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Early Detection of Malicious Flux Networks via
Large-Scale Passive DNS Traffic Analysis

Roberto Perdisci, Igino Corona, and Giorgio Giacinto

Abstract—In this paper we present FluxBuster, a novel passive DNS traffic analysis system for detecting and tracking malicious
flux networks. FluxBuster applies large-scale monitoring of DNS traffic traces generated by recursive DNS (RDNS) servers located
in hundreds of different networks scattered across several different geographical locations. Unlike most previous work, our detection
approach is not limited to the analysis of suspicious domain names extracted from spam emails or precompiled domain blacklists.
Instead, FluxBuster is able to detect malicious flux service networks in-the-wild, i.e., as they are “accessed” by users who fall victim
of malicious content, independently of how this malicious content was advertised. We performed a long-term evaluation of our system
spanning a period of about five months. The experimental results show that FluxBuster is able to accurately detect malicious flux
networks with a low false positive rate. Furthermore, we show that in many cases FluxBuster is able to detect malicious flux domains
several days or even weeks before they appear in public domain blacklists.
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1 INTRODUCTION

Internet miscreants and cyber-criminals are always look-
ing for new ways to cover the traces of their mali-
cious activities while preserving their illicit revenues. To
this end, malicious flux networks have recently started
to thrive [1]. Malicious flux networks can be viewed
as illegitimate content-delivery networks (CDNs). Legit-
imate CDNs have been used for quite some time to
provide a high degree of availability, scalability, and
performance to legitimate high-volume Internet services.
A CDN usually consists of a relatively large number of
nodes scattered in multiple locations around the world.
Whenever a user requests a service provided through
a CDN, the CDN’s node closest (non necessarily in
a geographic sense) to the user is usually chosen to
provide the requested content with high performance.
CDNs can be implemented using the DNS, whereby
domain names related to the content network resolve to
multiple IP addresses related to the best node for each
user’s request. Unlike legitimate CDNs, whose nodes
are professionally administered machines, the nodes of
a malicious flux network, a.k.a. flux agents, are typi-
cally malware-compromised machines. The flux-agents
are usually part of a botnet – a network of malware-
compromised machines that can be commanded to per-
petrate malicious actions in a coordinate way – and can

• Roberto Perdisci is with the Department of Computer Science, University
of Georgia, Athens, GA 30602, USA.
E-mail: perdisci@cs.uga.edu

• Igino Corona is with the Department of Electrical and Electronic Engi-
neering, University of Cagliari, 09123 Cagliari, ITALY
E-mail: igino.corona@diee.unica.it

• Giorgio Giacinto is with the Department of Electrical and Electronic
Engineering, University of Cagliari, 09123 Cagliari, ITALY
E-mail: giacinto@diee.unica.it

be remotely controlled by an adversary, who is often
referred to as the botmaster. Malicious flux networks are
commonly used to host phishing websites, illegal adult
content, or serve as malware propagation vectors, among
other things.

The main technical difference between a malicious
flux network and a legitimate CDN is that, while the
nodes of a legitimate CDN are highly reliable and tightly
controlled by the CDN administrators, botmasters do not
usually have complete control over the flux agents. Many
of the compromised machines that form a malicious flux
network may be turned on and off by their owners at
any time, making the uptime of each flux agent hard
to predict. Also, differently from CDNs, it may be hard
for the botmaster to tightly monitor the load on each
node, and to redistribute the received content requests
accordingly. In order to cope with these problems and
maintain high content availability, botmasters usually
set up their malicious networks using fast-flux domain
names. The term fast-flux is used to point out that the set
of resolved IP addresses (the flux agents) associated to
the malicious domain names change frequently, often at
each DNS query [2]. Furthermore, since it is usually hard
for the botmaster to control exactly where the malware
propagates and which machines are infected by her bot
software, the flux agents are often scattered across many
different networks [2].

A number of approaches for detecting fast-flux do-
main names have been recently proposed [3], [4], [5], [6].
These works (which will be discussed in more details
in Section 2) differ from each other in the number of
features used to characterized fast flux domains and
the details of the classification algorithms, but they all
rely on an active-probing approach, whereby domains ex-
tracted from spam emails or malware domain blacklists
are repeatedly queried to collect their sets of resolved
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IPs. This information is then used to classify each do-
main name as being either fast-flux or non-fast-flux.

In this paper we present FluxBuster, a novel detection
system that uses a purely passive approach for detecting
and tracking malicious flux networks. Our detection sys-
tem is based on large-scale passive analysis of DNS traffic
generated by hundreds of local recursive DNS (RDNS)
servers located in different networks and scattered across
several different geographical locations (see Figure 1).
FluxBuster is based on our previous work [7], but differs
from it in several aspects:

• Our previous study [7] was based on DNS traffic ob-
servation from “below” a number of recursive DNS
servers, namely DNS traffic flowing from single
users’ machines to their local RDNS servers. Unfor-
tunately, obtaining access to such a type of traffic is
problematic, mainly due to privacy concerns. In [7]
we were able to access this “below-recursive” traffic
thanks to the collaboration with a security company
and under a non-disclosure agreement. In this work
we study the detection of flux networks by passively
monitoring DNS traffic collected from “above” local
RDNS servers, as shown in Figure 1. This mon-
itoring approach is privacy-preserving, because the
IP addresses of the individual clients are masked
by their local RDNS server. Furthermore, the RDNS
server acts as a traffic mixer, and the DNS cache has
the effect of suppressing queries to domain names
whose TTL has not yet expired. This makes the
proposed system easier to be adopted, as the data
on which it is based can be safely shared by network
operators, for example through the Internet Sys-
tems Consortium’s Security Information Exchange
(ISC/SIE) frameworks [8].

• Because we use a different type of data source than
the one we used in [7], we had to significantly
change the way FluxBuster analyzes the DNS traces
and extracts the statistical features needed to classify
flux networks.

• Finally, this paper presents an evaluation of our
detection system at a much larger scale and over
a much larger time period (about five months).

FluxBuster’s detection approach can be summarized
as follows. Because the amount of RDNS traffic in large
networks is often overwhelming, we first apply a num-
ber of pre-filtering rules that allow us to quickly discard
DNS messages that are clearly related to non-flux do-
mains (see Figure 2). At the same time, these pre-filtering
rules will not discard information about domain names
that are actually related to live malicious flux networks.
In practice, the output of the pre-filtering stage is a
set of candidate flux domains. This approach drastically
reduces the volume of DNS traffic to which we apply a
more expensive, fine-grained analysis. It is worth noting
that this pre-filtering stage is very conservative, and will
not exclude legitimate Internet services that share some
characteristics with flux networks, such as CDNs, NTP
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Fig. 1. Traffic collection “above” local DNS servers.

pools, etc. To distinguish between malicious flux and non-
flux networks, given the set of candidate malicious flux
domains we perform a more fine-grained analysis by
first grouping together domain names that are related
to each other. For example, we group together domain
names that either point to the same Internet service,
are related to the same CDN, or are part of the same
malicious flux network. In practice, each of these domain
clusters represents a candidate flux network. We then use
a statistical classifier to detect whether a domain cluster
is actually related to a malicious flux network or to a
non-flux network (Section 3.1). This is in contrast with
most previous works, in which single domain names are
considered independently from each other, and classified
as either fast-flux or non-fast-flux [3], [4], [6], thus ignor-
ing the fact that many flux networks involve more than
one domain name.

