
FiG: Automatic Fingerprint Generation

Juan Caballero
Carnegie Mellon University

jcaballero@cmu.edu

Shobha Venkataraman
Carnegie Mellon University

shobha@cs.cmu.edu

Pongsin Poosankam
Carnegie Mellon University

ppoosank@cmu.edu

Min Gyung Kang
Carnegie Mellon University

mgkang@cmu.edu

Dawn Song
Carnegie Mellon University

dawnsong@cmu.edu

Avrim Blum
Carnegie Mellon University

avrim@cs.cmu.edu

Abstract

Fingerprinting is a widely used technique among the net-
working and security communities for identifying different
implementations of the same piece of networking software
running on a remote host. A fingerprint is essentially a set of
queries and a classification function that can be applied on
the responses to the queries in order to classify the software
into classes. So far, identifying fingerprints remains largely
an arduous and manual process. This paper proposes a
novel approach for automatic fingerprint generation, that
automatically explores a set of candidate queries and ap-
plies machine learning techniques to identify the set of valid
queries and to learn an adequate classification function.
Our results show that such an automatic process can gener-
ate accurate fingerprints that classify each piece of software
into its proper class and that the search space for query ex-
ploration remains largely unexploited, with many new such
queries awaiting discovery. With a preliminary exploration,
we are able to identify new queries not previously used for
fingerprinting.

1. Introduction

Fingerprinting is a technique for identifying the differ-
ences among implementations of the same networking soft-
ware specification, be it applications, operating systems or
TCP/IP stacks. It is well-known that even when the func-
tionality of a piece of software is detailed in a specification
or standard, different implementations of that same func-
tionality tend to differ in the interpretation of the specifica-
tion, by making assumptions or implementing only part of
the optional functionality.

In network security, fingerprinting has been used for
more than a decade [15] and it has a variety of applica-

tions. Some fingerprinting tools such as Nmap [9] are used
to identify hosts running a specific operating system. There
are also tools that can be used to identify different versions
of the same application such as fpdns [2], Nmap, and Nes-
sus [8]. These tools help network administrators to find ver-
sion information leaked by a system, inventory the hosts in
a network, and check for the existence of hosts running ver-
sions with vulnerabilities, or versions that are not allowed
under the security policy of a network.

However, identifying thefingerprintsused by these tools,
the fingerprint generation, is currently a manual process
which is arduous, incomplete, and makes it difficult to
keep up-to-date with the numerous new implementations
and new version updates. In this paper we propose a novel
approach for automatic fingerprint generation. The goal is
to automatically produce fingerprints that can differentiate
among distinct implementations of the same specification
and can be used by different fingerprinting tools.

A fingerprint contains 1) a set of queries, and 2) a classi-
fication function. To use the fingerprint to identify the class
to which a piece of software belongs, one sends the queries,
collects the responses and uses the classification functionto
classify the response. In the remainder of this paper, we will
use the term classifying a host when we refer to classifying
a piece of networking software running on the host. Thus,
for ease of description, we assume that there is only one rel-
evant piece of networking software running on the host; we
can easily remove this assumption by classifying each piece
of networking software on the host separately.

In this paper, we demonstrate how to automatically iden-
tify useful queries and classification functions. Our fin-
gerprint generation process contains three phases: First,a
Candidate Query Explorationphase which outputs candi-
date queries. Second, aLearningphase where those can-
didate queries are sent to different implementations and the
responses are gathered and passed to the learning algorithm.



The Learning phase outputsthe query set, which is a subset
of the set of candidate queries that includes only the can-
didate queries that are useful for fingerprinting, and aclas-
sification function. The pair formed by the query set and
the classification function is the fingerprint. Third, aTest-
ing phase where the produced fingerprints are tested over a
larger number of different implementations to evaluate its
accuracy.

We also study what to do when a host does not match any
known fingerprint. One straightforward approach would be
to classify the host as unknown, but one could also perform
anapproximate matchingto the nearest known class. In this
paper, we set out to validate if and when this approximate
matching can be performed.

This paper presents a general methodology for automatic
fingerprint generation that covers all three phases and gener-
ates fingerprints that can be used by different fingerprinting
tools. We validate our methodology by applying it on two
distinct problems: 1) generating fingerprints to differentiate
operating systems and 2) generating fingerprints to differen-
tiate implementations of the same application, namely DNS
servers.

