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Abstract

Learning-based anomaly detection has proven to be
an effective black-box technique for detecting unknown
attacks. However, the effectiveness of this technique
crucially depends upon both the quality and the com-
pleteness of the training data. Unfortunately, in most
cases, the traffic to the system (e.g., a web applica-
tion or daemon process) protected by an anomaly de-
tector is not uniformly distributed. Therefore, some
components (e.g., authentication, payments, or content
publishing) might not be exercised enough to train an
anomaly detection system in a reasonable time frame.
This is of particular importance in real-world settings,
where anomaly detection systems are deployed with lit-
tle or no manual configuration, and they are expected to
automatically learn the normal behavior of a system to
detect or block attacks.

In this work, we first demonstrate that the features
utilized to train a learning-based detector can be se-
mantically grouped, and that features of the same group
tend to induce similar models. Therefore, we propose
addressing local training data deficiencies by exploiting
clustering techniques to construct a knowledge base of
well-trained models that can be utilized in case of un-
dertraining. Our approach, which is independent of the
particular type of anomaly detector employed, is vali-
dated using the realistic case of a learning-based system
protecting a pool of web servers running several web
applications such as blogs, forums, or Web services. We
run our experiments on a real-world data set containing
over 58 million HTTP requests to more than 36,000 dis-
tinct web application components. The results show that
by using the proposed solution, it is possible to achieve
effective attack detection even with scarce training data.

Keywords: Anomaly detection, training data, web appli-
cation.

1 Introduction

The Internet has evolved from its humble beginnings
at CERN in 1991 into a massive network of ubiquitous
services that spans the globe and reaches an estimated
1.4 billion people [27]. The World Wide Web contains
more than 100 million sites [46] and around 1 trillion
unique URLs as indexed by Google [1]. Due to its per-
vasive nature, the Internet – and in particular the Web
– has become a predominant medium for disseminat-
ing and collecting information. In fact, web applications
have enjoyed immense popularity as an efficient means
for providing services to users. For instance, Face-
book has more than 250 million active users, upload-
ing more than 1 billion photos each month, and Twit-
ter distributed more than 3 million messages per day in
March 2008 [34].

Unfortunately, applications have been found to con-
tain many security vulnerabilities, due to a combina-
tion of unsafe development tools and a historical lack
of security awareness among developers. In addition,
the risks are magnified when vulnerable software is de-
ployed in the context of the Web, since applications are
typically widely accessible and often have access to sen-
sitive information. These factors have naturally resulted
in web-related vulnerabilities receiving substantial at-
tention from the criminal underground [40]. As a con-
sequence, the incidence of data breaches, online fraud,
and other crimes resulting from the exploitation of web
application vulnerabilities continues to rise [29,33], and,
therefore, it is essential to protect applications and sys-
tems connected to the Internet against such attacks.

Anomaly detection has received much attention from
the research community as an approach to detecting and
preventing unknown attacks by monitoring a network’s
traffic [20,25,26,32,43,44,47] or a host’s operating sys-
tem [3,14,21,24,28,31,38,42]. Recently, anomaly-based
techniques have also been shown to be effective against
web-based threats [5, 15, 19, 30]. Effective anomaly de-
tection systems are attractive because they consider the
protected system as a black box. As a result, they can



be deployed in live environments without any a priori
knowledge about the application.

Anomaly detection systems contain specifications, or
models, of the normal behavior of the protected system,
and consider deviations from the specifications to be ev-
idence of malicious behavior. In contrast to signature-
based systems, anomaly detectors have the desirable
property that previously unknown attacks can be iden-
tified automatically. Though anomaly detection models
can be manually specified by domain experts, this is a
tedious, labor-intensive, and error-prone process. There-
fore, most research has instead focused on applying ma-
chine learning techniques to automatically derive mod-
els of normal behavior from unlabeled training data. The
term normal behavior generally refers to a set of charac-
teristics (e.g., the distribution of the symbols of strings,
or the mean and standard deviation of the values of nu-
merical variables) extracted from data observed during
a system’s normal operation. For instance, such data
could be the payloads of network packets, or HTTP re-
quests and responses exchanged between a web server
and clients. Those characteristics are used to build mod-
els of normal behavior. Learning-based anomaly detec-
tors obviate the tedious and error-prone task of creat-
ing specifications, and, additionally, are able to adapt to
the particular characteristics of the local environment.
Therefore, anomaly detectors typically require only a
modest initial configuration effort to provide effective
attack detection.

In an ideal case, a learning-based anomaly detection
system is deployed in front of a system and, in a com-
pletely automated fashion, learns the normal interaction
between the system and its users. Once enough training
data has been analyzed and the profiles for the moni-
tored systems have been established, the anomaly detec-
tor switches to detection mode; it is then able to detect
attacks that represent anomalies with respect to normal
usage. These types of anomaly detection systems are
extremely attractive to security officers and site admin-
istrators, who have neither the resources nor the skills to
manually analyze applications composed of hundreds of
components. Because of this, several commercial web
application firewalls implement some form of machine
learning to support anomaly detection [4, 6, 11].

Learning-based anomaly detectors are not without
their drawbacks, however. In fact, these systems are
known for their tendency to produce a non-negligible
amount of false positives due to the difficulty of accu-
rately modeling non-trivial domains. This is a limit-
ing factor for the effectiveness of such systems [2, 13].
An additional limitation is that anomaly detection sys-
tems critically rely upon the quality of the training data
used to construct their models. In particular, training
sets must be free from attacks. Otherwise, the result-

ing models will be prone to false negatives, as attack
manifestations will have been learned as normal behav-
ior [8, 10, 17, 39].

Another limitation that is well-known in the research
community is the difficulty of obtaining enough high-
quality training data. Unfortunately, to our knowledge,
no proposals exist that satisfactorily address the prob-
lem. In particular, our experiments suggest that web ap-
plication component invocations are non-uniformly dis-
tributed. That is, relatively few components dominate,
and the remaining components are accessed relatively
infrequently. Thus, for those components, it is often
impossible to gather enough training data to accurately
model their normal behavior. We informally refer to
the components that receive insufficient accesses as the
“long tail” of a web application. Note that, however, this
does not necessarily imply a power law distribution of
these accesses. Nevertheless, components that are infre-
quently accessed lead to poor detection capabilities due
to undertrained models (i.e., models possessing knowl-
edge limited to the low number of samples they have
been trained on).