We have implemented a proof-of-concept version of
FluxBuster and evaluated it on DNS traffic shared by
hundreds of different network operators through the
ISC/SIE framework [8]. Our long-term evaluation spans
a period of about five months, and shows that our sys-
tem is able to accurately detect malicious flux networks
with a low false positive rate. Furthermore, we show that
in many cases our system is able to detect malicious flux
domains several days or even weeks before they appear
in public domain blacklists. In addition, we have made
our results available to the security community, and have
already received positive feedback from a number of
security researchers and professionals.

2 RELATED WORK

A number of approaches for detecting fast-flux domain
names have been recently studied in [3], [4], [5], [6], [9],
[10]. These works differ from each other in the number
of features used to characterized fast flux domains, and
the details of the classification algorithms. The main
limitation of these works lies in the use of spam email
as the primary information source, thus detecting fast-
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flux domains advertised through email spam1. These
approaches identify potential fast-flux domain names in
the URLs found in the body of spam emails (typically
captured by spam traps and filters) [3], [4], [5], [6].
Then, an active probing strategy is applied, by repeatedly
issuing DNS queries to collect information about the set
of resolved IP addresses, and by subsequently classifying
each domain name as being either fast-flux or non-fast-
flux. The work in [9] is in part different from other
previous works, because it is not limited to domains
found in spam emails. In particular, they propose to
analyze NetFlow information collected at border routers
to identify redirection botnets, which are a specific kind of
botnets used to set up redirection flux service networks.
However, the information they extract from network
flows is not able to detect flux agents that are being
used as transparent proxies, instead of redirection points.
In addition, to perform the classification of suspicious
domains collected from spam emails, and the correlation
with information regarding network flows, this work
heavily relies on DNS active probing in a way very
similar to [3], [4].

Our detection approach, based on passive monitor-
ing, has a clear advantage over detection techniques
proposed in previous works. Passively monitoring live
users’ DNS traffic allows capturing queries to flux do-
main names that are advertised through a variety of
means, including, for example, blog spam, social websites
spam, search engine spam, and instant messaging spam,
in addition to email spam and precompiled domain
blacklists such as the ones used in [3], [4], [5], [6].
Furthermore, unlike the active probing approach used in
previous work [3], [4], [5], [6], we passively monitor live
users’ traffic without interactions with the flux networks.
Active probing of fast-flux domain names [3], [4], [5], [6]
may be detected by the attacker, who often controls the
authoritative name servers responsible for responding
to DNS queries about her fast-flux domain names. If the
attacker detects that an active probing system is trying
to track her malicious flux service network, she may stop
responding to queries coming from the probing system
to prevent unveiling further information. On the other
hand, our detection system is able to detect flux services
in a stealthy way.

Recently Hsu et al. proposed a real-time system for
detecting flux domains based on anomalous delays in
HTTP/HTTPS requests from a given client [10]. The
assumption is that the flux agents are often used as either
web servers or web proxies to provide malicious content
(e.g., phishing web pages). Because the flux agents are
typically malware-compromised home machines, rather
than performant web server, they often provide the
malicious web content with large latencies. Hsu et al.
leverage on these observations for detection purposes.

1. Some works also consider domain blacklists and malware samples
as information source, but the number of collected domains is quite
small if compared to the number of domain names that are extracted
from spam emails.
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Fig. 2. High-level system overview.

Our work is significantly different from [10], which
focuses mainly on HTTP traffic generated by single
clients and may not scale well in very large networks.
Moreover, the work in [10] employes a mix of passive
and active approaches to detect flux domains. On the
other hand, our work focuses on large-scale, privacy-
preserving passive analysis of DNS traffic, and does
not need access to the HTTP traffic generated by single
clients, which may be very difficult to obtain due to
privacy concerns.

A number of DNS reputation systems mainly tar-
geted at detecting generic malicious domains [11], [12],
or malware-specific domains [13] have been recently
proposed. These works have in common the use of
large-scale DNS monitoring to detect malicious domains.
Our work is different because FluxBuster aims to detect
and track flux networks, rather than focus on single
low-reputation domain names, thus providing a more
targeted and accurate output for this specific type of
maliciousness.

3 FLUXBUSTER

In this section we describe how FluxBuster works. We
start by giving a high-level overview of our system,
before describing its components in more detail.

3.1 System Overview
Figure 2 shows a high-level overview of FluxBuster.
FluxBuster receives in input a stream of DNS mes-
sages collected through the ISC/SIE [8] infrastructure,
as shown in Figure 1. The details of the data collection
process are discussed in more details in Section 3.4.
For the sake of the following discussion, it is important
to notice that each collected DNS message provides
information regarding the mapping of a domain name d
to a set of resolved IP addresses R, as observed from the
ISC/SIE DNS sensors distributed across the Internet.

The DNS Message Aggregator module (Section 3.2)
aggregates all DNS messages regarding a domain d
into a higher-level DNS message Q(d) that contains all
information about d observed during a given interval
of time ∆. Each Q(d) includes information such as how
many DNS queries to d were observed during ∆, the
aggregated set of all resolved IP addresses pointed by
d, their average time to live (TTL), etc. The length of ∆
should be at least a few hours, so that we can collect



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, JANUARY 201X 4

enough information (e.g., several resolved IPs) for each
flux domain name (see Section 3.2).

The Message Pre-filtering module (Section 3.4) analyzes
each aggregated DNS message Q(d) and filters out those
messages related to domains d that are very unlikely to
be flux domains. In practice this module performs data
volume reduction, and aims to reduce the computational
cost of the more fine-grained analysis performed by
the following modules. To this end, we implement the
Message Pre-filtering module using a set of very conser-
vative filtering rules. The consequence is that at this
stage FluxBuster “accepts” all the flux domains as well
as several non-flux domains, such as domains related to
CDNs, as candidate flux domains for further analysis.

The set of domains D = {d1, d2, ..., dn} and the related
set of aggregated messages Q(d1), Q(d2), ..., Q(dn) that
pass the pre-filtering step are then sent to the Domain
Clustering module (Section 3.5). This module partitions
the set of domains D into a set of domain clusters C =
{C1, C2, ..., Cm}, with D =

⋃
i Ci. Each of these clusters

contains domains that are related to each other, because
they share a non-negligible percentage of resolved IPs.
In practice, these clusters of domains and the related sets
of IP addresses represent candidate flux networks.

Because of the conservative filtering approach taken
by the Message Pre-filtering module, not all these can-
didate flux networks are actually flux. Therefore, in
order to distinguish between flux and non-flux networks,
FluxBuster employs a Classifier module (Section 3.7)
based on a supervised statistical algorithm that has been
previously trained on examples of both flux and non-flux
networks. The Classifier module processes the clusters
produced by the Domain Clustering module that include a
number of IP addresses larger than a predefined thresh-
old κ (e.g., κ = 30), and labels them as either flux or non-
flux. We use the threshold κ first of all because clusters
with very few IP addresses are extremely unlikely to
represent active flux networks, and because we need
a sufficiently large and representative sample set of IP
addresses for each candidate flux network in order to
compute some of the statistical features described in
Section 3.6. Therefore, clusters that contain a number of
IP addresses lower than κ cannot be reliably labeled as
flux, and are simply discarded.