Our experimental results show that the fingerprints auto-
matically generated by our approach are accurate. With a
preliminary exploration of the search space, we are able to
find many novel fingerprints that are not currently used by
fingerprinting tools. These novel fingerprints can increase
the accuracy and granularity of current fingerprinting tools.

The rest of this paper is structured as follows: Section 2
introduces the automatic fingerprint generation problem. In
Section 3 we present the candidate query exploration phase.
The learning algorithms are explained in Section 4 and in
Section 5 we evaluate their performance. Section 6 presents
the related work and we conclude in Section 7.

2. Overview

Problem definition Given a set ofk implementation classes
I = {I1, I2, . . . , Ik}, the goal of fingerprinting is to classify
a hostH into one of thosek classes or to anotherunknown
class. The problem ofautomatic fingerprint generationis
to output a set of queriesQ and a classification functionfQ,
such that when we send the set of queriesQ to a hostH and
collect the responsesRQ from H , fQ(RQ) can classify the
host into one of thek classes or into the unknown class. We
refer to the pair〈Q, fQ〉 as thefingerprint.

Approach Our automatic fingerprint generation contains 3
steps as shown in Figure 1, namely theCandidate Query Ex-
ploration phase, theLearningphase and theTestingphase.
First, in the Candidate Query Exploration phase we produce

a set of candidate queriesQc, which could potentially pro-
duce different responses from hosts belonging to different
classes. This process takes as input the protocol semantics
in the form of protocol standards and domain knowledge.

Then, given a set of training hostsT where the imple-
mentation class of every host inT is known and is in the set
I, the first step in the Learning phase is to send the set of
candidate queriesQc to each of the hosts inT using a packet
injection tool and to gather the responses from each host.
The responses and the classes are then passed to the learn-
ing algorithm, which identifies a set of queriesQ ⊆ Qc,
that produces different responses from hosts belonging to
different classes, and a classification functionfQ.

Finally, in the Testing phase we need to verify that the
pair 〈Q, fQ〉 generated in the Learning phase has sufficient
accuracy. This phase uses a set of testing hostsE, where
none of the hosts inE should belong to the training set
T , and each of the hosts inE should belong to one of the
classes inI. Then, this classification is compared to the
known classification forE and if the accuracy satisfies some
predefined metrics, the pair〈Q, fQ〉 is considered valid and
becomes the output fingerprint. The fingerprints obtained
can now be used by any fingerprinting tool to classify un-
known hosts by sending the query setQ to this host, and
applying the classification functionfQ on the responses.

Besides automatically generating the fingerprints needed
by the fingerprinting tools, we also want to validate if it is
possible for a fingerprinting tool to performapproximate
matchingwhen the responses from a host cannot be clas-
sified into any known class. Approximate matching could
then potentially be used to distinguish between hosts that
do indeed belong to a class not yet seen and thus should be
classified as unknown, and hosts that have a slightly dif-
ferent behavior (e.g. some networking parameters man-
ually tweaked) but actually belong to one of the known
classes. For approximate matching to be meaningful, we
need to test if the different implementation classes are well-
separated. We do this by clustering, and calculating the dis-
tance between implementation classes. If the implementa-
tion classes are well-separated, we can, under some natural
assumptions, find an approximate match for a given new
host. Thus, only if the new host is far from all the known
classes do we classify it as unknown.

In Section 3 we describe how to explore the candidate
query space, and in Section 4 we present the learning algo-
rithms, and how they are used to find the fingerprints.

3. Candidate Query Exploration

In this section we describe the Candidate Query Explo-
ration phase. This phase needs to select a set of candidate



Query

Injection


Candidate

Query


Exploration


Learning

Algorithm


Candidate

Queries


(Q

c

)


Protocol

Semantics


Training

hosts


(T)


R

C
 Q,f


Q
 Testing


Testing

hosts


(E)


Accuracy


Satisfied?


Q, f

Q


Yes


Classes

(I)


Learning


Figure 1. Fingerprint generation process.

queries that can potentially produce distinct responses from
the different classes of hosts. During the Learning phase,
those candidate queries that indeed produce distinguishing
responses will be selected as part of the query set in the final
fingerprint.

