rest of
this section. Nevertheless, domain-resolution graphs and
host-domain graphs are two important data sources for mali-
cious domain discovery. Techniques developed for each type
of graphs are complementary and could be combined to offer
effective techniques to defend against malicious domains.

We are not the first to utilize domain-resolution data to
identify malicious domains. For example, both Notos [1]
and Exposure [3] use features derived from passive DNS
data. However, as mentioned in section 1, most of these



features are local, in the sense that they are measured from
the perspective of individual domains (e.g., statistics of IPs
associated with a domain and average length and charac-
ter distributions of domain names). We instead focus on
global structural patterns among domains rather than local
features. Therefore, our approach can be seen as comple-
mentary to those approaches, by exploring the problem from
a different dimension. Also note that some of the features
used in past work (e.g., time-based features like daily simi-
larity, repeating patterns, average TTL etc.) require access
to DNS responses to each individual DNS query, which may
be quite sensitive and often not publicly available. On the
other hand, our technique targets totally public passive DNS
data, and do not require such features.

3.2 Domain Graph

Our approach is based on a simple intuition. If a domain
d is known to be malicious, another domain with “strong as-
sociation” with d is likely to be malicious as well. Therefore,
hopefully from a small set of known malicious domains, we
can discover a large set of unknown malicious ones. The key
questions are (1) how to define association between domains
from passive DNS data that supports such inferences; and
(2) how to determine maliciousness of domains that have
no direct associations with known malicious domains. Intu-
itively, if two domains are hosted at the same IP during a
certain period of time, they are somewhat related. For ex-
ample, they may be owned by the same owner, so that they
can be arranged to be hosted alternatively at the IP. Ap-
parently, the more IPs that the two domains are co-hosted
at, the more likely there exists strong associations between
them. The same intuition can also be applied to discover
strong association between two IPs if they host many com-
mon domains. Admittedly, there are many situations in
practice where two domains are co-hosted at many IPs but
they are not related in any way in terms of malicious domain
inferences, which we will discuss later. Next, we will present
in detail how to define the association between domains, as
well as the inference process of malicious domains.

A domain resolution graphis an undirected bipartite graph
G(D, I, E) where D is a set of domains, I is a set of IPs, and
an edge {d,i} € E if domain d is resolved to IP i. Given a
domain d, we denote ip(d) the set of IPs that d is resolved
to. Similarly, domain(i) denotes the set of domains resolved
to an IP 4. In practice, we will limit our analysis to passive
DNS records within a certain period of time to ensure rel-
evance of the analysis results. The tradeoff between longer
and shorter analysis periods is discussed later.

Given a domain resolution graph, we construct a domain
graph, an undirected weighted graph DG(D, E), where D is
a set of domains, and an edge e = {d1,d2} € F if ip(d1) N
ip(d2) # 0, i.e., d1 and d2 are co-hosted at some common IPs.
The weight of an edge {d1,d2}, denoted w({d1,d2}), should
reflect the strength of association between the two domains.
There are many possible ways to define edge weights. In this
paper, we define

if dy # do

otherwise

1
1+]ip(d1)Nip(dz)]

w(dl,dg):{ 1_

to reflect two intuitions. First, the more common IPs two
domains resolve to, the stronger their association, there-
fore, the bigger the weight. Second, when the association
is strong enough, adding additional common IPs would not

Domain IP

Domain Graph

Domain Resolution Graph

Figure 1: An example domain resolution graph and its cor-
responding domain graph

make much difference in terms of association. For exam-
ple, two domains with 50 common IPs would already have
very strong association. Their edge weight therefore should
be close to (instead of for example half of) that of the case
if they share 100 common IPs. On the other hand, when
the number of common IPs is small, increasing common IPs
should have a bigger impact on the strength of association
and thus edge weights as well. Note that when two domains
d1 and dz do not share any common IPs, w(di,d2) = 0
according to our definition. Clearly w(di,d2) € [0,1) if
di1 # dy. Figure 1 shows an example domain resolution
graph and its corresponding domain graph.

Another seemingly compelling way to measure associa-
tion between domains is to use Jaccard similarity, which
has been applied in many applications, including in security
contexts [13]. In our problem, it would be defined as

|ip(dy) N ip(da)|
lip(dy) U ip(dz)|

We did not choose to use Jaccard similarity in our work, due
to the observation that the set of common IPs alone reflects
strong association between domains, even if each domain
has many of their own unique IPs beside the common ones
(which will result in low Jaccard similarity).