3.2 DNS Message Aggregator
FluxBuster receives in input a stream of DNS messages
as provided by the ISC/SIE [8] framework. ISC/SIE
collects raw DNS query/response messages from a
large number of RDNS sensors (see Figure 1), and re-
broadcasts these DNS messages in a de-duplicated fash-
ion2. For example, assume that there are three RDNS
sensors S1, S2, and S3 that have reported a DNS
query/response message regarding a domain name d
to ISC/SIE. Suppose that S1 reported the mapping of

2. FluxBuster currently receives de-duplicated DNS messages from
SIE channel 204.

domain d to three IP addresses, {IP1, IP2, IP3}, S2 re-
ported the mapping of d to two addresses {IP1, IP4},
and S3 reported the mapping of d to one address
{IP5}. These raw messages will be combined within
the ISC/SIE framework into a de-duplicated message
stating that d maps to {IP1, IP2, IP3, IP4, IP5}. In other
words, the de-duplication process aggregates raw DNS
query/response messages received within a certain time
window T into a single message that summarizes the
domain-to-IP mappings observed during T from mul-
tiple sensors. Because of the implementation of the
ISC/SIE de-duplication system, the value of T varies
with time, and it is in the order of a few hours (e.g.,
two to four hours).

FluxBuster performs a further aggregation of the mes-
sages that are received from ISC/SIE within a period ∆
equal to twelve hours. The aggregated message can be
represented as a tuple Q(d) = {d, t1, t2, R, τ, c}, where
d is a given domain name, t1 and t2 represent the
timestamp of the first and last DNS query/response
messages regarding d that were aggregated into Q(d),
respectively, R is the set of all IP addresses resolved
during the period (t2 − t1), τ is the average time-to-live
(TTL) of the DNS responses, and c is the number of raw
DNS query/response messages aggregated by Q(d).

3.3 Characteristics of Flux Domain Names

Before presenting the Message Pre-Filtering module, we
discuss the typical characteristics of flux domains, which
we used to derive our pre-filtering rules.

Fast-flux domains are characterized by the following
main characteristics: (a) short time-to-live (TTL); (b) high
frequency of change of the set of resolved IPs (i.e., the
flux agents) returned at each query; (c) the overall set
of resolved IPs obtained by querying the same domain
name over time is often very large; (d) the resolved IPs
are scattered across many different networks [2]. Some
legitimate services, such as legitimate CDNs, NTP server
pools, IRC server pools, etc., are served through sets
of domain names that share some similarities with fast-
flux domains. For example, domains related to legitimate
CDNs often have a very low TTL and resolve to mul-
tiple IP addresses located in different networks. Also,
domains related to NTP server pools use a very high
number of IP addresses which change periodically using
a round-robin-like algorithm. Although the value of each
individual characteristic may not allow us to precisely
identify malicious flux domains and distinguish them
from legitimate domains, combining multiple measures
based on the above characteristics enables accurate de-
tection of flux domains and networks (see Section 3.6).

3.4 Message Pre-Filtering

The Message Pre-Filtering module performs data volume
reduction by discarding domain names that are very
unlikely to be part of a flux network.
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Given an aggregated DNS message Q(d) related to
a domain d, Q(d) is “accepted” by the filter, i.e. it is
considered for further analysis, if all the following rules
are matched:
(1) τ ≤ θ′

ttl

(2) R ≥ θR OR τ ≤ θ′′

ttl

(3) div(R) ≥ θdiv
where θ

′

ttl, θ
′′

ttl, θR, and θdiv are suitably chosen thresh-
olds (with θ

′′

ttl < θ
′

ttl). The function div(R) computes the
“diversity” of the resolved IP set R, and it is computed
as div(R) = |P |

|R| , where P is the set of all the /16 IP
prefixes in R. P is computed by considering each IP in
R, and extracting its /16 prefix (e.g., the /16 prefix of
128.192.76.177 is 128.192). Thus it follows that |P |
is the number of distinct IP prefixes in R, and a large
value of div(R) is associated to a set of resolved IPs that
are scattered across many different /16 networks (we
use /16 prefixes because they tend to approximate well
the boundary among networks belonging to different
organizations, as discussed in Section 3.6).

The choice of these simple filtering rules follows di-
rectly from the characteristics of flux domains outlined
in Section 3.3. To make sure that the Message Pre-Filtering
module does not discard flux domains, we conserva-
tively set the filtering thresholds as follows: θ

′

ttl = 3
hours, θR = 3, θ

′′

ttl = 30 seconds, and θdiv = 1
3 . Therefore,

only domains with a very large TTL, very low number
of resolved IPs, and a low value of diversity of the
IP set will be discarded (i.e., they will be regarded
as non-flux domains). It is also worth noting that the
threshold θ

′′

ttl is used to avoid discarding those domains
that resolve to a very small set of IPs, and at the same
time are characterized by a very short TTL. This rule
has been introduced because some attackers setup their
flux domains to resolve to only one flux agent (i.e., one
IP address) per query. However, in this case the TTL is
often set to zero (or at most a few seconds) to guarantee
that the flux agent’s IP is not cached by the local DNS
resolver for too long, and the next time a user “clicks”
on the same domain she will obtain a “fresh” flux agent
IP, thus making sure the user will be redirected to a
reachable compromised machine.

Summing up, the output of the Message Pre-Filtering
module is a list of candidate flux domains, and their
related aggregated DNS information (i.e., resolved IP
addresses, average TTL, etc.).

3.5 Domain Clustering
At the end of each epoch E of one day, we consider
the list of all candidate flux domains output by the
Message Pre-Filtering module along with the related DNS
information collected during that day, and then we
group the domains according to similarities in their
resolved IP sets. This clustering step is motivated by the
following reasons. Botmasters usually operate malicious
flux services using a (often large) number of fast-flux
domain names that all point to flux agents related to

the same flux network. We speculate that one of the
reasons for this behavior is to evade domain blacklists.
During our study, we came across a number of malicious
flux services advertised through large sets of “random-
looking” domain names. The botmaster seemed to be
registering many new domain names every day to com-
pensate for older domain names that were identified as
malicious by security operators and added to blacklists.

Our clustering approach groups together domain
names that within an epoch E resolved to a common set
of IP addresses. To perform domain clustering of flux
domains that are related to each other, we use single-
linkage hierarchical clustering algorithm [14], [15], which
adopts a “friends of friends” clustering strategy. In order
to apply the clustering algorithm to a set of domain
names D = {d1, d2, ..dn}, we first need to formally define
a measure of similarity between them.