This work addresses the problem of undertrained
models by exploiting natural similarities among the
modeled features. We demonstrate this hypothesis using
the web applications context as a real-world example.
In particular, we show that the values of the parameters
extracted from HTTP requests can generally be catego-
rized according to their type, such as an integer, date, or
string. Moreover, our experiments demonstrate that pa-
rameters of similar type induce similar models of normal
behavior. Taken together, these results can be leveraged
to effectively supplement a lack of training data for one
web application component with similar data from an-
other component that has received more requests.

In this paper, we make the following contributions:

• We introduce the problem that arises from the fact
that traffic is distributed in a non-uniform fashion,
and we provide evidence that this occurs in the real
world in the case of web applications.

• We propose an approach to address the problem of
undertraining by using global knowledge built by
exploiting similarities between web application pa-
rameters of similar type.

• We evaluate our approach on a large data set of
real-world traffic from many web applications, and
demonstrate how anomaly detectors can accurately
model those components that would otherwise be
associated with undertrained models.

The results of our experiments show that by using
our approach, it is possible to improve the detection rate
of undertrained models. In particular, web application



Ri =



ri,1 = /article,

ri,2 = /comments,

ri,3 = /comments/edit,

ri,4 = /account,

ri,5 = /account/password


Figure 1: Example resources comprising a web application.

components that have received only a few dozen requests
can be protected almost as effectively as those that com-
ponents have received thousands of requests.

2 Training data scarcity

To understand why the problem of undertrained mod-
els exists, we first present a general description of an
anomaly detection system designed to protect web ap-
plications. While this description is based on the system
described in [19], we believe it represents an accurate
abstraction of web application anomaly detection. We
then use these concepts to introduce the long-tail prob-
lem and its ramifications on the feasibility of construct-
ing accurate models.

It is important to note that although there is no estab-
lished architecture for these systems, a large portion of
learning-based anomaly detectors are designed in a sim-
ilar manner. In particular, they extract some significant
features from the captured traffic, estimate the parame-
ters of a set of pre-existing models (learning phase), and
then use these models to analyze live traffic and recog-
nize unexpected values of the selected features. Thus,
the description that follows can easily be generalized.
In addition, we remind the reader that a low detection
accuracy due to undertraining may affect any type of
learning-based protection system, rather than those de-
tectors specifically designed for the web domain.

2.1 Web application anomaly detection

Without loss of generality, a set of web applications
A can be organized into a set of resource paths or com-
ponents R, and named parameters P . For example,
a web application ai = blog.example.com might be
composed of the resources shown in Figure 1.

In this example, resource path ri,5 might take a set
of parameters as part of the HTTP request: Pi,5 =
{pi,5,1 = id, pi,5,2 = oldpw, pi,5,3 = newpw}.

A generic learning-based application intrusion detec-
tion system operates by observing a sequence of re-
quests Q = {q1, q2, . . .} issued by clients to the set of
monitored applications. Each request q ∈ Q is repre-
sented by the tuple ⟨ai, ri,j , Pq⟩, where Pq is a set of
parameter name-value pairs such that Pq ⊆ Pi,j .

As highlighted in Figure 5, the initial training is per-
formed offline. During this phase, the anomaly detec-
tor learns the behavior of the monitored web applica-
tions in terms of models. As new web application, re-
source path, and parameter instances are observed, the
sets A, R, and P are updated. For each unique pa-
rameter pi,j,k observed in association with a particular
application ai and path ri,j , a set of models that char-
acterizes the normal behavior of various features of the
parameter is constructed. The set of models associated
with each unique parameter instance can be represented
as a tuple c(.) = ⟨m1,m2, . . . ,mu, . . . ,mU ⟩, referred
to as a profile or model composition. Therefore, for
each application ai and resource path ri,j , a set Ci,j of
model compositions is constructed, one for each param-
eter pi,j,k ∈ Pi,j . The knowledge base of an anomaly
detection system trained on web application ai is de-
noted by Cai =

∪
j Ci,j . A graphical representation of

how a knowledge base is modeled for multiple web ap-
plications is depicted in Figure 2.

To introduce and address the problem of undertrain-
ing, we leverage the set of models described in [19] as
a real-world case. According to the system described
in [19], a profile for a given parameter pi,j,k is the tuple
ci,j,k = ⟨m(tok), m(int), m(len), m(char), m(struct)⟩. m(tok)

models parameter values as a set of legal tokens (e.g.,
the set of of possible values for the parameter gender
observed during training). m(int) and m(len) describe
normal intervals for integers and string lengths, respec-
tively, in a distribution-independent fashion using the
Chebyshev inequality. m(char) models character strings
as a ranked frequency histogram, or Idealized Charac-
ter Distribution (ICD), that are compared using the χ2

or G tests. m(struct) models sets of character strings by
inducing a Hidden Markov Model (HMM). The HMM
encodes a probabilistic grammar that can produce a su-
perset of strings observed in a training set. Aside from
the addition of m(int), which is a straightforward gen-
eralization of m(len) to numerical ranges, the interested
reader may refer to [19] for further details.

After training, learning-based systems are typically
switched to detection mode, which is performed online.
The models trained in the previous phase are queried to
determine whether or not the new parameters observed
are anomalous. Without going into the details of a par-
ticular implementation, each parameter is compared to
all the applicable models (e.g., an integer parameter is
compared to m(int), while a string parameter is com-
pared to m(len), m(char), and m(struct)) and an aggregated
anomaly score on the interval [0, 1] is calculated by com-
posing the values returned by the individual models. If
the anomaly score is above a certain threshold, an alert
is generated.



Ca1 · · · Cai · · · CaI
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http : //blog.example.com,

...

http : //dav.example.com

/article,

/comments,

...

/account,

/account/password

id = 1

date = 10− 11− 2004

title = foo

Figure 2: Overview of web application model construction.