A domain graph often reveals implicit association between
domains. When visualized, we often find interesting com-
munities of domains, which may guide further investigation
when combined with other intelligence. For example, fig-
ure 2 shows the domain graph extracted from the subdo-
mains of 3322.org (a dynamic DNS service known to have
many malicious subdomains) from the passive DNS dataset
of March 2014. We can clearly see the structures and com-
munities among those subdomains. Though in this paper we
explore how to utilize domain graphs to discover malicious
domains, we believe domain graphs will be useful for many
other domain related security analysis and intelligence.

3.3 Path-based Inference

Given a set of known malicious domains, called seeds, our
goal is to infer the maliciousness of unknown domains based
on their associations with the seeds. For those directly con-



Figure 2: The domain graph of subdomains of 3322.org
extracted from a passive DNS database

nected with the seeds in the domain graph, we can use edge
weights directly to capture such associations. Next we show
how to infer associations between domains which do not
share any IP (i.e., no direct edge between them).

Let P = (d1,da,...,dn—1,ds) be a path between d; and
dn. We define the weight of P to be the product of all the
edge weights in P, ie., w(P) = [[,c;c,,_; w(di,dig1). A
path implies a sequence of inferences of association. The
longer the path is, the less the certainty of the inference.
Therefore, we choose to discount the association by the edge
weight of each hop. As multiple paths may exist between
two domains, we choose the weight of the strongest path
(i.e., with the largest weight among all paths) to capture
their association, i.e., given all paths Pi, ..., Px between do-
mains d; and da, we define assoc(dy, dz2) = mazi<i<pw(P;).
Note that it is possible that the association between two
connected domains is larger than their edge weight, because
though they may not share many common IPs, they may
form strong association through other domains. Such in-
direct association allows us to “propagate” maliciousness of
the seed domains to the whole graph instead of only to their
direct neighbors. Next we define the malicious score of do-
mains based on their association with the seed domains.

Let S be the set of seeds. Given a domain d, denote M (d)
as the list (assoc(s1,d),...,assoc(sn,d)), where s; € S and
assoc(s;,d) >= assoc(si+1,d), for i =1,...,n— 1. In other
words, M(d) is a sorted list of the association of d to each of
those in the seeds. The malicious score of d given S is then
defined as:

mal(d, S) = assoc(s1,d)+

(1 — assoc(s1, d)) Qi—:assoc(si, d))
i=2,...,m
Intuitively, the largest association between d and a known
malicious domain contributes the most to the maliciousness
of d. This is further enhanced with its association with
other seeds in an exponential decay manner. This design
is to capture two intuitions of malicious domain inferences.
First, a strong association with even a single known mali-
cious domain would be convincing evidence of a potential

malicious domain. Second, weak association with multiple
known malicious domains cannot be easily accumulated to
form strong evidence of a domain’s maliciousness, because
weak association may happen in many legitimate network
management scenarios. Our goal is to conduct inferences
through strong, beyond normal associations to ensure infer-
ence accuracy. The use of exponential decay reflects this
intuition. It is easy to see that mal(d,S) is in the range
[0,1], as the latter part of the equation is weighted by a
factor 1 — assoc(s1,d).
Note that we do not simply define

mal(d, S) = Z 21-%@3500(31',(1))
i=1,...,n

A mathematical reason is that this definition will produce a
score between 0 and 2 instead of between 0 and 1. We could
certainly scale it back to the range [0-1]. But a more tech-
nical reason is that this definition will give quite different
score to the cases where (1) a domain has a strong asso-
ciation with a single malicious seed, and (2) a domain has
strong associations with several malicious seeds. The latter
case’s score would be approximately up to two times of that
of the former case. As mentioned above, we would like to
treat the former case as already with convincing evidence,
and thus should have a score close to the latter case, which
is the rational of the weight 1 — assoc(s1,d).

Once the malicious score for each domain is computed, we
can specify a threshold ¢ between [0,1] such that domains
whose malicious score is over ¢t will be labeled as potential
malicious domain.

ExXAMPLE 3.1. Consider the simple domain graph in fig-
ure 1. Assume D3 and Ds are known to be malicious, i.e.,
S = {Ds, Ds}, and we would like to compute mal(Dy,S).
We see that the strongest path between D1 and Ds is sim-
ply the edge connecting them. Therefore, assoc(D1,D3) =
0.5. Similarly, the strongest path between D1 and Ds is
(D1, D4, Ds), and we have assoc(D1,Ds) = 0.536. Then,
since assoc(D1, Ds) > assoc(D1, D3), we have mal(Dy, S) =
0.536 + (1 — 0.536) x 0.5 x 5+ = 0.625. We can compute
stmilarly that mal(D2,S) = 0.788, mal(D4, S) = 0.85 and
mal(Dg, S) = 0.714. If we set the threshold t = 0.75, Do
and D4 will be flagged as potential malicious domains.