We define the following similarity metric between
pairs of candidate flux domains. Given two domains α
and β, and their cumulative set of resolved IP addresses
collected during an epoch E, respectively Rα and Rβ ,
we compute their similarity score as

sim(α, β) =
|Rα ∩Rβ |
|Rα ∪Rβ |

· 1

1 + eγ−min(|Rα|,|Rβ |)
∈ [0, 1] (1)

The first factor is the Jaccard index for sets Rα and Rβ ,
which intuitively measures the relative overlap between
the two cumulative sets of resolved IPs. The second
factor is a sigmoidal weight designed to measure the
confidence in estimating the Jaccard index. Let us recall
that for each domain d we are able to collect a sample of
the IP addresses that domain is mapped to (depending
on the number of DNS messages about d contributed to
ISC/SIE). Thus, in some cases the aggregated message
Q(d) may contain a small number of IP addresses. When
the size of sets Rα and Rβ is small, the Jaccard index
may still have a large value if the sets exhibit a large
intersection, but this value can be affected by uncertainty
due to the sampling effect. Therefore, we translate this
uncertainty into a weight that reduces our confidence on
the Jaccard index, when the resolved IP sets are small.
To better understand the choice of this weight factor
consider this example: if |Rα∩Rβ | = 3 and |Rα∪Rβ | = 4
or |Rα ∩ Rβ | = 30 and |Rα ∪ Rβ | = 40, the Jaccard
index is 0.75 in both cases, but the similarity measure
related to the second case should be larger than the
one related to the first case. The parameter γ is chosen
a priori, according to our experience in considering
a set of resolved IPs as being “small” or “large”. In
particular, we found that the value of γ = 3 worked
well in our experimental evaluation. Thus it follows that
if min(|Rα|, |Rβ |) = 3 the weight factor will be equal
to 0.5. For larger numbers of resolved IP addresses, the
sigmoidal weight tends to its asymptotic value of 1 (e.g.,
when min(|Rα|, |Rβ |) = 10, the weight factor is 0.999).

Using the similarity measure defined above, we
can compute a similarity (or proximity) matrix P =
{sij}i,j=1..n that consists of similarities sij = sim(di, dj)
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between each pair of domains (di, dj), and then we
can apply the hierarchical clustering algorithm. At the
beginning of the algorithm, each domain is considered as
a cluster. Then, at each step, the two nearest clusters are
merged. The algorithm stops when all the domains are
included in one cluster. The obtained sequence of nested
clusters is usually represented as a dendrogram, i.e., a
tree-like data structure in which the leaves represent
the original domains in D, and the length of the edges
represent the distance between (sub-)clusters [14].

The obtained dendrogram does not actually define a
partitioning of the domains into clusters, rather it de-
fines a hierarchy of “relationships” among domains.
A partitioning of the set D into clusters can then be
obtained by cutting the dendrogram at a certain height
h. The leafs that form a connected sub-graph after the
cut are considered as part of the same cluster [14]. Of
course, different values of the height of the cut h may
produce different clustering results. In order to choose
the best dendrogram cut (i.e., the best clustering), we
apply a clustering validation approach based on plateau
regions [16], similar to the approach we used in [7]. In
practice, we plot a graph that shows how the number of
clusters varies by choosing different values of h, and we
look for plateau (i.e., flat) regions in the graph that are
an indication of “stability” or natural clustering. Plateau
regions correspond to those steps of the algorithm where
the two nearest clusters that have to be merged exhibit
a quite low measure of similarity. In our experiments
we found that a cut threshold of h = 0.75 yielded
an effective clustering of the domains. We also noted
that FluxBuster’s results are not very sensitive to this
threshold, as varying the value of h within a relatively
wide range around h = 0.75 has a negligible impact
on the clustering, and the classification results. We will
discuss the clustering results more in detail in Section 4.

Summing up, the output of the Domain Clustering
module is a set C = {Ci}i=1..l of clusters of candidate
flux domains, where domains belonging to the same
clusters are related to each other, and each cluster Ci
represents a candidate flux network. As discussed, in
Section 3.1, each cluster Ci for which the size of the
resolved IP |Ri| > κ (e.g., κ = 30) will then be sent to
the Classifier module.

3.6 Statistical Features

In order to classify a candidate flux network (i.e., a
domain cluster) C, we need to describe C in terms of
a feature vector that can be processed by the statistical
classifier employed in the Classifier module, as discussed
in Section 3.1. In [4], Passerini et al. proposed a thorough
characterization of fast-flux domain names in terms of
statistical features for supervised learning, and intro-
duced a set of nine features based on the analysis of
the set of IP addresses resolved by actively querying
single domain names. In this work we adapt some of
the features proposed in [4] to characterize clusters of

domain names (as opposed to single domains) related
to malicious flux networks, and we introduce several
additional new features that are more suitable to the
passive analysis we perform on the ISC/SIE [8] DNS data.

First, we will provide a definition of our features, and
then we will motivate our choices. In the following, we
take as a reference a generic domain cluster C computed
at the end of an epoch Em, and we assume that R repre-
sents the set of all distinct resolved IP addresses collected
during epoch Em that are related to the domains in C.
φ1 Number of resolved IPs. Overall number of

distinct resolved IP addresses in R.
φ2 Number of domains. Total number of distinct

domain names in the cluster.
φ3 Avg. TTL per domain. The average TTL of the

domains in the cluster3.
φ4 Number of domains per network. Number

of distinct domain names observed during the
previous epochs, Em−1, Em−2, . . . , Em−N , that
share at least one resolved IP with the domains
in C (in our experiments we set N = 5 epochs).

φ5 IP diversity. Normalized entropy of the /16
network prefixes (see Section 3.4) of the IPs in
R, computed as follows:

φ5 =
−
∑
x p(x) · log2 p(x)

log2(φ1)

where the probability p(x) is given by the rela-
tive frequency of the network prefix x.

φ6 IP Growth Ratio. Average number of new IP
addresses “discovered” during Em per each
DNS query related to domains in C.

φ7 IP Last Growth Ratio (2 features). Average
number of new IP addresses per DNS query, as
discovered by analyzing the last de-duplicated
DNS message associated to each domain in C
during Em. We compute two versions of this
feature. In one case, this feature is computed
independently for each domain in C, and its
average value is selected (φ7a). In the other case,
this feature is computed by analyzing the last
de-duplicated message among all the messages
related to domains in C (φ7b).

φ8 IP Prefixes Last Growth Ratio (2 features).
This feature is similar to φ7, but it is based on
new IP prefixes. In practice, we compute the
average number of /16 network prefixes per
DNS query, as discovered by analyzing the last
de-duplicated DNS message associated to each
domain in C during Em. Similarly to φ7, we
compute two versions of this feature. One is
computed independently for each domain in C,
and its average value is selected (φ8a), while
the other is computed by analyzing the last de-
duplicated DNS message among all messages
related to domains in C (φ8b).

3. To be more precise, this feature measures the average TTL of the
resource records of type A related to the domains in the cluster.
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φ9 Novelty (3 features). Consider the set R of
resolved IP addresses observed during epoch
Em for the domains in cluster C. To compute
the Novelty features, we go back in time and
look at the overall set of IPs pointed by do-
mains in C during W previous epochs (Em−W ,
Em−W+1, . . . , Em−1). Let this set of IP addresses
be R′. Then, we compute the number of new
IP addresses, i.e., IPs that belong to R but
not to R′, and we divide this number by the
number of epochs since DNS messages related
to domains in C were observed for the first time.
In our experiments, we computed φ9 for three
different values of W , that is, W = 7 (φ9a),
W = 30 (φ9b), W = 180 (φ9c).

Motivation: The features defined above are designed to
capture the characteristics of flux networks discussed in
Section 3.3. While the relationship between the descrip-
tion of the characteristics in Section 3.3 and features φ1
to φ5 is straightforward, some additional reasoning is
needed to understand the motivations behind features φ6
to φ9. These features aim to better estimate how the set
of resolved IPs (and their network prefixes) for domains
in C grows in time. The larger the value of these features,
the higher the likelihood that the set of IP addresses
R is changing rapidly. Therefore, high values for these
features provide strong support that C is related to a flux
network (see Section 3.3).

