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Abstract—To detect bots, a lot of detection approaches have
been proposed at host or network level so far and both ap-
proaches have clear advantages and disadvantages. In this paper,
we propose EFFORT, a new host-network cooperated detection
framework attempting to overcome shortcomings of both ap-
proaches while still keeping both advantages, i.e., effectiveness
and efficiency. Based on intrinsic characteristics of bots, we
propose a multi-module approach to correlate information from
different host- and network-level aspects and design a multi-
layered architecture to efficiently coordinate modules to perform
heavy monitoring only when necessary. We have implemented
our proposed system and evaluated on real-world benign and
malicious programs running on several diverse real-life office and
home machines for several days. The final results show that our
system can detect all 15 real-world bots (e.g., Waledac, Storm)
with low false positives (0.68%) and with minimal overhead.
We believe EFFORT raises a higher bar and this host-network
cooperated design represents a timely effort and a right direction
in the malware battle.

I. INTRODUCTION

Botnets (networks of bot malware controlled machines) are
considered as one of the most serious threats to current Internet
security[6], [22]. To eradicate threats posed by bots/botnets,
a lot of research has been proposed so far, and they fall
into two main categories: (i) network-level detection systems
which focus on network behaviors of bots/botnets [7], [6], [8],
[22] and (ii) host-level detection systems which investigate bot
runtime behaviors in the host [13], [14], [19].

Both detection approaches have their own advantages and
disadvantages. Network-level approaches can detect different
types of bots without imposing overhead on the hosts. How-
ever, their limitations appear when they need to detect a bot
communicating through encrypted messages or randomized
traffic [20]. Host-level approaches, on the contrary, analyze
suspicious runtime program behaviors, so that they can detect
a bot even if it uses an encrypted or evasive communication
channel. However, they typically suffer from performance
overhead because they need to monitor all invoked system
calls [13] and/or taint memory touched by the program [19].

Observing their clear advantages and disadvantages moti-
vates us to consider a new system with merits from both
approaches: (i) effectiveness and (ii) efficiency. As a promising
step toward such a system, we propose EFFORT, a new
detection framework with high accuracy and low overhead.
EFFORT considers both host- and network-level features
that are helpful to enhance strong points of each other and
complement weak points of each other, and it coordinates

these features to achieve the main goal (i.e., detecting bots
effectively and efficiently).

To build EFFORT, We start with investigating several no-
table intrinsic characteristics of recent popular botnets. First,
bots are usually automatic programs without requiring human-
driven activities. Second, bots highly rely on DNS for flexible
and agile C&C (command and control). Third, bots access
system resources anomalously to steal system information or
to launch themselves automatically. Finally, unlike normal net-
worked client applications mainly designed to gain information
through communicating with external sites, bots are more
likely to distribute/leak local information outside and they
tend to minimize incoming C&C command communication
to reduce the exposure/detection probabilities.

Based on their characteristics, we find several useful fea-
tures at host and network level. For efficiency, we perform
lightweight human-process-network correlation analysis. We
correlate interactions between human and process, and record
correlated clues between processes and outgoing DNS con-
nections. Thus, we can filter majority of benign programs, and
focus on very few suspicious automatic programs contacting
DNS servers and start further investigation.

To detect bots effectively, we employ three interesting new
modules. First, we monitor system resource exposure patterns
of the suspicious process. Second, we build a reputation engine
to characterize the reputation of a process through examining
a process and its contacting surfaces. Our intuition is that the
reputation of a process could be approximately inferred by
the reputation of its social contact surfaces. Third, we analyze
network information trading rate for any network process to
infer how likely the program is information gaining oriented
or information leaking/outgoing oriented.

II. SYSTEM DESIGN

The overall architecture of EFFORT, which consists of
five modules, is shown in Figure 1. The overall operation
of EFFORT is summarized as follows. First, Human-process-
network correlation analysis module finds a process produc-
ing bot-driven network connections and notifies other three
modules - Process reputation, System resource exposure, and
Network information trading analysis modules - about the
found process. Second, these three modules investigate the
found process in detail and each module issues a detection
result (but not a final decision) by its own analysis engine.
Finally, Correlation engine collects the detection results from
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Fig. 1: EFFORT Design Architecture, (M1 for human-process-
network correlation analysis module, M2 for process reputation
analysis module, M3 for system resource exposure analysis module,
M4 for network information trading analysis module, and M5 for
correlation engine

the three modules and finally decides whether the process is
malicious or not (final decision).