3.4 Practical Considerations

Our discussion so far is based on the observation that a
strong association between two domains exists if they are
hosted at many common IPs in a period of time. This as-
sociation may suggest that they are controlled by the same
owner. For example, a botnet master may deploy phishing
websites among a subset of bots it controls. These web-
sites will then be associated due to the IPs of those bots.
However, as readers may have already noticed, there are
many legitimate scenarios where domains share IPs. For
example, an organization may also host several of its own
domains among a set of servers for load balancing or fault
tolerance. Such a scenario does not invalidate our infer-
ence, as those domains are still “controlled” by the same
entity. If one of them is malicious due to the compromise
of such servers, other domains hosted at the same servers
could also likely be malicious. A more challenging case is
due to “public IPs”, such as those in web hosting, cloud
and content delivery networks (CDN), where domains from



unrelated owners would be hosted at the same pool of IPs.
For example, two domains hosted at Amazon Web Service
(AWS) could have many shared IPs. But the fact that one
domain serves malicious contents does not imply that the
other will have high chance to be malicious as well, which
renders our observation invalid. Note that this situation is
different from dynamic DNS services such as no-ip.com and
dnsdynamic.org. In dynamic DNS, though a user can create
multiple subdomains under a top domain, no hosting service
is provided. The user still has to host those subdomains in
his own servers, which results in linking those subdomains
together when they share IPs.

An obvious way to fix this problem is to exclude from
our analysis such public IPs, e.g., those belonging to AWS,
CloudFlare and Akamai. However, it would be impracti-
cal to list all public IPs, given the large number of service
providers in the Internet. In this paper, we adopt two heuris-
tics to deal with this problem pragmatically. First, if an IP
hosts a huge number of domains in a period of time, it is
likely to be a public IP. Therefore, we exclude IPs if they host
more than ¢ domains within a certain time period, where t is
a configurable parameter. Second, to further strengthen our
confidence of domain associations, instead of simply count-
ing the number of common IPs that two domains share, we
consider the diversity of the shared IPs as reflected by their
ASNs when computing their edge weight. Specifically, given
a set I of IPs, let asn(I) denote the set of ASNs that the
IPs in I belong to. Then we redefine the weight between
two domains d; and d2 in a domain graph as

1
1+ lasn(ip(di) Nip(dz))|

’Uj(dl,dz) =1 lf dl 74— dQ

Though two unrelated domains may be hosted in the same
pool of public IPs of one service provider (e.g., AWS), it is
unlikely that they are both hosted at public IPs from two
or more service providers (e.g., both AWS and CloudFare).
Here we use ASNs of IPs to approximately identify IPs from
different service providers. In practice it is certainly possible
that a service provider owns IPs from multiple ASNs (e.g.,
both AS16509 and AS14618 belong to Amazon). Therefore,
two unrelated domains may still be associated even if they
only use services from a single provider. Our experimental
results show that such cases are rare and have limited impact
on the effectiveness of our approach. Besides using ASNs,
we could also use WHOIS records of IPs to identify those
belonging to the same provider. However, WHOIS records
are well-known to be noisy often with conflicting informa-
tion due to the lack of standard formats and heterogeneous
information sources.

Another practical concern is performance and scalability.
The performance bottleneck may come from two steps. The
first is to generate domain graphs. In the worst case, if there
are n domains in a domain resolution graph, each IP hosts all
the domains, and hence, it may take O(n?|I]) steps to build
the corresponding domain graph, where |I| is the number
of IPs in the a domain resolution graph . Though in prac-
tice a domain graph tends to be sparse, significant number
of edges will be generated if an IP hosts a huge number of
domains (for example, an IP of Amazon may host hundreds
of thousands of domains). This is because an edge needs to
be created for each pair of domains hosted at that IP. For-
tunately, our previous step of public IP pruning (excluding

IPs with degrees larger than ¢ from the domain resolution
graph) also helps alleviate this problem, because now the
worst case number of steps to establish the domain graph is
bounded by O(t?|I]). t* can be a large constant. However,
due to the power law distribution of the degrees of IPs in
domain resolution graphs (which will be shown in section 4),
the actual size of domain graphs is much smaller than the
theoretical bound O(#?|1]), which means it is very manage-
able with moderate computing resources or with distributed
computing platforms like Hadoop.

Compared with the huge number of domains a public IP
may host, the number of IPs that a domain may resolve to
is relatively small (at most several thousands). Therefore,
we do not perform any filtering of domains based on their
degrees in the domain resolution graph, which means we will
not miss domains involved in fast-fluxing.