It is worth noting that features φ5 and φ8 are based on
/16 IP prefixes. The reason why we choose /16 prefixes
is because they tend to approximate network bound-
aries fairly well. In other words, if two IP addresses
have different /16 prefixes, it is very likely that they
belong to different organizations (or two different sub-
networks within a large organization). While mapping
IP addresses to their autonomous system (AS) numbers
or BGP prefixes may give us a more accurate estimate
of whether two IPs belong to different networks, we
observed that /16 prefixes effectively approximate this
information without the computational burden required
to compute IP-to-AS or IP-to-BGP prefix mappings. The
rationale behind these features (e.g., φ5) is that, unlike
in the case of CDNs or other legitimate services, flux
agents are often scattered across many networks located
in many different countries, thus increasing the number
of IP addresses that do not share a common /16 prefix
(see Section 3.3).

It is worth noting that while features φ7,φ8, and φ9
may appear somewhat correlated, they all offer differ-
ent pieces of information that contribute to improving
classification accuracy (this is supported by an analysis
of the decision tree obtained by training the classifier
described in Section 3.7).

3.7 Flux Classifier
Each cluster Ci can be seen as a candidate flux network
defined by the set of all the domain names in Ci, and

the overall set of IP addresses these domains resolved
to during an epoch E. At the end of each epoch E, and
for each cluster Ci, we measure the features described
in Section 3.6, and employ the popular C4.5 decision-
tree classifier [17] to automatically classify a cluster Ci as
either malicious flux network or legitimate/non-flux network.
The reasons for using a decision-tree classifier are as
follows: a) decision-trees are efficient and have been
shown to be accurate in a variety of classification tasks;
b) they output a set of classification rules, which allow us
to asses what features are the most effective in detecting
malicious flux networks; c) C4.5 is able to automatically
prune those features that are not useful or that introduce
noise, rather than increasing classification accuracy [17].
We first train the C4.5 classifier on a training dataset
containing a number of labeled clusters related to ma-
licious flux services and a number of clusters related
to legitimate/non-flux services. Afterwards, the trained
classifier is used to classify the clusters obtained at the
end of each epoch E from the ISC/SIE [8] data, as
shown in Figure 2. The details on how we obtained the
labeled training dataset and evaluated the accuracy of
the Classifier module are reported in Section 4.

4 EVALUATION

In this section we discuss the results of our evaluation
of FluxBuster.

4.1 Experimental Setup
To train and evaluate our detection system, overall we
used about 10 months of data collected through the
ISC Security Information Exchange4 from June 2010 to
March 2011. We used about four months of data (from
June 2010 to September 2010) to build a labeled dataset,
which we will refer to as LDS. We used LDS for two
purposes: (1) for estimating the accuracy of the Classifier
module through 10-fold cross validation; and (2) to train
FluxBuster’s Classifier module before deployment. After
training, we used approximately one additional month
of data for a preliminary validation of the system and
parameter tuning, and finally we deployed and evalu-
ated FluxBuster over the remaining (almost) five months
(from the 24th of October 2010 to the 15th of March 2011).

In the following, whenever we mention domain names
we refer to second-level domains (or 2LDs, for short),
unless otherwise specified. To give an easy definition of
2LD, consider the following example: given the domain
name news.l.google.com, we refer to .com as the
top-level domain (TLD), google.com is the 2LD, while
we refer to the entire domain string as the fully qualified
domain (FQD). This definition can be generalized to any
domain name, e.g., c.b.a, where a is the TLD, b is
the 2LD, etc. In practice, identifying the “real” TLD is
not always straightforward. For example, delegation only
domains such as co.uk act as effective TLDs. Therefore,

4. We harvested DNS messages from channel 204.
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given for example the domain www.bbc.co.uk, co.uk
is the effective TLD, and bbc.co.uk is the 2LD. To
accurately identify effective TLDs we make use of the
Mozilla Public Suffix List5.

4.1.1 Labeled Dataset
To obtain the labeled dataset LDS we used a semi-
manual process. We built a user-friendly web interface
that allowed us to quickly sort domain clusters according
to different characteristics (e.g., number of domains,
number of IPs, IP diversity, etc.), verify whether (and
what kind of) a website is served under a given domain,
and manually label the domain clusters as either flux
or non-flux. We partially automated the labeling process
by making extensive use of prior information regarding
known flux domains, known malware domains, and
legitimate popular domains (see Section 4.1.2). To reduce
the number of errors (i.e., the noise) in the labeled
dataset, whenever a clear cut decision between flux or
non-flux clusters was not possible (not even after exten-
sive manual analysis), we marked those domain clusters
as “unknown” and excluded them from the dataset.
Overall, we were able to label 1,337 domain clusters as
flux and 5,708 as non-flux, which overall included 2,116
distinct 2LDs (59,215 FQDs) and 100,644 distinct 2LDs
(113,580 FQDs), respectively. We labeled 313 clusters as
“unknown”. We noticed that many of these clusters were
suspicious, but could not find sufficient information to
label them as certainly flux.

4.1.2 Evaluation Data and Ground Truth
Evaluating a detection system such as FluxBuster in a
live operational environment is a challenging task. The
main reason is that it is not possible to obtain complete
ground truth on the nature of the classified data. For ex-
ample, given a domain cluster C classified by FluxBuster
as flux, C may fall into three categories: (1) C includes
domains and/or IPs that are known to be related to a
flux network (in which case this is a true positive); (2)
C does not represent a flux network, and may instead
represent a CDN or other legitimate services (in which
case we have a false positive); (3) the true nature of C
is unknown, that is no prior information exists on this
cluster in any public (or even private) security data
sources. In practice, the case when FluxBuster correctly
detects a previously unknown flux network is in a way
analogous to discovering a zero-day malware or exploit
in-the-wild, whereby confirming the correctness of the
classification usually requires manual analysis.

The main implication of the existence of these unknown
cases that cannot be easily confirmed (if not with exten-
sive forensic analysis), is that in the live evaluation we
cannot limit ourselves to measuring the true positive (TP)
rate and false positive (FP) rate, because other quantities
such as the false negative (FN) rate and true negative (TN)
rate cannot be directly derived from the TP rate and

5. http://publicsuffix.org/list/

FP rate6, respectively. Therefore, in our evaluation we
compute the true positives, false positives, false nega-
tives, and true negatives separately, using data labeled
by leveraging public information about legitimate, flux,
and malware-related domain names, as discussed below.

To evaluate the true positives of our classification
system, we gathered two datasets of blacklisted domains:
(i) a dataset of known flux domains, which we will
refer to as the KFD dataset; and (ii) a dataset containing
known malware-related domain names, which we refer
to as the KMD dataset.

The KFD dataset contained 75 domain names (2LDs)
classified as flux and reported by the abuse.ch web-
site, which is well known and considered as a trusted
source by many security professionals. The KMD con-
tained 26,496 domains that were collected automatically
and updated daily by harvesting public domain black-
lists from twelve different reputable sources, including
malwaredomains.com, malwarepatrol.com, etc. We
started to collect the data included in the KFD and
KMD datasets at the end of August 2010, and since then
we have kept them up-to-date with daily updates. The
rationale behind using the KMD is that although this
dataset contains many domain names that are not related
to flux networks, if a malware domain m passes the pre-
filtering stage (thus becoming a candidate flux domain)
and also FluxBuster flags a domain cluster that includes
m as having the characteristics of a flux network, it is
extremely likely that the cluster is indeed a flux network
(we manually confirmed a large number of these cases).