To automate the process of query exploration we could
perform an exhaustive search of all possible combinations.
Besides being automatic, it is also complete, guaranteeing
that it will find all useful queries. However, the problem
with this approach is that the search space is very large.
For DNS fingerprinting we have at least 16 bytes of header
fields in a DNS query, requiring2128 combinations. For OS
fingerprinting, the numbers become even more intractable.
Even if we restrict the search to the TCP and IP headers
there are at least 40 bytes of header information, which re-
quire2320 combinations.

Such exhaustive search does not take advantage of the
semantics of the protocol, i.e. the field structure in the pro-
tocol headers, and it can generate a large number of queries
that are useless for fingerprinting, thus wasting both time
and resources. For example, a query that spoofs the IP
source address becomes useless since the reply will never
make it back to the sender.

We combine exhaustive search with the semantics of the
protocol by selecting some fields with rich semantics (such
as the TCP or DNS flags) and performing an exhaustive
search on those, while limiting the search to selected val-
ues for other less interesting fields. This greatly reduces
the search space and requires little human intervention. It
also reduces the time and resources needed to complete the
search and our results show that it is still possible to find
many useful queries not yet used for fingerprinting.

In Section 5.1 we present the specific TCP/IP and DNS
fields that we explore. One example of how combining se-
mantic and exhaustive search reduces the search space is
byte 12 of the TCP header [25] which contains the Data Off-
set (4 bits) and Reserved fields (4 bits). Assuming that the
fields are independent, rather than searching the28 combi-
nations in the whole byte, we can fix the value of one field at
a time, while performing an exhaustive search on the other.
This would require a total of24+24 = 32 candidate queries.

4. Learning Algorithms

We formulate the fingerprint generation problem as a
classificationproblem: we are given a set ofinstancesfrom
different classes, along with thelabelsof the classes they
belong to, and we need to find properties that hold within
a class and are different across classes. An instance is rep-
resented as a collection of values for a set offeatures; thus,
an instance is a point in thefeature space. Given a family
of classification functionsover these features, our goal is
to find a good function within this family that separates the
classes. In our case the classes are the different implemen-
tations of the same functionality and our goal is to output
the fingerprint composed by the set of queries and the clas-
sification function.

Thus, we need to define the feature space and the family
of classification functions, and then learn the classification
function, and turn it into our final fingerprint. We describe
each of these in turn in this section. First, in Section 4.1 we
describe the feature space and how to obtain the instances,
needed by the learning algorithms, from the query/response
pairs obtained from the training hosts. Then, in Section 4.2
we introduce the classes of functions we use for classifica-
tion and briefly describe the learning algorithms. In Sec-
tion 4.3 we describe how to take the output of the learning
algorithms and convert it into our final fingerprints. Finally,
in Section 4.4 we describe how to obtain an approximate
matching when there is no exact matching among the fin-
gerprints.

4.1. Feature Extraction

The first step for using a learning algorithm is to de-
fine the feature space, which allows us to convert the
query/response pairs into the input for the learning algo-
rithms. Thus, aninstance is the representation of the
query/response pairs from a host in the feature space; and
the input to the learning algorithms is a set of instances.

Our feature space For simplicity, we describe our fea-
ture space for the case when the following relationships
hold between queries and responses: (a) we consider only



a single response byte string for each query, and (b) we
consider each response to be independent of every other
query/response from that host. With these two restrictions,
it is sufficient to analyze only responses that come from dif-
ferent hosts to the same query. Therefore, in this section,
when we discuss a feature space, we refer to the feature
space with respect to a single query. We show later in this
subsection how to generalize this feature space.

For a given query, we focus on the position-dependent
substrings of responses, which we callposition-substrings.
In particular, we aim to extract the position-dependent byte
substrings, that are consistently present in and distinctive to
the responses of an implementation class (a similar analysis
could also be done at bit level). Features involving position-
substrings allow us to exploit the underlying structure of the
byte sequences, since we are analyzing network protocols
that usually have a well defined field structure.

Specifically, aposition-substringof a response string is
a tuple of three elements: the start and end positions in the
original string and the bytes between these positions. So,
for example, if the original byte string isabcdefgabcd, then
we have two distinct position-substrings for the byte string
abcd: the position-substring [1, 4,abcd] is distinct from
the position-substring [8, 11,abcd]. A position-substring is
present in a response if it appears at the proper position in
the response. So, for example, the response stringabcdefg
does not contain the position-substring [5, 7,abc], but the
response stringabcdabc does.