A. Human-Process-Network Correlation Analysis

Since most running processes are benign, it is relatively
inefficient to monitor all of them in fine-grained detail (e.g.,
monitor system call level activities) all the time. Thus, our
human-process-network correlation analysis module is de-
signed to sift benign programs out.

Human-Process Interactions Monitoring: We monitor
keyboard/mouse events of the host to understand which pro-
gram has human activity/interaction. To do this, our event
sensor hooks Windows system calls related to keyboard/mouse
events, and also determines the program generating them.
At this time, we also consider that whether the events are
produced by real physical devices or not. Our sensor only
trusts the events from physical devices.

Note that in current implementation, we trust operating
system and we believe it provides true information, a common
assumption widely used in this line of research [13], [4]. Of
course, some malware (e.g., rootkit) may infect operating sys-
tem to deliver fake information or even kill our system. In the
future, this issue could be solved by employing hardware/TPM
[9] or Hypervisor-based introspection and protection [5], [11]
(thus out of the scope of this paper).

Process-Network Interactions Monitoring: A connection
sensor records outgoing network connections from processes
in a host. In particular, it cares about one special network
connection - DNS query, because botnets heavily rely on using
DNS for flexible, efficient, and evasive C&C rallying [1].

Interaction Model Generation and Automatic Connec-
tion Detection: Combining information from the event sensor
and the connection sensor, we create a model to describe
which process has which network correlations. The model
employs three metrics: (i) time difference between the time
when a process issues a DNS query and the prior time when
a process produces a mouse/keyboard event, (ii) the source of
the events, and (iii) whether a process is running foreground or
not at the time. We consider that a process event is generated

from human, if (i) the time difference is very small, (ii) the
event is from actual physical devices, and (iii) the process is
running foreground.

B. Detecting Malicious Processes

With the help of the previous module for filtering, we can
focus on a few suspicious processes. To further investigate
whether they are malicious or not, we perform a set of
independent and parallel checks using the following three
modules.

1) Process Reputation Analysis Module: A quick intuitive
observation is that we could determine the process reputation
by looking at not just “who you are”, but also “whom you have
talked to”. Bots are likely to contact some “bad” servers/peers
automatically in order to be controlled. On the contrary, benign
programs are relatively unlikely to connect to “bad” targets
automatically.

Domain Information Collection: We collect reputation
information of the domain by employing three types of
sensors. First, we employ a whois sensor to detect some
anomaly features in its registration information. Second, we
use a blacklist sensor to investigate its previous records in
well-known blacklists, which give us relatively clear clues
whether the domain has a history of malicious activity or
not. Finally, since blacklists might not be complete, we apply
a search engine sensor to get another heuristic to leverage
community-based knowledge and intelligence, i.e., asking a
search engine to infer the reputation of given domain names,
which is motivated by the googling idea in [21].

Feature Extraction: We extract several features from data
collected in each sensor. From the whois and blacklist sensor,
we consider five features: (i) time difference between current
date and domain expiration date (most malicious domains are
registered very recently), (ii) time difference between domain
expiration date and creation date (most malicious domains
have short life time), (iv) number of domain registration (ma-
licious domains are typically registered to few name servers),
and (v) whether a target domain can be found on blacklist or
not (malicious domains are likely on blacklist).

In the case of the search engine sensor, we consider the
following two features. First, we check whether the domain
and the process (contacting the domain) names are well-
indexed (thus returning many results). Our intuition on this
is that if a domain and a process name can be clearly found
on search results, they might be benign. Second, we investigate
whether the domain name and the process name are frequently
used in a malicious context in the top returned web pages,
e.g., they are surrounded by malicious keywords such as bot,
botnet, DDoS, spam, and identity theft. Our intuition is that
bad domain names are likely associated with some malicious
keywords (e.g., as already reported at other places).