To evaluate the false positives, we collected three
datasets of whitelisted domains: (i) a dataset containing
the top 100,000 domain names according to Alexa.com,
which we refer as the ATD dataset; (ii) a dataset con-
taining 304,248 distinct second-level domains (321,411
fully qualified domain names) drawn at random from
the Yahoo! DMOZ project (which lists manually veri-
fied websites), referred to as YDD dataset; and (iii) a
manually compiled CDN dataset containing a list of 31
second-level domains (2LDs) related to both well known
and less well known legitimate CDNs. The ATD dataset
actually contained 57,910 domains that are consistently
top, i.e., those domains that remained within the top 100k
ranking for almost one entire year. We followed the pro-
cedure described above to filter out possible noise caused
by potentially malicious domains that may have become
popular for a short amount of time. The assumption is
that the consistently top domains are legitimate, since
malicious domains typically have a short life span (this
is particularly true for the popular ones that attract the
attention of the security community).

We were also interested in computing the false nega-
tives and true negatives of our classifier. To compute the
false negatives we again leveraged the KFD and KMD
datasets. In practice, if FluxBuster classifies a domain

6. When testing on a perfectly labeled dataset we can always com-
pute FN = 1− TP , and TN = 1− FP .
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Fig. 3. Receiver Operating Curve for the decision tree
classifier, evaluated on the LDS dataset (AUC=0.994).

cluster C as non-flux while the domains in the cluster
belong to KFD or KMD, we consider this to be a false
negative. It is worth noting that this approach may
overestimate FluxBuster’s false negatives, because most
of the domains in KMD are not flux domains. How-
ever, since FluxBuster’s Classifier module only receives
candidate flux networks from the previous modules (see
Section 3.1), again we assume that if a malware domain
belongs to a candidate flux network there is a high
probability that the domain is actually flux. On the other
hand, to compute the true negatives we leveraged the
ATD, YDD, and CDN datasets. In this case things are
more straightforward: domains from these three datasets
are highly likely legitimate, and therefore if FluxBuster
classifies a domain cluster containing any of these do-
mains as non-flux, we assume the classifier was indeed
correct.

4.2 Experimental Results
We now present the results of our evaluation both on a
completely labeled dataset and on data collected during
an 5-month operational deployment of FluxBuster at
ISC/SIE [8].

4.2.1 Cross-Validation
Using the labeled dataset LDS described in Section 4.1.1,
we performed 10-fold cross validation to estimate the
accuracy of the Classifier module. The decision tree clas-
sifier was able to achieve 99.3% detection rate at 0.15%
false positive rate, with an area under the ROC curve
(AUC) of 0.994 (see Figure 3). These results confirm that
FluxBuster can detect malicious flux networks with high
accuracy.

4.2.2 Live Evaluation
Along with the 10-fold cross validation on the labeled
dataset LDS, we evaluated our detection system in a

Count TLD
1115 com
377 info
180 net

21 ru
17 org
12 biz
6 me

15 others

Count TLD
38 com
15 ru
14 net

3 cn
2 info
1 tk
1 im
1 cc

TABLE 1
Distribution of TLDs for flux domains detected by
FluxBuster (left) and for domains in KFD (right).

real-world deployment scenario. To this end, we first
trained FluxBuster on the entire LDS dataset, and then
deployed it at ISC/SIE. Overall, in a period of about 5
months of operational deployment, FluxBuster classified
4,084 domain clusters as flux and 3,633 domain clusters
as non-flux, which included a total of 1,743 2LDs (63,442
FQDs) and 227,667 2LDs (264,550 FQDs), respectively.
These results were obtained for a threshold κ = 30
(see Section 3.1). Table 1 shows how these 1,743 2LDs
were distributed across different TLDs. For comparison
reasons, we also report the distribution of TLDs for the
domains in the KFD dataset.

We now discuss how we separately measured the
number of TP, FP, FN, and TN (the choice of sepa-
rately measuring all these quantities is motivated in
Section 4.1.2).

True Positives: We measured true positives in two ways:
• Known Flux. We computed the number of domains

classified as flux by FluxBuster that were also in
the KFD dataset. We found that FluxBuster correctly
classified 24 out of 75 KFD domains (2LDs) as flux.
The remaining 51 domains were not classified by
FluxBuster, simply because they were not visible
from the SIE data feed. To be more precise, 12 of
these 51 domains appeared in the SIE data feed, but
only very rarely, and they were associated with very
few (usually less than five) resolved IPs. In practice,
these domains were not considered by FluxBuster,
simply because the DNS activity seen for these
domains was too low (i.e., very few users were
“clicking” on them).
We also computed how many new flux domains
we were able to detect, using the KFD domains as
a “seed”. In practice, starting from KFD, we first
found the set FC of domain clusters classified by
FluxBuster as flux that contained at least a domain
d ∈ KFD. Then, we computed how many of the
domains in these FC clusters were missing from
KFD. Using this approach, we were able to find
a total of 525 new flux domains that belong to a
malicious flux network also pointed by domains
in KFD. Furthermore, we found that of these 525
new flux domains, 79 of them were known malware
domains belonging to the KMD dataset. Following
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a natural guilty by association rule, the remaining
446 can also be regarded as new malicious flux
domains (which we also manually verified). These
previously unknown malicious flux domains were
discovered by FluxBuster thanks to our large-scale
passive analysis approach.

• Known Malware. We found that a total of 179 do-
mains (2LDs) in the KMD dataset were classified
as flux by FluxBuster. It is worth noting that while
these 179 domains represent only a small fraction
of the KMD dataset, this dataset contains generic
malware domains, some of which are flux domains.
However, the vast majority of domains in KMD
are not necessarily related to flux networks and are
simply used for other malicious purposes. In fact,
our SIE feed contained 10,447 domains pertaining
to the KMD dataset, but most of them were been
discarded in the pre-filtering stage (Section 3.4),
because they do not exhibit the characteristics of flux
domains.
Similarly to the Known Flux experiments described
above, we then used the KMD domains as a “seed”
to find clusters of domains that were classified as
flux by FluxBuster and that contained at least one
malware domain. Doing so allowed us to discover
549 new flux domains representing previously un-
known malware domains, which can be classified as
malware-related using again a guilty by association
rule (because they point to the same flux networks
pointed by known malware domains).

False Positives: We measured the number of false
positives as follows. We first checked how many
domains classified as flux by FluxBuster were also
present in the ATD dataset. We found that only
2 fully qualified domains out of the 57,910 2LDs
in ATD were classified as flux. These two domains
were pool.ntp.org and gyq3606.meibu.com (both
ntp.org and meibu.com were present in ATD). The
misclassification of pool.ntp.org was actually expected,
because subdomains of ntp.org are often used to point
to large sets of NTP time servers around the world. For
example, in only one day the domain pool.ntp.org
resolved into 323 different IP addresses scattered around
the Internet, thus resembling the behavior of an “aggres-
sive” flux domain (the average TTL was 270 seconds).
On the other hand, gyq3606.meibu.com was a “true
misclassification”. On 2010-12-26, gyq3606.meibu.com
resolved into 75 different IPs, with a TTL of 10 seconds.
Although the IP diversity was low (around 0.5), Flux-
Buster mistakenly assigned the flux label.