The second potential performance bottleneck is to com-
pute the strongest paths from domains to seeds. It is easy
to see that the strongest path problem can be mapped to
the classical weighted shortest path problem. Specifically,
given a domain graph G(D, E), we construct another graph
G'(D,E) , such that for any edge e = {d1,d2} in G, the
weight of e in G’ is ln(m). As w(d1,d2) is between 0
and 1, ln(m) is positive. Then a path P = (d1,...,dx)
is the strongest path between d; and d,, in G if and only if
P is the shortest weighted path from d; to d, in G’. Thus,
standard shortest path algorithms can be easily adapted to
compute the malicious scores of domains. With the Dijk-
stra’s algorithm using a min-priority queue, the worst-case
complexity of this step would be O(|S|(|E| + |Dllog|D])),
where S is the set of seeds. Usually S is much smaller com-
pared to the scale of a domain graph. Therefore, with mod-
erate computing resources, the computation cost of this step
is acceptable in practice. In particular, domain graphs tend
to be composed of multiple connected components. The al-
gorithm for malicious score computation can be performed
on each component instead of the whole graph. It also
allows us to easily speed up through parallel computation
with multi-core or GPU processors or Hadoop. In our ex-
periments, malicious score computation is done by a GPU
processor, which is not a performance bottleneck for us.

Given the above practical considerations, Algorithm 1 shows
the pseudocode of our approach that we will evaluate exper-
imentally in section 4.

4. EXPERIMENTS

As mentioned in section 1, our proposed technique is not
a general classification scheme like Notos [1] and EXPO-
SURE [3]. That is, our technique cannot take an arbitrary
given domain and decide whether it is potentially malicious
or not. For example, if a domain is not resolved by any host,
it will not appear in the passive DNS database, which will
then be irrelevant to our technique. Similarly, if a domain
never shares IPs with other domains, it will not appear in
the domain graph, and our technique is not applicable to
such domain either. What we propose is a discovery tech-
nique which tries to find previously unknown malicious do-
mains from known ones. Therefore, its effectiveness should
be evaluated in the scope of domains where our scheme ap-
plies. In other words, it could be seen as a complementary
technique to existing classification techniques. Specifically,
our evaluation focuses on the following three metrics:



Algorithm 1: Algorithm to discover malicious domains
through passive DNS data

Input : G(I,D,FE), a domain resolution graph
t, degree threshold
S, a set of known malicious domains
m, malicious score threshold
Output: M, a set of potential malicious domains
for each IP i in I do
if degree(i) >t then
‘ remove i from G}
end
end
Denote the remaining graph RG';
Let DG be an empty graph;
for domains di and dz in RG' with common
neighboring IPs do
9 if |asn(ip(di) Nip(dz))| > 1 then

o N O ok WwN R

10 Add edge {dy,d2} to DG,
_ 1 .
w(di, d2) =1 ~ TmmEnmw@
11 end
12 end
13 M = (;

14 Let C'C be the set of connected components in DG;
15 for each C in CC do

16 if CNS #0 then

17 for each d in CC do

18 compute mal(d, S);

19 if mal(d, S) >=m then
20 | add d to M;

21 end

22 end

23 end

24 end

25 return M

e True positive rate: Given a malicious domain in the do-
main graph, the probability that it will be labeled as po-
tentially malicious.

False positive rate: Given a benign domain in the domain
graph, the probability that it will be labeled as potentially
malicious.

e Expansion: From a set of known malicious domains, how
many more domains will be discovered as potentially ma-
licious, in other words, how much can our scheme expand
the set of malicious domains beyond those in the seeds.

Since our scheme focuses on discovering unknown mali-
cious domains, expansion is an important metric that re-
flects the usefulness of our scheme. To better illustrate,
consider conceptually another scheme which, for example,
builds a graph only with domains whose names possess pat-
terns typical to domain generation algorithms (DGAs). A
scheme designed for such a graph may show a very high true
positive rate and a very low false positive rate, according to
the above definitions. But it may have a very low expansion,
as it can only discover DGA-generated domains, which may
not be quite useful in practice. Our scheme meanwhile does
not rely on any other features when building the domain
graph, which will yield a high expansion.

Our technique has two parameters, the malicious score
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Figure 3: Degree distribution of IP nodes in domain reso-
lution graphs for the two datasets. Only the 5000 IPs with
the highest degrees are shown in the figure

threshold and the seeds set size, both of which will impact
the tradeoff of the above three metrics. Intuitively, the lower
the threshold is, or the larger the set of the seeds are, the
higher the true positive rate and the expansion, but the
higher the false positive rate as well.