With this definition of position-substrings, we can now
describe the feature sets: for each response, the set of fea-
tures extracted is the set of all possible position-substrings
in the response. For a collection of responses from differ-
ent hosts to the same query, the corresponding feature set is
the union of all the features for each response string. The
feature space of a queryis the feature set of the response
strings from all the different hosts to this query. In this sec-
tion, and in Section 4.2, we will consider each query sepa-
rately. Later in this section, we illustrate the feature space
with an example, and show how individual response strings
are represented in the space.

In this feature space, all of the information contained
in the response string gets encoded into the features; there
is no loss of information when transforming the response
string into the feature set. Such a property is good, be-
cause the learning algorithm can then decide which in-
formation is useful for classification. However, there are
other feature spaces which have this property. We choose
the position-substring feature space because, in combina-
tion with some simple families of classification functions,
it provides meaningful fingerprints that are easy to inter-
pret. The classification function we might need to learn over
other feature spaces may need to be more complex and thus,

harder to interpret.

Generalizing the feature spaceThis feature space could be
generalized in many ways. To begin with, we could general-
ize both the cases mentioned above easily. If we assume that
each response depends on the lastk query-response pairs of
the same host (rather than being independent of the other
query-response pairs), we can transform it into our simpler
case by concatenating everyk responses from each host. If
a particular query gets multiple responses from the same
host, we can concatenate all responses together to reduce it
to the case where there is just one response.

We could also extract more complex relationships be-
tween the various regions within a single byte sequence;
e.g., we could examine if a certain position-dependent sub-
string is always the sum of another position-dependent sub-
string in the same byte sequence. The study of these more
complex relationships within a sequence, and between dif-
ferent byte sequences is left as future work.

Generating instancesGiven a query, for each training host,
we extract all the possible position-substrings from the re-
sponse of that host. Then, we create the union setU from
the position-substrings of all the responses from different
training hosts to the same query, ordered lexicographically.
Finally, we transform each response string into a vector
v ∈ {0, 1}n by setting thei-th bit of v to be one if thei-
th position-substring ofU is present in the response string,
and we call this vector aninstance.

Figure 2 shows this process for the responses from two
different hosts to the same query. The responses from
the hosts are the stringsac andax. The set of position-
substringsP1 obtained fromac is [1, 1, a], [2, 2, c], [1, 2, ac],
and the set of position-substringsP2 obtained fromax
is [1, 1, a], [2, 2, x], [1, 2, ax]. Taking the union of these
two sets P1 and P2, in lexicographical order, we get
U = [1, 1, a], [2, 2, c], [2, 2, x], [1, 2, ac], [1, 2, ax]. With
this U , the instance corresponding to responseac becomes
(1, 1, 0, 1, 0), since only the first, second and fourth element
of U are present in theP1. Likewise, the instance corre-
sponding to responseax becomes(1, 0, 1, 0, 1).

Optimizations We may have very large sets of features if
they are generated in this manner, and we might want to
reduce the number of features provided there is no informa-
tion loss. Sometimes (as in the conjunction fingerprints in
Section 4.2.1), we do not need to generate all these position-
substrings explicitly — our algorithm uses an equivalent set
in a more efficient manner. We describe this implicit feature
space in Section 4.2.1.

We can also use domain information to reduce the fea-
ture set. We do this in this paper: we use the semantics
of the packet header to break the response string by proto-
col fields; so, each field is treated as a separate position-



{[1, 1, a], [2, 2, x], [1, 2, ax]}

{[1, 1, a], [2, 2, c], [1, 2, ac]}   ac

ax

1  and P
1 and Presponse strings 2

ordered union of P 2 example vectors

v
2

v
1
 [1, 1, 0, 1, 0]

 [1, 0, 1, 0, 1]

position−substring sets P

{[1, 1, a], [2, 2, c], [2, 2, x],
  [1, 2, ac], [1, 2, ax]}

Figure 2. Feature generation.

substring. This procedure generates many fewer features
than the original feature space, and further, using the packet
header semantics to generate features results in fingerprints
that are much easier to understand. For this reason, in the
analysis of the fingerprints that we present in Section 5, we
focus only on this reduced feature set.

Further, not all of the protocol fields contain only
implementation-specific information. For example, we term
dynamic fieldsto be protocol fields that might change from
one instance to another, such as session-specific fields (e.g.
session id, time-to-live); host-specific fields (e.g. hostname,
IP address, port); or configuration-specific fields (e.g. DNS
answer). The values of these dynamic fields are based on
external information and are less likely to contain informa-
tion that helps to identify the implementation.