Afterwards, we checked how many domains classified
as flux were part of the CDN dataset. Over the entire
evaluation period (almost five months), we found that
only 35 fully qualified domains under 4 distinct 2LDs
caused false positives. These four 2LDs were related to
small CDNs, precisely swiftcdn1.com, cloudex.net,
rncdn1.com, and nefficient.co.kr. We noticed

that in all these cases, the clusters shared most features
with flux domains, but the IP diversity was always
quite low, only slightly above 0.5. We found this was
a “defect” of the decision tree learned by FluxBuster
during training, and therefore we manually added a
rule whereby no cluster with IP diversity lower than 0.6
should be classified as flux. This simple rule filtered out
all the false positives without any change at all to the
number of true positives.

We also checked the flux domains against the YDD
dataset, and we found no false positives in this case.

True Negatives: Overall, FluxBuster classified a total
of 3,633 domain clusters as non-flux, which included a
total of 227,667 2LDs (264,550 FQDs). We noticed that
many clusters contained large numbers of legitimate
domains that shared the same set of IPs because they all
shared the same physical web-server. For example, we
found large clusters of personal websites that appeared
to rely on virtual hosting services.

We checked the 227,667 2LDs against our datasets of
legitimate domains (ATD, YDD, and CDN), and we
found that 171 2LDs were confirmed to be non-flux.
We could not find an automatic way to confirm the
remaining unknown domains (this is why we compute
both true negatives and false negatives, as discussed in
Section 4.1.2).

False Negatives: To measure the false negatives, we
checked how many of the domains belonging to the
KFD dataset were consistently classified by FluxBuster
as non-flux. We found that only one such domain
belonged to KFD: discountpharmacyhealth.net.
This false negative was due to the fact that
discountpharmacyhealth.net resolved into a
relatively low number of distinct IP addresses (less than
60 overall), had a low value of the novelty features, and
a relatively low IP diversity. Similarly, we computed
how many of the domains consistently classified as
non-flux were in the KMD dataset. We found 30 such
domains (out of the 26,496 domains in the dataset).

It is worth noting again that KMD is not perfect.
In fact, it contained some legitimate domains resulting
from the misclassification of the third-party systems used
to create the malware domain blacklist (we manually
pruned obviously legitimate domains from KMD). How-
ever, the fraction of noisy (i.e., non-malware) domains is
very low, and we therefore decided to use this dataset,
although it may slightly overestimate our false negatives.

4.2.3 Early Detection Results
As we mentioned above, among the domains classified
as flux by FluxBuster, 24 of them appeared in KFD,
and 179 appeared in KMD. Of these domains that were
confirmed to be malicious, we were interested in know-
ing how many of them we detected earlier then when
they were detected by third-party security services, and
how much earlier. Overall, we found that FluxBuster
detected 9 out of 24 confirmed flux domains earlier than
when they appeared in the KFD dataset (the remaining
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Fig. 5. Early detection of KMD domains.

15 domains were detected later than they appeared in
KFD), and 125 out of 179 confirmed malware domains
earlier than when they appeared in KMD. To gain a
better view of how earlier FluxBuster was able to detect
these malicious domains, we proceeded as follows. Let d
be a flux domain, tFB be the day when d was detected by
FluxBuster, tKFD be the day when d appeared in KFD,
and tKMD be the day when d appeared in KMD. Figure 4
shows how many domains we were able to detect for
each value of δKFD = (tKFD − tFB), while Figure 5
shows how many domains we were able to detect for
each value of δKMD = (tKMD − tFB). As the graphs
show, FluxBuster is often able to detect malicious flux
domains days or even weeks before they are detected by
well-known third-party security services. In addition, we
isolated domain names related to the infamous Zeus bot-
net [18] from the KMD dataset. We found that FluxBuster
detected 13 out of 21 Zeus domains earlier then when
they appeared in KMD. Figure 6 shows the distribution
of early detection days for these domains.

4.2.4 IP-based analysis
In addition to a domain-based evaluation, we were
interested in measuring the effectiveness of FluxBuster
in terms of its ability to enumerate the flux agents (i.e.,
IP addresses resolved by domains pertaining to flux
networks). In the following, we present some interest-
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Fig. 6. Early detection of Zeus botnet domains.

ing results that highlight the usefulness of FluxBuster
with respect to other state-of-the-art systems (which are
mainly based on active-probing, rather than passive DNS
monitoring) such as the flux-tracker at abuse.ch.

Using the on-line DNSBL lookup service7 provided by
abuse.ch, we measured the fraction of flux agents (i.e.,
IPs) enumerated by FluxBuster that were known or not
to abuse.ch. In particular, for each epoch, at the end of
FluxBuster’s classification process, we randomly sample
10 flux agent IPs from the clusters labeled as flux, and
we query abuse.ch’s DNSBL on this IPs. It is worth
noting that we only consider flux clusters that contain at
least one domain name that is also present in KFD (i.e.,
the dataset of known “top” flux domains reported by
abuse.ch itself). Figure 7 shows, per day, the fraction
of IPs (i.e., flux agents) enumerated by FluxBuster that
were listed as malicious by abuse.ch. We found that,
in average, about 62% of the tested IPs were actually
unknown to abuse.ch. This suggests again that Flux-
Buster can offer a valuable complementary view of flux
networks in terms of flux domain names and their flux
agents.

We were also interested in evaluating, using an IP-
based analysis, the number of new, previously unknown
flux domains can be “confirmed” using again a simple
guilty-by-association rule. To this end, we first considered
(per each day) the set P of IP addresses (i.e., flux agents)
contained in flux clusters that included at least one
domain name belonging to the KFD or KMD datasets.
Then, we retrieved (per each day) the set of all the
domain clusters C = {C1, C2, ..., Cn} that were classified
as flux by FluxBuster and that contained at least one
domain p ∈ P . Finally, we counted the number of distinct
single domain names contained in the flux clusters in C
that were not present in KFD or KMD. We found 1,030
such domains, and we verified that they were mostly
related to pharmacy scams and porn-related websites,
and that none of these domains appeared in ATD, YDD,
and CDN. In practice, through this process we were able
to confirm the fact that FluxBuster was able to discover

7. http://dnsbl.abuse.ch/faq.php
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Fig. 7. Fraction of flux agents among those detected
by FluxBuster that are also reported by the DNSBL at
abuse.ch (only flux clusters that include at least one
domain belonging to KFD are considered). The dotted
line shows the average value.

1,030 previously unknown malicious flux domain names.

4.2.5 Flux Websites
In our experiments we found that the vast majority
of flux domains detected by FluxBuster resolve to flux
agents that successfully respond to HTTP requests (on
default port 80) and return malicious content/scam
pages. Such domains represent a threat to web users.
To reduce these threats, FluxBuster could provide an
interface similar to the Google Safebrowsing API8, which
can be queried by a browser plugin to inform users that
they are about to visit a website under a flux domain.