Process Reputation Model Creation: We employ a
Support Vector Machine (SVM) classifier [3] for the process
reputation model. In this model, we consider the extracted
features, which are mentioned above, as training examples.
In addition, we define that there are two classes - benign



and malicious - in the model, thus the extracted features will
represent one of the two classes.

Anomalous Process Reputation Detection: It is very fre-
quent that a process contacts several different domains during
a certain period. Thus, we examine all contacted domains
using our trained SVM model, and determine whether “bad”
domains (i.e. classified as malicious domains) exist or not. If
there exists at least one, we consider the process reputation as
bad (malicious), otherwise it is good (benign).

2) System Resource Exposure Analysis: If a bot infects a
host, it usually tries to do something useful for its master
(to make profit), e.g., stealing information, sending spam,
and launching DDoS attacks [10]. These operations consume
system resources - memory, cpu, and network - of the host,
read/modify files or registries [14]. If we monitor how system
resources are exposed to a process (and to what degree), we
could infer its anomalous access patterns.

System Resource Exposure Patterns Monitoring: A
system resource exposure Sensor MONItOrs resource access
activities of a suspicious process. It monitors how critical
resources such as files, registries, and network sockets are
exposed to the target process.

System Resource Exposure Model Creation: To build this
model, we use the following heuristics: (i) typically normal
processes rarely access files in other user’s folders and system
directories, (ii) typically normal processes do not modify
critical registries (with a few exceptions), and (iii) typically
normal processes do not create a large number of sockets
in a short time period. These heuristics are not perfect, i.e.,
some normal processes might have some of these patterns. Our
goal of this module is not to have zero false positive, instead,
we want to detect most of these system-resource-consuming
malware. Thus, we believe these heuristics are reasonable.

To build a system resource exposure model, we employ a
one-class SVM (OCSVM) classifier [17]. We use one-class
instead of two-class SVM because we will only use benign
programs in training. To get the ground truth information of
the system resource usages of malware is tricky, e.g., some
malware may refuse running or behave normally. Thus, even
if we obtain the information of malware, it may not represent
its behavior clearly. To address this issue, we only use the
system resource access patterns of known benign processes
(i.e., one side of data).

3) Network Information Trading Analysis: Typically, most
user programs will act as clients rather than servers, and
clients will try to gather information rather than distributing
information. However, a bot will behave differently. Usually,
the data that a bot receives is a command from a botmaster,
therefore the amount of the data may be small (to minimize the
chance of being detected). However the data sent out by the bot
could be relatively large as it performs malicious operations
in the network. Information theft, DDoS attack, and massive
spam sending are good examples.

Lightweight Network Traffic Monitoring: To observe
network information trades, a network sensor captures network
flows between a process and a target address and stores them.

An important thing here is that this sensor monitors network
traffic generated by the specific process not by the host.
It could give us more fine-grained observations of network
information trading. Our sensor is very simple and lightweight,
because it does not need to analyze payload contents and it is
robust against encryption used by bots. In addition, we monitor
the host level network connections to obtain an aggregated
view of network information trading. At this time, the sensor
only measures the number of outgoing connection trials (i.e.
TCP SYN packets and first UDP packets).

Network Information Model Creation: We use a simple
method to model the network information trade rate, i.e.,
the ratio of incoming and outgoing packets/bytes exchanged
between a process and a remote site in a certain period. We
define the number of incoming and outgoing packets as ¢, and
03, and the number of incoming and outgoing bytes as d; and
0. Thus, each ratio can be represented as g—; and g—;.

To observe an aggregated view, we employ a time window
w; for each host <. We measure how many network connection
trials happen in the time window.

Anomalous Information Trading Detection: In the case
of the fine-grained view, if one or both of the predefined ratio
values of a process is (are) smaller than some threshold ~; (for
packet) and - (for bytes), we consider the process anomalous,
otherwise normal. Also, we consider the network behavior of
the host is anomalous, if a host creates network connection
trials larger than a threshold 7 in w;.