2.2 The problem of non­uniform training data

Because learning-based detectors dynamically build
specifications of normal behavior from training data, it
is clear that the quality of the detection critically relies
upon the quality of the training data. For instance, one
requirement typically imposed upon a training set is that
it should be attack-free – that is, it should not contain
traces of malicious activity that would induce the result-
ing models to consider malicious behavior as normal.
One solution to this issue is described in [8]. Another
requirement that a training set should satisfy is that it
should accurately represent the normal behavior of the
modeled features. In some ways, this requirement is
the dual of the previous one: training data should com-
pletely cover all aspects of normal behavior.

The difficulty of obtaining sufficient training data
to accurately model application behavior is intuitively
clear. We are, however, not aware of any solutions that
can address this issue when insufficient training data
is available. In a sense, this issue is similar to those
addressed by statistical analysis methods with missing
data [22]. Although a training procedure would benefit
from such mechanisms, they require a complete redesign
of the training algorithm specific to each model. Instead,
a non-obtrusive approach that can improve an existing
system without modifying the undertrained models is
more desirable. Typically, anomaly-based detectors can-
not assume the presence of a testing environment that
can be leveraged to generate realistic training data that
exercises the web application in a safe, attack-free envi-
ronment. Instead, the anomaly detection system is de-
ployed in front of live web applications with no a priori
knowledge of the applications’ components and their be-
havior. If anomaly-based detectors required manual or
semi-automatic testing to be effective, their maintenance
would be as tedious as that of misuse-based systems.

/article = 475, 000

/comments = 15, 000

/comments/edit = 9, 000

/account = 900

/account/password = 100

Figure 4: Example non-uniform web application request dis-
tribution.

In the case of low-traffic applications, problems arise
if the rate of client requests is inadequate to allow mod-
els to train in a timely manner. However, even in the
case of high-traffic applications, a large subset of re-
source paths might fail to receive enough requests to ad-
equately train1 the associated models. This phenomenon
is a direct consequence of the fact that requests issued
by clients often follow a non-uniform distribution. To
illustrate this point, Figure 3 plots the normalized cumu-
lative distribution function of web client resource path
invocations for a variety of real-world, high-traffic web
applications (details on this data are provided in Sec-
tion 4). Although several applications have an approxi-
mately uniform client access distribution, a clear major-
ity exhibit skewed distributions. Indeed, in many cases,
a large percentage of resource paths receive a compar-
atively minuscule number of requests. Returning to the
example resources shown in Figure 1, assuming an over-
all request volume of 500,000 requests per day, the ex-
ample resource path set might result in the client access
distribution shown in Figure 4.

Clearly, profiles for parameters to resource paths such
as /article will likely receive sufficient training data.

1A more formal definition of the minimum amount of samples re-
quired for a complete training is provided in Section 3.1.
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Figure 3: Web client resource path invocation distributions from a selection of real-world web applications.

This is not true, however, for profiles associated with
paths such as /account/password. Further exacerbat-
ing the situation is the fact that a client request does not
necessarily include all possible parameters.

The infeasibility for an anomaly detection system to
accurately model a large subset of a web application is
problematic in itself. We argue, however, that the impact
of the problem is magnified by the fact that components
of a web application that are infrequently exercised are
also likely to contain a disproportionately large share of
security vulnerabilities. This is a consequence of the re-
duced amount of testing that developers invariably per-
form on less prominent components of a web applica-
tion, resulting in a higher rate of software defects. In ad-
dition, the relatively low request rate from users of the
web application results in a reduced exposure rate for
these defects. Finally, when flaws are exposed and re-
ported, correcting the flaws may be given a lower prior-
ity than those in higher traffic components of a web ap-
plication. An example is the authentication manager of
a blog, which receives a low share of the traffic if com-
pared with the component that handles the comments or
the archive.

Therefore, we conclude that a mechanism to address
the problem of model undertraining caused by the non-
uniform distribution of training data is necessary for a
web application anomaly detection system to provide an
acceptable level of security.

3 Exploiting global knowledge

The lack of available training data is a fundamental
obstacle when constructing accurate profiles for many
parameters of a web application. Without a minimum
number of requests to a given parameter, it is infeasi-
ble to construct models that encode a reasonably precise
approximation of normal behavior.

We observe, however, that parameters associated
with the invocation of components belonging to differ-
ent web applications often exhibit a marked similarity
to each other. Referring again to the example shown in
Figure 1, many web applications take an integer value as
a unique identifier for a class of objects such as a blog
article or comment, as in the case of the id parameter.
Many web applications also accept date ranges similar to
the date parameter as identifiers or as constraints upon
a search request. Similarly, as in the case of the title

parameter, web applications often expect a short phrase
of text as an input, or perhaps a longer block of text in
the form of a comment body. One can consider each of
these groupings of similar parameters as distinct param-
eter types, though this need not necessarily correspond
to the concept of types as understood in the program-
ming languages context.

The key insight behind our approach is that parame-
ters of the same type tend to induce model compositions
that are similar to each other in many respects. Conse-
quently, if the lack of training data for a subset of the



components of a web application prevents an anomaly
detection system from constructing accurate profiles for
the parameters of those components, it is possible to
substitute profiles for similar parameters of the same
type that were learned when enough training data was
available. It must be underlined that the substitution op-
erates at the granularity of parameters rather than re-
quests (which may contain more than one parameter).
This increases the likelihood of finding applicable pro-
file similarities, and allows for the substitution of mod-
els taken from radically different components. However,
although the experiments we run on real-world data con-
firm that the aforementioned insight is realistic, our hy-
pothesis might not hold in some very specific settings.
Thus, to minimize the risks brought by migrating global
knowledge across different deployments, we interpreted
this result only as an insight and developed a robust cri-
terion able to find similar profiles independently from
the actual types of the modeled parameters.