4.1 Datasets

Passive DNS data. We downloaded the passive DNS
database from www.dnsdb.info using the website’s API. As
the database is updated constantly, the snapshot we use
is the one obtained in the middle of December 2014. The
database contains various types of DNS records. We choose
to work on A records to ensure the actual mapping between
domains and IPs. As mentioned before, for each domain-
to-IP resolution, the database keeps timestamps regarding
when this resolution is first and last seen by the passive DNS
sensors. A resolution is said to belong to a period of time if
its first-seen timestamp falls into that period.

In this section, we report experimental results on two
datasets. One is for the first week of November 2014, and
the other is for the first two weeks of November 2014. We
have also run the same set of experiments on datasets of
other period of times. The experimental results are consis-
tent with that of the above-mentioned two period of times.
To avoid redundancy, we omit them in the paper. The rea-
son to choose datasets for periods of different length is to
check whether the scale of data would have any impact on
the effectiveness of our approach.

‘We mentioned in section 3.4 that we do not consider public
IPs in which anybody can host their domains if they choose
to do so. We use a heuristic that if an IP hosts more than ¢
domains, we treat it as a public IP. Figure 3 shows the degree
distribution of IPs in the domain resolution graphs of both
datasets, where = axis are IPs sorted based on their degrees
and y axis are their corresponding degrees. We see that the
distribution seems to follow a power law distribution, where
a small set of IPs have degrees significantly higher than that
of others. Based on the above figures, we empirically set t to
be 2000, where only less than 500 and 900 IPs respectively
are removed from the domain resolution graphs of the one-
week and the two-week datasets, which is a very negligible
percentage of the original set of IPs.



Table 1 shows the statistics of the domain graphs (DG
in Algorithm 1) constructed from the two datasets. We see
domain graphs contain much fewer domains compared to
domain resolution graphs. Indeed, most of the domains in
the domain resolution graph do not share more than one
IP from different ASNs with other domains, and these do-
mains will not appear in the domain graph. An edge in
the domain graph thus reveals a beyond-random connection
between two domains, which allows reliable inferences from
known malicious domains.

Dataset | Domains | Edges
One-week 54K 65.3M
Two-week 98K 120.4M

Table 1: Statistics of domain graphs constructed from the
two passive DNS datasets
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Figure 4: Distribution of connected component sizes in do-
main graphs for the two datasets. Only the 50 connected
components with the largest sizes are shown in the figure

The cost of malicious score computation is largely deter-
mined by the sizes of the connected components in domain
graphs. Figure 4 shows the distribution of the number of
nodes of connected components in the domain graphs of
both datasets. Note that the y-axis is in logarithmic scale.
Clearly they also follow a power-law like distribution.
Ground truth. There are many commercial as well as
public domain blacklists, which can be combined to get a
list of malicious domains. Though each such blacklist may
have false positives, generally there is strong evidence if a
domain is blacklisted, as long as the blacklist is reputable.
Thus it is relatively easy to build a ground truth of malicious
domains. In this work, we use VirusTotal (www.virustotal.
com), which, when given a domain, queries it over more than
60 well-known blacklists. We submit each domain in a do-
main graph to VirusTotal using its public API', and those
listed by at least one of the blacklists form our ground truth
of malicious domains.

Obtaining ground truth of benign domains is more chal-
lenging. No blacklist is exhaustive. We cannot simply con-
sider a domain to be benign if it is not blacklisted by any of
the blacklists. It may be that the domain has been scanned

lyww.virustotal.com/en/documentation/public-api/

and no malicious content is found, or it may be because
that domain has never been scanned before. In this pa-
per, we follow a common practice used in many past efforts
in the literature [7, 8], which builds benign domain ground
truth using Alexa top ranked domains. Specifically, we treat
a domain as benign if its top-level domain is one of the
Alexa Top 20K domains (http://www.alexa.com). We do
not include domains with ranks lower than 20K, as mali-
cious domains are known to exist in the Alexa top domain
list, especially those with relatively low ranks [9]. On the
other hand, we note that past efforts often perform certain
filtering of Alexa top domains when building benign ground
truth (e.g., only consider domains consistently appearing in
the top domain lists for a period of time, or remove dynamic
DNS service domains such as no-ip.com). As a contrast, we
take a more conservative approach, and do not do any filter-
ing of the Alexa Top 20K domains. It is more conservative
in the sense that it is more likely to work against us when
measuring false positives. For example, an attacker may
register a subdomain under a dynamic DNS service (e.g.,
malicious.no-ip.com). Even if our scheme successfully dis-
covers it as a malicious domain, we will treat it as a false
positive, as no-ip.com is one of Alexa Top 20K domains.
The ground truth for the one-week dataset contains around
6.5K malicious domains and 6.5K benign domains. That
for the two-week dataset is approximately double the size
(with around 11.5K malicious domains and 12.1K benign
domains).Table 2 shows the statistics of the ground truth for
the domain graphs of the one-week and two-week datasets.