4) Correlation Engine: After each module makes its own
decision, the correlation engine will combine these results and
make a final decision using a weighted voting system. It is
worth noting that as any intrusion detection system, most of
our individual modules might be evaded by very carefully de-
signed bots. However, when combining all modules together,
we can achieve much better results, as demonstrated in Section
III. We also note that even individual evasion is possible, it
will compromise the utility and efficiency of bots.

At the correlation stage, we should determine the weights
of the decision of each module. We also employ the SVM
technique to determine which element (i.e. decision result of
the module) is more important (i.e. should have more weight).

III. EVALUATION

In this section, we explain how we collect real-world data
of both benign and malicious programs and we show the
detection results, false positive analysis, and performance
overhead.

A. Data Collection and Usage

1) Benign Data Collection: We have installed our modules
into 11 different real-life hosts to collect the information of
both process activities and network behaviors for several days.
These 11 machines are used in real-life operations by diverse
users (including some lab members, friends in different majors,
housewives). The collection has been done in working hours
on business days. We carefully examine to make sure that
there are no malicious programs (especially bots) in the hosts,



thus we consider that the collected data can be used as benign
examples.

We explicitly collect data in two periods for different
purposes: training and testing. We have collected training data
from 6 machines and the collected data is denoted as SET-1.
Later we have collected testing data on 8 machines (among
them, 3 machines are also used for training data collection, but
5 machines are newly added). The data for testing is denoted
as SET-2. Each module have collected process and network
information for around 5 days.

There are 7,202 different domains and 77 different processes
in SET-1. They are used for training. At this time, since we
only have benign domain information, we have also collected
malicious domain information from [16] to train our module.
In SET-2, we have found 1,165 processes and we use their
information to test false positive rates of our system.

2) Bot Malware Data Collection: To test the detection rate
on real-world bots, we build a virtual environment to run sev-
eral real-world bots. The environment consists of three virtual
machines individually serving as an infected host, a controller
and a monitor machine. All of them install Windows XP
SP3 operating system with basic software installed, such as
IE browser and Microsoft Messenger.

ID [ Name H Protocol [ Sample Functionalities

Bl PhatBot IRC Steal Key, Spam Mail Send, Net-
work Scan

B2 JarBot IRC Kill Process, Steal Key

B3 Storm/Peacomm P2P * Other

B4 Waledac HTTP, Other

P2P

B5 PhaBot.ab IRC Other

B6 Flux Custom Operate/Modify File, Kill Process,
Capture Desktop/Screen,

B7 nuclearRat Custom * Download Update

B8 BiFrost Custom Operate File, Kill Process, Capture
Screen, Steal Key

B9 Cone Custom Operate file

BI10 | Http-Pentest HTTP Operate File, Kill Process, Capture
Screen

B11 Lizard Custom Capture Screen, DDoS

B12 | PanBot Custom Flooding

B13 Penumbra Custom Operate File, Create Shell

B14 SeedTrojan Custom Download Update

BI15 TBBot Custom Capture Screen, Create Shell

TABLE I: Evaluated Bots (Custom denotes a botnet using its own
protocol. * represents the protocol is encrypted. Other denotes other
network/system malicious operations not categorized in the table.)

We have used a total of 15 different bots (including Pea-
comm/Storm, Waledac, PhatBot). Their names, C&C proto-
cols, and sample functionalities are summarized in Table I.

B. Detection Results of Real-world Bots

1) Detection Results of Automatic Connections: To test the
human-process-network correlation analysis module, we in-
stalled each bot in a host and leave it without any intervention.
After a while, we find that all installed bots issue automatic
connections to some remote servers (to be controlled). All of
the automatic connections are captured by our module and the
detected information is delivered to other upper-layer modules.

2) Detection Results of the Process Reputation Model: The
process reputation analysis module analyzes the reputation
of contacted domains of the process detected above. Since
a bot contacts multiple domains, we analyze all contacted
domains. If the module finds any malicious domain from the
contacted domains, it considers the process malicious. The
process reputation analysis module detects 12 bots but misses
3 bots (B2, B3, and B4).