Our approach is composed of three phases. The first
phase, shown in Figures 5 and 6b, is an extension of
the training procedure originally implemented in [19],
where undertrained versions of profiles are recorded in
addition to their final states. In the second phase, a
global knowledge base of profiles C =

∪
ai
Cai is con-

structed offline, where Cai are knowledge bases contain-
ing only well-trained, stable profiles (right side of Fig-
ure 6a) from anomaly detection systems previously de-
ployed on a set of web applications

∪
i ai. The left side

of Figure 6a depicts the progressive construction of the
knowledge base CI =

∪
ai
CI
ai

of undertrained profiles(
i.e., an index into C, where CI

ai
is a knowledge base of

undertrained profiles from the web application ai). Ad-
ditionally, we define a mapping f :

{
CI

}
× Cai 7→ C

(shown as a dotted, directed arrow) between under-
trained and well-trained profiles.

The third phase is performed online. For any new
web application where insufficient training data is avail-
able for a component’s parameter, the anomaly detector
first extracts the undertrained profile c′. Then, the global
knowledge base C is queried to find a similar, previously
constructed profile f

(
CI , c′

)
= c. The well-trained pro-

file c is then substituted for the undertrained profile c′ in
the detection process.

3.1 Phase I: Enhanced training

As a first step, we extended the anomaly detector
described in [19] with a mechanism to generate under-
trained profiles from a data set. These undertrained pro-
files are generated using the following procedure. Let
Q

(p)
ai = {q(p)1 , q

(p)
2 , . . .} denote a sequence of client re-

quests containing parameter p for a given web applica-
tion. Over Q(p)

ai , profiles are deliberately undertrained on

randomly sampled κ-sequences, where κ can take val-
ues in

∪8
i=0 2

i (a discussion of appropriate values for κ
is deferred until Section 3.4). Each of the resulting pro-
files is then added to a knowledge base CI

ai
. Note that

the random sub-sampling is performed with the goal of
inducing undertraining to show that clustering is feasible
and leads to the desired grouping even – and especially
– in the presence of undertraining.

In general, κ corresponds to a number of train-
ing samples that is considered insufficient to accurately
characterize a feature. This, however, warrants a discus-
sion of what is considered sufficient. An obvious choice
is to fix a large, constant training phase length (e.g.,
1000 requests). Unfortunately, an appropriate training
phase length is dependent upon the complexity of mod-
eling a given set of features. Therefore, we have devel-
oped an automated method that leverages the notion of
model stability to determine when a model has observed
enough training samples to accurately approximate the
normal behavior of a parameter.

As new training samples are observed early in the
training phase, the state of a model typically exhibits
frequent and significant change as its approximation of
the normal behavior of a parameter is updated. Infor-
mally, in an information-theoretic sense, the average in-
formation gain of each new training sample is high. As
a model’s state converges to a more precise approxima-
tion of normal behavior, its state gradually exhibits in-
frequent and incremental changes. In other words, the
information gain of new training samples approaches
zero, and the model stabilizes.

Each model monitors its stability during the training
phase by maintaining a history of snapshots of its inter-
nal state. Periodically, a model checks if the sequence of
deltas between each successive historical state is mono-
tonically decreasing and whether the degree of change
drops below a certain threshold. If both conditions are
satisfied, then the model is considered stable. Let κ(u)

stable
denote the number of training samples required for a
model to achieve stability. A profile is considered sta-
ble when all of its constituent models are stable. Thus,
the number of training samples required for a profile to
achieve stability is given by

κstable = max
u∈U

κ
(u)
stable. (3.1)

At the end of this phase, the final state of each well-
trained, or stable, profile is stored in a knowledge base
Cai . Both Cai and CI

ai
are collected from each web ap-

plication, and serve as input to the next phase.
Instead of describing the internal stop criterion spe-

cific to each model, if any, we developed a model-
agnostic minimization algorithm detailed in Section 3.4
(and evaluated in Section 4) that allows one to trade off
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detection accuracy against the number of training sam-
ples available.

3.2 Phase II: Building profile knowledge bases

The second phase consists of processing the output
of the first phase, namely the sets of knowledge bases of
both undertrained and well-trained profiles learned from
a variety of web applications. The goal is to create C
and CI , global knowledge bases of well-trained and un-
dertrained profiles, respectively, and a mapping between
the two, allowing CI to serve as an index to C.

3.2.1 Constructing global knowledge base indices

The construction of the undertrained profile database
CI begins by merging a set of knowledge bases{
CI
a1
, CI

a2
, . . . , CI

aI

}
that have previously been built by

a web application anomaly detector over a set of web
applications

∪
i ai during the first phase. The profiles in

CI are then clustered to group profiles that are seman-
tically similar to each other. Profile clustering is per-
formed in order to time-optimize query execution when
using CI as an index into C. The resulting clusters of
profiles in CI are denoted by HI =

∪
i h

I
i . In this work,

an agglomerative hierarchical clustering algorithm using
group average linkage was applied, although the cluster-
ing stage is agnostic as to the specific algorithm. In prin-
ciple, other mechanisms (e.g., Support Vector Machines,
Locality-Sensitive Hashing) to find groups or classes of
similar models based on their features can be used. We
opted for a clustering algorithm as a proof-of-concept
implementation of Phase II primarily due to its simplic-
ity. For an in-depth discussion of clustering algorithms
and techniques, we refer the reader to [45].

Central to any clustering algorithm is the distance
function, which defines how similarities between the ob-

jects to be clustered are calculated. A suitable distance
function must reflect the semantics of the objects un-
der consideration, and should satisfy two conditions: 1)
the overall similarity between elements within the same
cluster is maximized, and 2) the similarity between ele-
ments within different clusters is minimized.

We define the distance between two profiles to be
the sum of the distances between the models compris-
ing each profile. More formally, the distance between
the profiles ci and cj is defined as:

d (ci, cj) =
1

|ci
∩

cj |
∑

m
(u)
i ,m

(u)
j ∈ci

∩
cj

δu

(
m

(u)
i ,m

(u)
j

)
,

(3.2)
where δu : Mu × Mu 7→ [0, 1] is the distance
function defined between models of type u ∈ U =
{tok, int, len, char, struct}.