The training data should include instances of different
values for these dynamic fields; if it does not, they might
show up in the final fingerprint. For example, if we use the
same open TCP port for fingerprinting all Windows hosts
(e.g. 139) and a different one for all Linux hosts (e.g. 22),
then the conjunction fingerprint will include this field. In
this paper, we remove the dynamic fields when generating
the fingerprints, but keep them for approximate matching,
where we examine the effect of including these dynamic
fields.

4.2. Algorithms

OverviewFor each query, once we have transformed the re-
sponse from each training host into an instance, we need to
find a classification function that separates the implemen-
tation classes. We do this on the instances obtained using
the training hosts, and test the resulting classification func-
tion on instances obtained from the testing hosts. Since we
cannot look through all possible classification functions,we
search within families of classification functions for a good
classification function. The goal of the learning algorithmis
to find a good function within a given family that separates
the different implementation classes.

We need classification functions that are easy to in-
terpret, for understanding which queries are useful and
when they are useful. Therefore, we choose classifica-
tion functions that are boolean functions of the features,

such as conjunctions, decision lists, decision trees, etc.
We choose these over classification functions that are real-
valued weighted functions of their features (such as linear
separators, etc), because the fingerprints generated by such
classification functions cannot be interpreted directly, and
would need to be converted into a sequence of decision rules
in order to be interpreted meaningfully.

In this paper, we consider two families of classification
functions: conjunctions and decision lists [17]. We do not
use decision trees, since (a) a restricted decision list has
lower sample complexity than a similarly restricted deci-
sion tree, and (b) a sufficiently complex decision list can
represent any decision tree. We discuss these two classes
of fingerprints in more detail below. In Appendix A, we
present the mistake-bound model for the analysis of these
fingerprints, and show improved bounds for the conjunction
fingerprints.

Our approach to learn fingerprints is the following: first,
we learn abinary-fingerprintfor each implementation class,
which is a fingerprint that can determine whether or not the
host belongs to that implementation class. Then we com-
bine many binary-fingerprints to obtain the final fingerprint
that can classify hosts into one of multiple implementation
classes.

In the rest of this section, we focus on learning finger-
prints for a single query only. In the interest of readability,
we will use the terms fingerprint and binary-fingerprint to
refer to the classification function associated with a single
query. We will distinguish explicitly the fingerprint for a
single query from the overall final fingerprint when it is not
clear from the context.

4.2.1 Learning Conjunction Binary-Fingerprints

Given a query, there may be protocol fields in the response
from a host that exhibit values specific to the implemen-
tation, and thus are different across implementations. We
want to include all of them in the fingerprint. For this rea-
son, we evaluate conjunctions of position-substrings as one
class of classification functions.

A conjunction fingerprintCq,I for a set of implemen-
tation classesI = {Im}1≤m≤k is a queryq and a set of
position-substrings{S(q,Im)}1≤m≤k such that for each im-



plementation classIm ∈ I, (a) all the position-substrings
in S(q,Im) are always present in the response from ev-
ery training host in the implementation classIm, but (b)
not all of the position-substrings inS(q,Im) are present in
any response from any host in another classIz 6=m for this
query q, i.e., they are distinctive with respect to the re-
sponses from an implementation class. Thus, the conjunc-
tion fingerprint for a queryq can be represented asCq,I =
{S(q,I1), S(q,I2), . . . S(q,Ik)}, whenI = {I1, I2 . . . Ik}.

Using conjunction fingerprints A conjunction binary-
fingerprint for classIm decides only whether a host be-
longs to classIm or not. To use a conjunction binary-
fingerprint to classify whether a new host is inIm, we test
if all the position-substrings inSq,Im

in the conjunction
binary-fingerprint are present in the response of that host
for the queryq. If they are, the host belongs to the class
Im, otherwise it does not. We describe how to use the final
conjunction fingerprint in Section 4.3.

Learning conjunction fingerprints Note that we describe
how to learn conjunction binary-fingerprints here; in Sec-
tion 4.3, we show how to turn binary-fingerprints into fi-
nal fingerprints. For this, we use the standard algorithm
to learn conjunctions from a set of labeled instances [17],
with the following modification for efficiency. Instead of
explicitly converting each host’s response into an instance
as described in Section 4.1, our algorithm first extracts the
longest common position-substring for each starting posi-
tion in each implementation class, while ensuring that there
is no overlap between the position-substrings. It then re-
moves common elements of these position-substrings that
are present in every implementation class. This way, the
algorithm is linear in the length of the response strings.