We investigate why our module missed these three. In the
case of B2 (Peacomm) and B3 (Waledac), both bots only
contacted the remote servers which are either located in private
IP addresses (192.168.X.X) or some inactive hosts using direct
IP addresses. We could not get any useful information from
the third parties for them. B4 (JarBot) contacts a regular IRC
server and the server has been operated for several years, thus
our module considers it as normal.

3) Detection Results of the System Resource Exposure
Model: When we test the functionality of each malware in
Table I, we find that the system exposure analysis module
detects most of the malicious operations. The detection results
are summarized in Table II (marked with “S”).

It only misses 2 malicious operations of “B6 (Flux)”; op-
erate file and capture screen. When we analyze their resource
exposure patterns, we find that their operations are very similar
to normal programs (e.g., save files in local folder).

4) Detection Results of the Network Information Model:
As listed in Table II (marked with “N”), the network trading
information analysis module detects most malicious opera-
tions. It misses 7 malicious operations related to download
updates and file modification or operation. In the case of
the download updates, the process gains more data, thus our
module does not issue an anomaly. Sometimes a botmaster
sends commands frequently to an infected host, but does not
require an answer. In this case, a bot also obtains more data. In
terms of the aggregated view, our module detects all massive
outgoing connection trials, such as DDoS and flooding.

5) Correlated Detection Results: If any of the above mod-
ules determines its decision, the decision result is delivered
to the correlation engine. Based on all delivered results, the
correlation engine makes a final decision for a process.

When we test malicious operations, the correlation engine
can detect all malicious operations by bots. As we discussed
before, even though some module misses an anomaly of an
attack, other modules will complement it, thus our combined
results can still detect all attacks and the combined results are
shown in Table II.

C. False Positive Test

To test false positive cases, we have tested 1,165 benign
processes in SET-2 and we find that only 8 processes are
detected as malicious (false positive) by EFFORT. We believe
that only 8 false positives found in about a week of testing
time on all 8 real-world heavily-used machines are quite low.

More details on the design and evaluation of EFFORT are
available in an extended version of this paper [18].



Functionality

[ Bilo [ BlI [ Bi2 [ BI3 [ BIi4 [ BI5

Operate file

PSN PS.N

Modify file

Kill process

PS.N

Capture Desktop

Capture screen

PS.N

PSN | PSN PS

DDoS

PS.N

Flooding

PS.N

Create Shell

PS.N PS.N

Download update PS

PS

Steal key PS.N S.N

PS)N

Spam Mail Send P,S.N

Network Scan PSN

Other Operation SN S.N PS

TABLE II: Detection Results of All Modules (shaded cells represent functionalities provided by malware. Each “P”, “S”, and “N” denotes each
process reputation analysis, system resource exposure analysis, and network information trading analysis module detect the functionalities,

respectively.

IV. RELATED WORK

There have been several approaches to detect bots at the
network level [12] [22] [7], [6], [8]. Our work is different
from the above approaches, because we design both of new
network level sensors and host level sensors.

Detecting bots at the host level is also popular due to its
effectiveness. They employ several interesting techniques to
detect bots such as tainting memory [2], [19] and examining
the system call sequences/graphs [13]. Our work designs
several new host level sensors without analyzing al/l running
processes all the time, but only investigating the process when
necessary.

There are also several interesting studies related to detect bot
malware [15] [14] [4]. Our work differs from them because we
use different features at host level (e.g., socket creation) and
detection models. Moreover, our work analyzes the process
only when necessary. Zeng et al. [23] also proposed to detect
bots combining information from both host and network levels.
This work uses network sensors to trigger host analysis, thus
it suffers from the same limitations of previous network-based
detection approaches. EXPOSURE [1] is a system to detect
malicious domains. Although our Process reputation analysis
module shares some similar domain registration features with
it, these are only small parts in our engine.

V. CONCLUSION

In this paper, we show a new, concrete host-network cooper-
ated design to achieve both efficient and effective bot malware
detection based on correlative and coordinated analysis. EF-
FORT is a first-of-its-kind real-world prototype system of such
design and demonstrates great potential to defeat bots in this
important malware battle.
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