The token model m(tok) is represented as a set
of unique tokens observed during the training phase.
Therefore, two token models m(tok)

i and m
(tok)
j are con-

sidered similar if they contain similar sets of tokens. Ac-
cordingly, the distance function for token models is de-
fined as the Jaccard distance [7]:

δtok

(
m

(tok)
i ,m

(tok)
j

)
= 1−

∣∣∣m(tok)
i

∩
m

(tok)
j

∣∣∣∣∣∣m(tok)
i

∪
m

(tok)
j

∣∣∣ . (3.3)

The integer model m(int) is parametrized by the sam-
ple mean µ and variance σ2 of observed integers. Two
integer models m

(int)
i and m

(int)
j are similar if these pa-

rameters are also similar. Consequently, the distance
function for integer models is defined as:

δint

(
m

(int)
i ,m

(int)
j

)
=

∥∥∥σ2
i

µ2
i
− σ2

j

µ2
j

∥∥∥
σ2
i

µ2
i
+

σ2
j

µ2
j

. (3.4)
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Figure 6: Global knowledge base indices (a) constructed by (b) sub-sampling the training set Q into small chunks of samples of
progressively larger size (as detailed in Section 3.1). In (b), a dot indicates a sample for a certain parameter, and a full
training set for one parameter corresponds to one horizontal row of dots. For instance, at κ = 2, the profiles for the
same parameter are trained several times on 2-sized training subsets. This leads to the profiles indicated as small gray
dots in (a) CI

2 and that, in this example, can be grouped into three clusters according to their similarity. As explained
in Section 3.2.1, as κ increases, more accurate clusterings are achieved, and the undertrained knowledge base better
resembles the well-trained one shown on the top-right.

As the length model is internally identical to the inte-
ger model, its distance function δlen is defined similarly.

Recall that the character distribution model m(char)

learns the frequencies of individual characters compris-
ing strings observed during the training phase. These
frequencies are then ranked and coalesced into n bins to
create an ICD. Two character distribution models m(char)

i

and m
(char)
j are considered similar if each model’s ICDs

are similar. Therefore, the distance function for charac-
ter distribution models is defined as

δchar

(
m

(char)
i ,m

(char)
j

)
=

n∑
l=0

∥bi (l)− bj (l)∥
maxk=i,j bk (l)

, (3.5)

where bi (k) is the value of bin k for m(char)
i .

The structural model m(struct) builds an HMM by ob-
serving a sequence of character strings. The resulting
HMM encodes a probabilistic grammar that can pro-
duce a superset of the strings observed during the train-
ing phase. The HMM is specified by the tuple ⟨S,
O, MS×S,P (S,O), P (S)⟩. Several distance metrics
have been proposed to evaluate the similarity between
HMMs [16,23,36,37]. Their time complexity, however,
is non-negligible. Therefore, we adopt a less precise,
but considerably more efficient, distance metric between
two structural models m

(struct)
i and m

(struct)
j as the Jac-

card distance between their respective emission sets

δstruct

(
m

(struct)
i ,m

(struct)
j

)
= 1− |Oi

∩
Oj |

|Oi

∪
Oj |

. (3.6)



3.2.2 Constructing a global knowledge base

Once a knowledge base of undertrained models CI has
been built, the next step is to construct a global knowl-
edge base C. This knowledge base is composed of the
individual, well-trained knowledge bases from each web
application as recorded during the first phase – that is,
C =

∪
i Cai . Because undertrained profiles are built for

each well-trained profile in C, a well-defined mapping
f ′ : CI 7→ C (i.e., independent from the particular un-
dertrained model in Cai , as defined by f ) exists between
CI and C. Therefore, when a web application parameter
is identified as likely to be undertrained, the correspond-
ing undertrained profile c′ can be compared to a similar
undertrained profile in CI , that is then used to select a
corresponding stable profile from C.2

3.3 Phase III: Mapping undertrained profiles
to well­trained profiles

With the construction of a global knowledge base C
and an undertrained knowledge base CI , we can perform
online querying of C. That is, given an undertrained pro-
file from an anomaly detector deployed over a web ap-
plication ai, the mapping f :

{
CI

}
× Cai

7→ C is im-
plemented as follows. A nearest-neighbor match is per-
formed between c′ ∈ Cai

and the previously constructed
clusters HI from CI to discover the most similar clus-
ter of undertrained profiles. This is done to avoid a full
scan of the entire knowledge base, which would be pro-
hibitively expensive due to the cardinality of CI .

Then, using the same distance metric defined in
Equation (3.2), a nearest-neighbor match is performed
between c′ and the members of HI to discover the un-
dertrained profile cI at minimum distance from c′. If
multiple nearest-neighbors are found, then one is cho-
sen at random. Finally, the global, well-trained profile
f ′ (cI) = c is substituted for c′ for the web application
ai.

To make explicit how global profiles can be used
to address a scarcity of training data, consider the ex-
ample of Figure 4. Since the resource path /ac-

count/password has received only 100 requests, the
profiles for each of its parameters {id, oldpw, newpw}
are undertrained. According to our confidence met-
ric defined in Section 3.1, models that have received
less than 1000 samples are likely undertrained (i.e.,
with a confidence close to zero). In the absence of
a global knowledge base, the anomaly detector would
provide no protection against attacks manifesting them-
selves in the values passed to any of these parameters.
Also, the system may report too many false positives
due to a lack of model generalization. If, however, a

2Note that f ′ is a generalization of f .

global knowledge base and index are available, the sit-
uation is considerably improved. Given C and CI , the
anomaly detector can simply apply f to each of the un-
dertrained parameters to find a well-trained profile from
the global knowledge base that accurately models a pa-
rameter with similar semantics, even when the model is
for another web application. Then, these profiles can
be substituted for the undertrained profiles for each of
{id, oldpw, newpw}. As will be demonstrated in the fol-
lowing section, the substitution of global profiles pro-
vides an acceptable detection accuracy for what would
otherwise be a completely unprotected component (i.e.,
without a profile, none of the attacks against that com-
ponent would be detected). If no matching well-trained
profiles can be found, then the undertrained profile is
used until the knowledge base is updated at a later time.
This ensures that our approach can be deployed trans-
parently and is adopted only when applicable, incurring
no additional risk or overhead to the existing detection
procedure.