We illustrate the operation of the algorithm with an ex-
ample. Figure 3 shows response strings for four hosts inI1.
The position-substrings that we extract are [3, 8,cdefgh]
and [11, 12,kl]. Figure 4 shows the same process for four
hosts in a second classI2. The position-substrings that we
extract are [3, 8,stufgw] and [11, 12,kl]. Then, in fig-
ure 5 the algorithm removes [11,12,kl] and [6,7,fg] since
they are not useful for distinguishing betweenI1 and I2.
Thus, we are left with the position-substrings [3,5,cde] and
[8,8,h] for classI1, and [3,5,stu] and [8,8,w] for classI2.

While the conjunction fingerprints are simple and easy to
interpret, they have limited expressivity, and in some cases,
they may not be sufficient. There might, for instance, be
two kinds of responses generated for a particular query from
hosts within an implementation class, e.g., Windows hosts
may always have one of two values for the TCP window,
neither of which is present in any other implementation, and
therefore, we could use the presence of either of these val-
ues in a Windows fingerprint. For such a query, if there are

no other bytes that uniquely distinguish the implementation
classes, we may not be able to find a conjunction fingerprint.

This type of behavior might occur because there may be
slight differences in the same implementation class. For ex-
ample, when collecting learning data one might think that
Windows XP SP2 hosts will behave identically but the net-
work behavior is affected by the patch level and language
version among others. Thus, in order to capture multiple be-
haviors in an implementation class, we need to use a more
general class of functions. In the next section, we will de-
scribe such a class, decision lists.

4.2.2 Learning Decision List Binary-Fingerprints

A decision list can be viewed as an ordered sequence of
multiple if-then-else statements, where a conjunction canbe
viewed as a single if-then-else statement. We will use de-
cision lists to capture the presence of multiple behaviors in
a single implementation class, that are not present in other
implementation classes.

The standard definition of a decision list [17] is
as follows: a decision list overn boolean variables
Y = {Y1, Y2, . . . , Yn} and k classes is a sequenceL:
(c1, I1), (c2, I2), . . . , (ct, Ik), whereci is a conjunction on
Y andIi denotes the class. We will refer to each pair(ci, Ii)
as adecision rule. A decision list is thus an ordered se-
quence of decision rules – the conditionci of each decision
rule is tested in the order of its appearance inL and the out-
put is the classificationIi corresponding to the first satisfied
decision rule. When none of the conditions are satisfied, the
decision list outputsunknown.

In our setting, for each query, we use boolean variables to
denote the presence of position-substrings in the response,
and each conditionci is equivalent to the presence of a list
of position-substrings in that response. Thus, adecision
list fingerprint is a query and an ordered sequence of rules,
where each rule consists of a list of position-substrings and
an associated implementation class. To use the decision list
fingerprint to classify a new host, we send the query to the
host and collect the response. We then test the response with
each rule in turn to see if all the position-substrings in that
rule are present in the response, and if they are, we output
the associated class.

As in the case of the conjunctions, we find a decision list
fingerprint for each query separately. We use the standard
algorithm to learn a decision list for a given set of responses
from different training hosts to a single query [17]. As with
the conjunctions, this decision list is a binary-fingerprint; in
Section 4.3, we describe how to convert them into the final
fingerprint.

Note that decision lists are a more general class of func-



a b c d e f g h i j k l

c

c

c

d

d

d

e f

fe

e f

g

g

g

h

h

h

k

k

k

l

l

l

i j

x y 1 2

x

x

y

y 1 2

Figure 3. Responses from
class I1.

k l

k

k

k

l

l

l

x

w a

b

c

d

x

x

s t u f g w 1 4

2 5

1 6

2 7

s

s

s

t

t

t

u

u

u

f

f

f

g

g

g

w

w

w

Figure 4. Responses from
class I2.

c d e f k l

s u f k l

g

g

h

wt

Figure 5. Removing com-
mon position-substrings.

tions than conjunctions, and thus, every time we have a con-
junction fingerprint for a query we will also have a decision
list fingerprint but the reverse is not always true. However,
since there is a larger space of candidate functions to be
explored, the algorithms for learning decision lists have a
higher space and time complexity than the algorithms that
learn conjunctions.