Dataset | Domains | Malicious | Benign
One-week 54K 6.5K 6.5K
Two-week 98K 11.6K 12.1K

Table 2: Statistics of the ground truth of the two datasets

We have to point out that, though we built the ground
truth of benign domains according to the common practice
made in past efforts, it has its own limitations. In particu-
lar, Alexa top ranked domains are highly popular domains.
They are in general of high-quality and well-maintained. A
scheme with low false positive rate for Alexa top domains
does not necessarily imply the same when it is applied to the
large amount of benign but unpopular domains. In other
words, a measure of false positive rates based on Alexa top
domains tends to be lower than the actual false positive rate.
Unfortunately, there is no well accepted practice for deter-
mining that a domain is benign, nor there are any large scale
dataset of benign domains beyond Alexa top domains. Our
evaluation thus has to rely on Alexa top domains.

4.2 Experiment results

For the domain graph built from each dataset, we vary
the set size of the seeds and the threshold to study their
impacts on the three metrics. Specifically for each given
seed size k, we randomly select k domains from the mali-
cious ground truth as the seeds, and calculate the malicious
scores of all other domains in a domain graph. We then vary
the malicious threshold and measure the true positives, false
positives, as well as the expansion. Each experiment is run
10 times with different randomly selected seeds, and the av-
erage of each metrics is reported. For the size of seeds, we set
it to be 0.05% all the way to 2% of the number of domains



in the domain graph. We choose to use a very small portion
of the ground truth to investigate how well our scheme can
discover more malicious domains even with limited knowl-
edge of known malicious domains. As to the malicious score
threshold, we vary it all the way from 0.5 to 0.95.

4.2.1 Varying Malicious Score Threshold

We first study the tradeoff between true positives and false
positives, when varying the malicious score threshold. Intu-
itively, the lower the threshold, the higher the true positive
and meanwhile the higher the false positives. Figure 5 shows
the ROC curves of the false positive and the true positive
rates, when the size of the seeds is 0.3%, 0.5%, 0.7%, and
0.9% for the two datasets. From figure 5a we see that our
scheme can achieve above 90% true positive rate with a false
positive rate lower than 0.2% in the one-week dataset. In
general, the lower the malicious threshold is, the higher the
false positive rate. However, it is interesting to observe that
when the seed size is small (e.g., 0.3%), even for low ma-
licious thresholds, we can still get high true positive rates
(around 90%) with very low false positive rates (lower than
0.01%). The reason is that when the set of seeds is small, a
domain can only get its malicious score from a few connected
seeds. Therefore, even a low malicious score suggests strong
association with known malicious domains. On the other
hand, when the set of seeds is large, a domain may get its
malicious score due to weak associations with many seeds,
which has a higher chance to be a false positive. Therefore,
for a large set of seeds, a higher malicious threshold is needed
to reduce false positives. Meanwhile, if the threshold is very
high (above 0.9), even with a relatively large set of seeds,
true positive rates drop dramatically. Figure 5 suggests that
in general a threshold between 0.7-0.85 yields good tradeoff
between true positives and false positives.

Meanwhile, from figure 5b we observe that, though the
general trend of tradeoff between true and false positives
of the two-week dataset is similar to that in the own-week
dataset, it is clearly worse than that of the one-week dataset.
To have a false positive rate around 0.5%, our scheme can
only achieve a true positive rate around 90% but not much
higher. After a closer examination of the two-week dataset,
we observe that the number of new domain resolutions in
the second week of November 2014 is smaller than that in
the first week. Therefore, compared to the one-week domain
graph, the new domains and edges in the two-week domain
graph are mainly due to pairs of domains who have common
IPs in two weeks but with no common IPs in each individual
week. For example, suppose an edge {d1,d2} appears in the
two-week domain graph but not in the one-week one, and
they have two common IPs i; and iz from different ASNs.
Then either the resolutions from di; and ds to 71 and 2
all happen in the second week, or these resolutions happen
across two weeks. Our examination shows that the latter
case accounts for the majority of new edges in the two-week
domain graph. Intuitively, if the sharing of common IPs
between two domains happens in a short period of time, it
indicates a stronger association between them. On the other
hand, the longer the period is, the more likely the sharing of
common IPs happens unintentionally, and thus less reliable
for malicious domain inferences. Since the majority of new
edges are due to sharing of IPs across two weeks instead
of a single week, the malicious inference from the two-week
dataset is less effective than that from the one-week dataset.