3.4 Mapping quality

The selection of an appropriate value for κ is central
to both the efficiency and the accuracy of querying C.
Clearly, it is desirable to minimize κ in order to be able
to index into C as quickly as possible once a parame-
ter has been identified to be subject to undertraining at
run-time. On the other hand, setting κ too low is prob-
lematic. In fact, as Figure 6a indicates, for low values of
κ, profiles are distributed with relatively high uniformity
within CI , such that clusters in CI are significantly dif-
ferent than clusters of well-trained profiles in C. There-
fore, slight differences in the state of the individual mod-
els can cause profiles that are close in CI to map to rad-
ically different profiles in C. As κ → κstable, however,
profiles tend to form semantically-meaningful clusters,
and tend to approximate those found in C. Therefore, as
κ increases, profiles that are close in CI become close
in C according to f – in other words, f becomes robust
with respect to model semantics.3

A principled criterion is required for balancing quick
indexing against a robust profile mapping. To this end,
we first construct a candidate knowledge base CI

κ for a
given κ. Additionally, we cluster the profiles in C as in
the case of the undertrained knowledge base. Then, we
define a robustness metric as follows. Recall that HI =∪

i h
I
i is the set of clusters in CI , and let H =

∪
i hi be

the set of clusters in C. Let g : HI 7→ Z+ be a mapping
from an undertrained cluster to the maximum number of

3Our use of the term “robustness” is related, but not necessarily
equivalent, to the definition of robustness in statistics (i.e., the property
of a model to perform well even in the presence of small changes in
the underlying assumptions.)



elements in that cluster that map to the same cluster in
C. The robustness metric ρ is then defined as

ρ
(
CI

)
=

1

|CI |
∑
i

g
(
hI
i

)
. (3.7)

With this metric, an appropriate value for κ can now
be chosen as

κmin = min
κ

(
ρ
(
CI
κ

)
≥ ρmin

)
, (3.8)

where ρmin is a minimum robustness threshold.

4 Evaluation

The goal of this evaluation is three-fold. First, we in-
vestigate the effects of profile clustering, and support the
notion of parameter types by examining global knowl-
edge base clusters. Then, we study how the quality
of the mapping between undertrained profiles and well-
trained profiles improves as the training slice length κ
is increased. Finally, we present results regarding the
accuracy of a web application anomaly detection system
incorporating the application of a global knowledge base
to address training data scarcity.

The experiments that follow were conducted using
a data set drawn from real-world web applications de-
ployed on both academic and industry web servers. Ex-
amples of representative applications include payroll
processors, client management, and online commerce
sites. For each application, the full content of each
HTTP connection observed over a period of approxi-
mately three months was recorded. A portion of the
resulting flows were then filtered using Snort to remove
known attacks. In total, the data set contains 823 distinct
web applications, 36,392 unique components, 16,671
unique parameters, and 58,734,624 HTTP requests.4

4.1 Profile clustering quality

To evaluate the accuracy of the clustering phase, we
first built a global knowledge base C from a collection
of well-trained profiles. The profiles were trained on a
subset of the aforementioned data, containing traffic in-
volving a wide variety of web applications. This subset
was composed of 603 web applications, 27,990 unique
resource paths, 9,023 unique parameters, and 3,444,092
HTTP requests. The clustering algorithm described in
Section 3.2.2 was then applied to group profiles. Sample
results from this clustering are shown in Figure 7b. Each
leaf represents a profile. The name of the parameter and

4Unfortunately, due to contractual agreements, we are unable to
disclose specific information identifying the web applications them-
selves.

samples values observed during training are included to
give an idea of the parameter’s “type.” As κ increases,
profiles are clustered more accurately.

As the figure indicates, the resulting clusters in C
are accurately grouped by parameter type. For instance,
date parameters from different web applications belong
a single hierarchy, while unstructured text strings are
grouped into a separate hierarchy.

4.2 Profile mapping robustness

Recall that in order to balance the robustness of the
mapping f between undertrained profiles and global
profiles against the speed with which undertraining can
be addressed, it is necessary to select an appropri-
ate value for κ. To this end, we generated under-
trained knowledge bases for increasing values of κ =
1, 2, 4, 8, 16, 32, 64 from the same data set used to gener-
ate C, following the procedure outlined in Section 3.2.1.
The resulting hierarchical clusters for various κ are pre-
sented in Figure 7c, 7d, 7a.

At low values of κ (e.g., Figure 7c), the clustering
process exhibits non-negligible systemic errors. For in-
stance, the parameter stat should be clustered as a to-
ken set of states, but instead is grouped with unstruc-
tured strings such as cities and addresses. A more ac-
curate clustering would have dissociated the token and
string profiles into well-separated sub-hierarchies.

As shown in Figure 7d, larger values of κ lead to
more semantically meaningful groupings. Some inac-
curacies are still noticeable, but the clustering is signif-
icantly better that the one obtained at κ = 8. A further
improvement in the clusters is shown in Figure 7a. At
κ = 64, the separation between dates and unstructured
strings is sharper; except for one outlier, the two types
are recognized as similar and grouped together in the
early stages of the clustering process.

Figure 8 plots the profile mapping robustness ρ
against κ for different cuts of the clustering hierarchy,
indicated by Dmax. Dmax is a threshold representing the
maximum distance between two clusters. For low Dmax,
the “cut” will generate many clusters with a few ele-
ments. On the other hand, for high values of Dmax, the
algorithm will tend to form less clusters, each having a
larger number of elements. In general, Dmax can in-
fluence the result of a clustering algorithm significantly.
Figure 8, however, shows two important properties of
our technique. First, it demonstrates that the robust-
ness is fairly insensitive to Dmax. Second, the robust-
ness of the mapping increases with κ until saturation at
32 ≤ κ ≤ 64. This not only confirms the soundness
of the mapping function, but it also provides insights on
the appropriate choice of κmin to minimize the delay to
global profile lookup while maximizing the robustness



notes: {1/29/07 - email, 10/26/06 thru, spoke}
notes: {1/29/07 - email, 10/26/06 thru, spoke} 
notes: {1/29/07 - email, 10/26/06 thru, spoke} 
notes: {1/29/07 - email, 10/26/06 thru, spoke}
type: {health care, wholesale}
notes: {1/29/07 - email, 10/26/06 thru, spoke}
name: {Foo LLC, Bar Inc.}
type: {General Auto, Painters, unknown}