To have a sense of the potential benefits of using Flux-
Buster under this browser-plugin setting, we counted
the number of effective 2LDs that we classified as flux
were hosting web content. Figure 8 shows the results
obtained over almost one month of data (from April
14 to May 9, 2011). As a point of reference, we also
counted how many of these flux websites were flagged
by Google Safebrowsing, or were reported as known flux
or as malware-related in third-party public blacklists, as
explained below.

The Web-related Flux Domains represent domain names
for which some web content was successfully down-
loaded. To perform this measurement, for each fast
flux domain name, we issued a number of HTTP GET
requests on the “root” URL /, and on other related URLs
obtained by searching for the domain name on search
engines9. The Known Malware Flux Domains represent
the number of flux domains that also appear in either
KFD or KMD. To compute the Analyzed by Safebrows-
ing domains we queried each flux domain against the
Google Safebrowsing service, and we counted the num-
ber of domains that Google Safebrowsing reported as

8. http://code.google.com/apis/safebrowsing/
9. For example, for each domain we queried for inurl:<domain

name> on Google to find related URLs.

Flux domains 1,743 2LDs (63,442 FQDs)
Flux agent IPs 317,203 distinct IP addresses (on av-

erage 3,265 distinct IPs per day)
Previously unknown
flux 2LDs

995 through a “domain-based” anal-
ysis, and 1,030 through an “IP-
based analysis” (using guilty-by-
association)

Early-detection results 64.5% of malicious 2LDs detected
earlier than other state-of-the-art
tools (131 2LDs out of 203)

Previously unknown
flux agent IPs

62% of flux agents tested against
abuse.ch DNSBL service

TABLE 2
Summary of some of the results obtained by FluxBuster

during the live evaluation.

previously tested. On the other hand, the Flagged Malicious
by Safebrowsing domains are the ones that have been
tested by Google Safebrowsing, and have been labeled
as malicious.

It is worth noting that we verified that the vast major-
ity of the flux websites that are not reported by Google
Safebrowsing or public blacklists are related to rogue
pharmacies, suspicious porn-related websites promoted
through thousands of random-looking domains, and
a number of other scams. Since Google Safebrowsing,
according to the official Google site, aims to report only
“suspected phishing and malware pages”, this large
difference in number of domains reported by FluxBuster
and the ones flagged as malicious by Google Safebrows-
ing was expected.

We would like to emphasize that this analysis aimed
to show that FluxBuster can complement other public
web security services by providing additional useful in-
formation to users who prefer to avoid visiting any kind
of potentially malicious websites (including rogue phar-
macies, suspicious porn-related sites, and other scam
websites), while browsing the Web.

5 DISCUSSION AND FUTURE WORK
Table 2 summarizes some of the results of the evaluation
of FluxBuster in a real-world deployment. It is worth
noting the number of distinct flux agent IPs is not
necessarily indicative of the exact number of flux agents.
As shown in [19], the number of distinct IPs is an upper
bound on the number of infected machines, mainly due
to the effect of DHCP churn.

The evaluation results show that FluxBuster is able
to detect flux networks in-the-wild, and can often do so
several days or even weeks earlier than other state-of-
the-art detection systems. This does not mean, though,
that FluxBuster should replace other flux and malware
detection systems. Instead, we designed FluxBuster to
complement other detection systems, and, in particular,
to compensate for some of the limitations of flux detec-
tion systems based on active probing.

FluxBuster has its own limitations. For example, for
a flux domain to be detected, FluxBuster needs to ob-
serve at a minimum one DNS message related to that
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Fig. 8. Analysis of flux domains that host web content.

domains. Because FluxBuster’s observations depend on
users’ behavior (e.g., “clicking” on domain names), if
a flux domain is never queried by any of the users
within the monitored networks, FluxBuster will not be
able to detect it. Also, enough IP addresses (see the
κ = 30 threshold in Section 3) need to be collected
during a given epoch (e.g., one day) to perform the
classification of a domain cluster. This may cause some
false negatives, as discussed in Section 4.2.2. However,
FluxBuster aims to detect flux domains, and more in
general flux networks, that are active and successfully
attract victim users in at least one epoch.

Our goal is to detect these malicious domains as early
as possible, and help to prevent other users from falling
victim of the same threats. However, currently we can
only detect new flux domains at the end of each epoch
(i.e., one day). In the current deployment, it may take
up to 30 hours for FluxBuster to generated the detection
results (24 hours for traffic monitoring, plus up to 8
hours for processing). In our future work, we intend to
study how to shorten FluxBuster’s response time.

As mentioned in Section 4.2.2, our live evaluation is
limited by the difficulties in collecting perfect ground
truth for all the domains processed by FluxBuster during
the five-month real-world deployment. Nonetheless, we
were able to verify a significant fraction of the classifi-
cation results. The live evaluation results, as well as the
cross-validation results reported in Section 4.2.1, confirm
that FluxBuster can detect malicious flux networks with
very low false positives.

While FluxBuster detects flux domains in a stealthy
way, thanks to the use of purely passive DNS traffic
monitoring, an adversary who learns how FluxBuster
works may attempt to modify the way her flux network
operates and the served malicious content is promoted to
try to avoid being detected. In [20], Knysz et al. discuss a
number of potential evasion techniques against flux de-
tection systems. However, the proposed evasion strate-

gies mainly focused on evading active-probing-based
systems, and may not successfully thwart FluxBuster’s
detection [20]. One possible way in which an adversary
may attempt to evade FluxBuster is to setup her flux
domains to introduce noise into the set of resolved IPs.
Namely, the adversary may setup the flux domains to
resolve to a set of IPs that contains both a number of flux
agent IPs as well as some random legitimate IPs mixed
in. The effect of this evasion attack is to mislead the
domain clustering algorithm, thus potentially affecting
the accuracy of the classification process. However, it is
worth noting that this strategy may negatively impact
the flux network itself. In fact, FluxBuster only analyzes
DNS messages deriving from the users’ ”clicks”. If the
adversary introduces noise in the resolved IP set, this
means that a significant portion of the potential victims
may be redirected to legitimate IPs, for example, rather
than to the IPs of real flux agents, thus reducing the
distribution of malicious content to only a fraction of the
users. While more sophisticated evasion strategies may
be devised, the passive monitoring approach followed
by FluxBuster naturally raises the bar for the adversaries
who attempt to evade detection, forcing them to incur a
significant cost to change the way they setup and run
their flux networks and related cyber-criminal opera-
tions.

Currently FluxBuster can process one day worth
of DNS traffic collected from hundreds of distributed
ISC/SIE sensors in about eight hours. In our future work
we plan to make FluxBuster more scalable to better keep
pace with the foreseeable growing volume of DNS traffic
due to the increase in the number of networks that
contribute DNS messages to ISC/SIE.

6 CONCLUSION

In this paper we presented FluxBuster, a novel system for
detecting malicious flux networks in-the-wild. FluxBuster
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is based on a purely passive, large-scale analysis of DNS
messages collected from hundreds of different networks
through ISC/SIE. Our long-term evaluation showed that
FluxBuster is capable of accurately detecting previously
unknown flux networks days or even weeks in advanced
before they appear in public blacklists. In addition, we
showed that FluxBuster often detects flux domains that
may remain unknown to other third-party systems, thus
providing valuable information to the security commu-
nity that can be used to block a variety of malicious
content.
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