The above observation shows that temporal granularity of
datasets to build domain graphs would also affect the effec-
tiveness of our scheme. Naturally, if the granularity is too
small (e.g., one hour), we would miss a lot of associations
between malicious domains as shared IPs are not formed yet.
Meanwhile, if the granularity is too big (e.g., five years), a
lot of false positives will be introduced due to weak associa-
tions. One possible solution is to introduce temporal factors
into the weight of edges. Particularly, depending on how
temporally close two domains share an IP (within one week,
two weeks, one month, etc.), the contribution of the shared
IP to the weight between the two domains will be different
to capture the above observation. We leave the investigation
of the above solution as part of our future work.

4.2.2  Varying Size of the Set of Seeds

Figure 6 shows for both datasets the ROC curves when
the malicious thresholds are set to 0.55, 0.65, 0.75, and 0.85.
The size of seeds is varied from 0.05% all the way to 2% of
the domain graph size. We see that, for a given thresh-
old, especially for relatively small ones (e.g., 0.55 and 0.65),
increasing the seed size will cause a quick jump of false pos-
itives, due to reasons explained above (i.e., with a large set
of seeds, a domain may get its malicious score because of
weak associations with many seeds). It is clear that, when
the threshold is high (e.g., 0.85), false positives are well con-
trolled even for large seeds.

The above experiment results suggest that to have a good
tradeoff between true positives and false positives we could
either have small set of seeds with low malicious thresh-
olds or have a large set of seeds (relative to all malicious
domains) while setting the threshold relatively high (be-
tween 0.7 to 0.85). In practice, however, we do not know
for sure whether the known malicious domains we collect is
large enough. Thus, the general practice would be to ob-
tain as many known malicious domains as possible to form
the seeds, and then set a high threshold value (e.g., 0.85) to
avoid high false positives.

We again observe that the ROC curve of the two-week
dataset is inferior to that of the one-week dataset, due to
the same reason as explained above.

4.2.3 Expansion

Expansion reflects how many more potentially malicious
domains we can discover given a set of seeds. Ideally, we
would like to have a large expansion while maintaining high
true positive rates and low false positive rates. In this exper-
iment, we choose several parameter configurations (seeds set
size and malicious threshold) which yield high true positive
rates (> 0.9) and low false positive rates (< 0.01), and then
plot the expansion against the seed size. Figure 7a shows the
ROC curves for all the configurations we have tested for the
one-week dataset. Configurations that fall into the dashed
box are chosen to plot their expansions, which is shown in
figure 7b. We see that even with moderate seed sizes (0.1%
to 0.7% of the domain graph size), our scheme can discover
around 8000 to 12000 potential malicious domains, which is
one to two orders of magnitude of the original seeds set size.

We have a similar observation about expansion for the
two-week dataset, as shown in figure 8. Specifically, for con-
figurations that yield high true positive rates (> 0.9) and
low false positive rates (< 0.01), their expansions range from
around 16000 to 29000 while the seed sizes vary from 200
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Figure 6: The ROC curves of the true positive rate and the false positive rate when varying the size of seeds

to 1000. Also note that there are much fewer configurations
plotted in figure 8 than in figure 7, for reasons given before.

4.2.4 Compare with Belief Propagation

As mentioned in section 2, several recent work proposes
to use belief propagation to infer malicious entities, e.g., do-
mains and files. One of the representative approaches is by
Pratyusa et al. [7], which applies belief propagation to bi-
partite host-domain graphs based on seeds of both known
malicious domains (from proprietary blacklists) and benign
domains (from Alexa top ranked domains). As a domain
resolution graph is also bipartite with one side being do-
mains, it seems appealing to apply belief propagation on a
domain resolution graph to discover malicious domains. In
this section, we experimentally investigate the effectiveness
of using belief propagation in our context. In particular, we
consider the bipartite domain resolution graph of the one-
week dataset, and construct the ground truth of malicious
domains as described in section 4.1. For the ground truth
of benign domains, we built it from Alex top ranked 10000
domains as used in [7]. We perform k-fold tests to get
the true and false positive rates (i.e., the ground truth are
evenly divided into k parts randomly. £ — 1 parts are used
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as seeds for belief propagation, and the remaining one part
is for testing to compute true and false positive rates). We
use the same priors and edge potentials as in [7] for belief
propagation (shown in tables 3 and 4). The result of the
experiment is shown in figure 9.