(a) κ = 64

stdate: {01/01/1900, 04/01/2007, 05/01/2007}
stdate: {01/01/1900, 04/01/2007, 05/01/2007}
ref: {01/29/2007, 01/30/2007, 01/31/2007}
stdate: {02/19/2004, 09/15/2005, 12/07/2005}
stdate: {01/01/1900, 05/08/2006}
stdate: {01/31/2006, 11/01/2006}
stdate: {01/30/2007, 02/10/2007}
indate: {01/29/2007, 12/29/2006}
exp: {01/01/2008, 05/22/2007}
exp: {02/09/2007, 09/30/2006}
exp: {02/01/2007, 08/01/2006, 09/01/2006}
date: {1/29/07, 12/31/2006}
date: {1/29/07, 12/31/2006}
note: {10-5, no ans, called and emailed, no client resp}
note: {10-5, no ans, called and emailed, no client resp}

(b) κstable ≃ 103

city: {OUR CITY, OTHER CITY, San Diego}
stat: {GA}
code: {OD}
w: {Ineligible, Old}
cd: {XX}
type: {Payment, Sales}
code: {OD}
w: {Eligible, New}
w: {Ineligible, New}
stat: {CA, TX}
stat: {CA, TX}
addr: {15 ROOF AVE, 373 W SMITH, 49 N Ave}

(c) κ = 8

thepage: {TKGGeneral, TKGGeneral, KZDA.pdf} 
updateTask: {TKGGeneral, KZDA.pdf, Chan.cfm?taskna} 
code: {CK-1006, NES}
thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}
code: {CK-1006, NES} 
thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}
accode: {r94, xzy}
code: {CK-1006, NZS}
code: {CK-1006, NZS}
code: {02-286, BE2}
thepage: {TKGGeneral, TKGGeneral, KZDA.pdf}

(d) κ = 32

Figure 7: Graphical representation of the various steps of the hierarchical clustering of C, (a-b), and CI , (c-d), at various κ. Each
leaf represents a profile. The name of the parameter and samples values observed during training are included to give an
idea of the parameter’s “type.” We note that these sample values are shown for visualization purposes only, and are never
taken into account by the clustering algorithm. As κ increases, profiles are clustered more accurately.

of the mapping.

4.3 Detection accuracy

Having studied the effects of profile clustering and
varying κ upon the robustness of the profile mapping
f , a separate experiment was conducted to evaluate the
detection accuracy of an anomaly detector incorporat-
ing the knowledge bases C and CI constructed in the
previous experiments. In particular, the goal of this
experiment is to demonstrate that an anomaly detector
equipped with a global knowledge base exhibits an im-
proved detection accuracy in the presence of training
data scarcity. As detailed in the following, we measured
the baseline accuracy, on the same system and under the
same conditions, with all the models undertrained.

The data used in this experiment was a subset of the
full data set described above, containing traffic from
one related set of web applications implementing on-
line commerce sites. This data set was completely dis-
joint from the one used to construct the global knowl-
edge base and its indices, to prevent any potential for the
substitution of profiles from the same application. Ad-
ditionally, the use of a global knowledge base generated
from many types of web applications to address a lack
of training data for a specific web application mirrors

the intended usage of the technique. In total, this data
set consisted of 220 unique real-world web applications,
8,402 unique resource paths, 7,648 distinct parameters,
and 55,290,532 HTTP requests.

The threat model we assume is that of an attacker at-
tempting to compromise the confidentiality or integrity
of data exposed by a web application by tampering with
request parameters.5 Therefore, a set of 100,000 at-
tacks was introduced into the data set. These attacks
were real-world examples and variations upon cross-site
scripting (XSS), SQL injection, command execution ex-
ploits, and other attacks that manifest themselves in re-
quest parameter values.6 Examples of these attacks in-
clude:

• malicious code inclusion: <script

src="http://example.com/malware.js"></script>;
• bypassing login authentication: ’ OR ’x’=’x’--;

5Although the anomaly detector used in this study is capable of
detecting more complex session-level anomalies, we restrict the threat
model to request parameter manipulation because we do not address
session profile clustering in this work.

6These attacks remain the most common attacks against web ap-
plications. However, both the anomaly detector and the improvement
we designed apply to any malicious activity caused by modifications
to HTTP requests, and therefore we by no means limit our scope to
these classes of attacks.
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Figure 8: Plot of profile mapping robustness for varying κ.

• command injection: ; cat /etc/passwd | mail

attacker@gmail.com #.

To establish a worst-case bound on the detection ac-
curacy of the system, profiles for each observed request
parameter were deliberately undertrained to artificially
induce a scarcity of training data for all parameters.
That is, for each value of κ = 1, 2, 4, 8, 16, 32, 64, the
anomaly detector prematurely terminated profile train-
ing after κ samples, and then used the undertrained pro-
files to query C. The resulting global profiles were then
substituted for the undertrained profiles and evaluated
against the rest of the data set. The sensitivity of the
system was varied over the interval [0, 1], and the result-
ing ROC curves for each κ are plotted in Figure 9.

It must be noted that, as shown in Section 4.2, with
κ = 1 our system cannot reliably find semantically sim-
ilar well-trained models. As κ increases, so does the
quality of the global profiles returned by the querying
process. In particular, this increase in quality closely
follows the mapping robustness plot presented in Fig-
ure 8. As predicted, setting κ = 32, 64 leads to fairly
accurate global profile selection, with the resulting ROC
curves approaching that of fully-trained profiles. This
means that even if the component or, in general, a pa-
rameter of a web application has received only a few re-
quests (i.e., 64), by leveraging a global knowledge base,
it is possible to achieve effective attack detection. As a
consequence, our approach can improve the effective-
ness of real-world web application anomaly detection

systems. Clearly, the detection accuracy will improve
as more training samples (e.g., 128, 256) become avail-
able. However, the goal of this experiment was to eval-
uate such an improvement with a very limited training
set, rather than showing the detection maximum accu-
racy achievable.