Domain | P(malicious) | P(benign)
Malicious 0.99 0.01

Benign 0.01 0.99
Unknown 0.5 0.5

Table 3: Priors assigned to a domain according to
the domain’s state for belief propagation

Benign | Malicious
Benign 0.51 0.49
Malicious 0.49 0.51

Table 4: Edge potential matrices for belief propa-
gation

We see that, for the approach of using belief propagation,
to get a meaningful true positive rate (around or above 90%)
the false positive rate would be around 40% or higher, which



True positive rate

o
00
=

0.8 T

0 0005 001 0015 002 0025 003 0035 004 0.045 0.05
False positive rate

(a) False positive rate vs. True positive rate for all configurations

25000
22500
*® 00 ® o9
20000 o o o
X3
® e

17500 PP
c ¢ e ®
G 15000 3 * oo
2 ® @ ®
S 12500 " PR I
3 o2 © °
o 10000 88 PP PR

oo 8 @ R

7500 v *o+2

5000

2500

0 T T T T T T )
0 200 400 600 800 1000 1200 1400
Seed size

(b) Expansion vs. seed size

Figure 7: Expansion of configurations with high true positive rates and low false positive rates for the one-week dataset

0.96

a®o

Lo

0.94

e
[
okl

154
©
~

154
©
|
1
l
|
|
|

o
0
a

True positive rate
2

o o
00 <]
N >
o

o

o
)

0.005 001 0015 0.02 0.025 0.03 0.035 004 0.045 0.05
False positive rate

(a) False positive rate vs. True positive rate for all configurations

32500
30000
27500
25000 ® ¢ 9 )
22500
20000
17500 .
15000
12500
10000
7500
5000
2500
0 T T T T T T T T T 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Seed size

Expansion

(b) Expansion vs. seed size

Figure 8: Expansion of configurations with high true positive rates and low false positive rates for the two-week dataset

is much worse than our approach.

We emphasize that this result does not contradict with
that in [7], as their approach is designed for inference over a
completely different type of data. Instead, it simply means
that the inference intuition for host-domain graphs does not
hold in domain resolution graphs. Therefore, though belief
propagation works well to discover malicious domains over
host-domain graphs, it performs poorly when dealing with
passive DNS data.

4.2.5 Evaluation beyond VirusTotal

To further evaluate the feasibility and the accuracy of
our approach, we have manually cross-checked our detec-
tion results against other third party public services about
malicious domains, including MacAfee Site Advisor, mul-
tirbl.valli.org, MXToolBox, DBL-Update, and the German
inps.de-DNSBL. Specifically, we use all the malicious ground
truth from VirusTotal as the seed set for the one week data
(a total of above 6000 malicious domains), and then manu-
ally check samples of those domains whose malicious scores
are over a certain threshold. Our manual inspection reveals
that, based on a 10% sample, 98% of domains with scores
over 0.9 are reported to be malicious or suspicious by at
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least one of the above public services, which means that
the potentially malicious domains discovered by our scheme
is highly accurate.

S. DISCUSSION

Our currently approach adopts a simple technique to iden-
tify public IPs, which, though effective, is by no means ex-
haustive. It would be possible to develop more sophisticated
algorithms to classify public/private IPs by considering ad-
vanced features (e.g., domain distributions, traffic patterns,
etc.), which will further help us improve the accuracy of
malicious domain inferences.

One potential issue with our approach is that an attacker
may “taint” a benign domain D by letting a known malicious
domain D’ point to the IPs of D, forming a fake association
between D’ and D. We do not believe this is a serious issue
as it is more to the benefit of attackers to deploy stealthy
and agile malicious domains rather than “framing” innocent
domains. Nevertheless, such attacks can be thwarted par-
tially through white listing of popular benign domains. For
the case that D is benign but unpopular, if D is hosted in
public IPs (as many such domains nowadays choose to do
s0), our approach ensures that even if a malicious domain
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is also hosted on the same set of public IPs, no association
will be built between them (see section 3.4). On the other
hand, if D is hosted in its own private IPs, it is unlikely
that those IPs belong to different ASNs, and therefore no
strong association formed between D’ and D, causing the
“tainting” attack ineffective.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a new technique to discover
malicious domains by analyzing passive DNS data. Our
approach takes advantage of the dynamic nature of mali-
cious domains to discover strong associations among them,
which are further used to infer malicious domains from a
set of existing known malicious ones. We further propose
heuristics to handle complicated practical issues (such as
web hosting) to improve both the effectiveness and efficiency
of the proposed technique. Experimental results show that
our technique can achieve high true positive rates and low
false positive rates with good expansion, i.e., discovering a
significantly large set of potentially malicious domains with
a small set of seeds.

There are a number of avenues for extending this work.
One main focus is to integrate passive DNS data with other
network and application data to enrich mechanisms for find-
ing robust associations between domains. It would also be
interesting to investigate other inference mechanisms (e.g.,
different methods to compute malicious scores from multiple
seeds). To deploy our scheme in practice, it is also important
to study incremental malicious score updates when passive
DNS data are constantly updated with new domain resolu-
tions as well as when new malicious domains are added to
the set of seeds.
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