One concern regarding the substitution of global pro-
files for local request parameters is that a global profile
that was trained on another web application might not
detect valid attacks against the undertrained parameter.
Without this technique, however, recall that a learning-
based web application anomaly detector would other-
wise have no effective model whatsoever, and, there-
fore, the undertrained parameter would be unprotected
by the detection system. Furthermore, the ROC curves
demonstrate that while global profiles are in general not
as precise as locally-trained models, they do provide a
significant level of detection accuracy.7 More precisely,
with κ = 1, undertraining condition and system off, only
67.5% of the attacks are detected, overall, with around
5% of false positives. On the other hand, with κ = 64
(undertraining and system on), more than 91% of the at-
tacks are detected with less than 0.2% of false positives
(vs., 0.1% of false positives in the case of no under-
training and system off). Therefore, we conclude that,
assuming no mistrust among the parties that share the

7Note that if global profiles were found to be as accurate as local
profiles, this would constitute an argument against site-specific learn-
ing of models, since in that case, models could be trained for one web
application and applied directly to other web applications.
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Figure 9: Global profile ROC curves for varying κ. In the presence of severe undertraining (κ ≪ κstable), the system is not able
to recognize most attacks and also reports several false positives. However, as κ increases, detection accuracy improves,
and approaches that of the well-trained case (κ = κstable).

global knowledge base, our approach is a useful tech-
nique to apply in the presence of undertrained models
and, in general, in the case of training data scarcity.

5 Related work

Anomaly detection has a rich history that dates back
to Denning’s seminal paper on intrusion detection [9].
It has been extensively applied to modeling legal se-
quences of system calls [12, 42] as well as other system
call features [28]. Network-based anomaly detection has
also been extensively studied [21, 41].

In [24], the authors further exploit the use of statis-
tical learning procedures to build models of normal se-
quences of system calls in the Linux kernel. Here, ad-
hoc distances are proposed to perform clustering of sys-
tem calls in order to identify types of similar calls. Thus,
the system calls are “compacted” and the reduced size
of the input makes it feasible to train Markov chains that
attempt to capture the behavior of each host application.
Probabilistic thresholds are then used to detect deviating
behaviors.

Anomaly detection techniques have also been applied
at the application level. In [44], Wang and Stolfo de-
scribe PAYL, a service-agnostic anomaly detection sys-
tem that models normal behavior by recording byte fre-
quencies of network streams. An extension of the tech-

nique to higher-order n-grams is introduced in [43].
This system is also notable for its inclusion of a stop cri-
terion for ending model training by estimating the likeli-
hood of observing new n-grams; this approach is related
to the notion of model stability described in Section 3.1.

One of the first applications of anomaly detection
techniques to the web domain is described in [19], in
which a multi-model approach to characterizing the nor-
mal behavior of web application parameters is shown
to reliably detect web attacks while maintaining a low
false positive rate. In [18], the use of Bayesian networks
is proposed to compose models and express inter-model
dependencies in order to further reduce false positive
rates. A system for clustering anomalies and classify-
ing clusters according to the type of attack is proposed
in [30] to improve the explanatory power of web appli-
cation anomaly detection as well as further reduce their
false positive rate.

A recent effort on addressing training set deficien-
cies has been proposed in [8]. In this work, a sanitiza-
tion phase is first performed to remove suspected attacks
and other abnormalities from the data. Instead of creat-
ing one model instance, a set of “micro-models” is trai-
ned against disjoint subsets of the training data. These
micro-models are then subject to one of several voting
schemes to recognize and cull outliers that may repre-
sent attacks. While this work is somewhat related to



ours in that slices of training data are considered, the
application of micro-models is intended to ensure that
attacks are not present in training data. In contrast, our
approach is complementary in the sense that it is focused
on addressing the lack of training data.

In [13], the authors propose a cluster-based anomaly
detection system as a means of reducing false positives.
The system accomplishes this by clustering similar be-
havioral profiles for individual hosts using the k-means
algorithm, although the exact distance metric used was
not explicitly given. Then, alerts are generated accord-
ing to a voting scheme, where the causal event for an
alert is evaluated against behavior profiles from other
members of that host’s cluster. If the event is deemed
anomalous by all members of the cluster, an alert is gen-
erated. Though this system shares the element of profile
clustering with our work, the scope of the clustering is
limited to end hosts connected to a single switch, while
our work clusters across a large population of web ap-
plication profiles. Also, the models operate over coarse
network statistics such as the average number of hosts
contacted per hour, the average number of packets ex-
changed per hour, and the average length of packets ex-
changed per hour. Our system, on the other hand, con-
siders fine-grained features specific to web applications.
Finally, our system does not require the use of a dis-
tributed voting scheme, which incurs additional over-
head.

A recent proposal for the anomaly-based detection of
web-based attacks is presented in [35]. In this work,
a mixture of Markov chains incorporating n-gram tran-
sitions is used to model the normal behavior of HTTP
request parameters. The resulting system attains a high
detection accuracy for a variety of web-based attacks.
In contrast to our work, however, a single mixture is
learned for an entire web application. Additionally,
the proposed system utilizes a supervised learning algo-
rithm (i.e., attacks must be labeled as such in the training
set), whereas ours operates on unlabeled training data.

6 Conclusions

In this work, we have identified that non-uniform web
client access distributions cause model undertraining.
This is an issue that must be addressed by web appli-
cation anomaly detection systems in order to provide a
reasonable level of security. The impact of this issue is
particularly relevant for commercial web-based anomaly
detection systems and web application firewall, which
have to operate in real-world environments where suffi-
cient training data might be unavailable within a reason-
able time frame.

We propose the use of global knowledge bases of
well-trained, stable profiles to remediate a local scarcity

of training data by exploiting global similarities in web
application parameters. We have evaluated the efficacy
of this approach over an extensive data set collected
from real-world web applications. We found that al-
though using global profiles does result in a small reduc-
tion in detection accuracy, the resulting system, when
given appropriate parameters, does provide reasonably
precise modeling of otherwise unprotected web applica-
tion parameters.

As future work, we plan to investigate the extension
of global model clustering to other types of models, par-
ticularly HTTP response and session models. An addi-
tional line of future work is to investigate the application
of different clustering methods in order to improve the
efficiency of the querying procedure for high-cardinality
knowledge bases.
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