4.3. Obtaining the Final Fingerprint

Here we present the steps needed to obtain the final fin-
gerprint from the output of the learning algorithm.

Removing unusable queriesAs we explore the query
space, we may find that some queries do not induce dis-
tinguishing behavior among the different implementation
classes, and therefore are not useful for fingerprinting. For
conjunctions, this happens when a query fails to produce
different responses across different implementations and
thus an empty conjunction binary-fingerprint is generated.
For decision lists, it happens when the binary-fingerprint
generated for one query does not cover the complete set of
instances in a class, usually because there is not enough dis-
tinct behavior that separates all hosts in the class from hosts
in the other class. Our approach is to remove these queries
and their corresponding binary classification functions from
the binary-fingerprints during the Learning phase, leaving
only the usable queries.

Final fingerprints for classifying multiple implementa-
tion classesThe conjunction and decision list algorithms
as presented are designed for binary classification of the
responses to a single query. However, we can use these
binary classification algorithms for multi-class classifica-
tion by repeating the following procedure for each imple-
mentation classIm. First, separate all hosts that belong
to Im as a single group, and all hosts that belong toany
other implementation class as a second group,Wm =
I \ {Im}. Then, generate the binary-fingerprintBFm for
groups{Im, Wm}1≤m≤k, which will distinguish the imple-
mentation classIm from all other classes. Once this proce-
dure has been completed for all implementation classes, the
final fingerprint is the set of all the binary-fingerprints.

For some queries, the final fingerprint may not contain
a binary-fingerprint for every implementation class. If we
have enough queries with complete final fingerprints, we
can discard these fingerprints; otherwise, we need to com-
bine multiple queries with partially-complete fingerprints as
described below.

To classify a new host using a final fingerprint, we apply
each binary-fingerprintBFm in turn to the responses from
the host, and store whether the host belongs inWm or Im,
for eachm ∈ [1, k]. Then, if there is only onem in which
the host belongs toIm, we output that classIm as the re-
sult, otherwise, we report that the class is unknown. We
describe an approximate matching we can use in this case
in Section 4.4.

Combining multiple queries The conjunction and decision
list fingerprints generated in Sections 4.2.1 and 4.2.2 only
consider the responses for a single query. Once we have
removed the unusable queries, if the number of implemen-
tation classes is large, we may not be able to find a single
query that can classify all implementation classes simulta-
neously. In that case, we create fingerprints for multiple
queries together, where each query is able to identify some
subset of the implementation classes, so that the combina-
tion can classify all the implementation classes. We can
use a greedy algorithm to create such a fingerprint that adds
queries until all the implementation classes can be classi-
fied. This algorithm is guaranteed to find a small set of
queries, since the problem is equivalent to the Set-Cover
problem [28].

Testing the fingerprint Once the final classification func-
tion has been generated for each usable query, we test it
using a larger set of testing hosts whose implementation
classes are known, examining for each fingerprint if it clas-
sifies all the hosts correctly. We then discard any fingerprint
that does not classify the hosts correctly. This may hap-
pen if the training hosts are not representative of the imple-
mentation classes; however, in our experiments, this did not
happen.



4.4. Approximate Fingerprint Matching

Once shipped in a fingerprint tool, the fingerprints are
used to classify new hosts. Sometimes, however, no fin-
gerprint may match a new host and then one simple ap-
proach might be to classify the host as unknown. However,
it could happen that the host truly belongs to one of the
known classes but has slight differences in its responses,
e.g. some network configuration parameter has been man-
ually changed from the default. A more elaborate option
would be to try to find an approximate match by calculating
the distance to all known classes and selecting the nearest
class [13, 19]. In this case, only if the new host is far from
all of the existing classes would the host be classified as
unknown.

Some current fingerprinting tools such as Nmap1 have an
option to do approximate matching, where the tool will print
that no perfect match was found, but it was able to find a
match with some percentage overlap. However, we need
to validate when such a match is meaningful: an approx-
imate matching is only meaningful when the behavior of
each implementation class is well-separated from the oth-
ers. So, we want to answer the following question: given a
feature-space, how can we tell when we can do approximate
matching, and how can we do approximate matching?

We answer this in the following manner: (a) first we
use a clustering algorithm to cluster the responses from the
training hosts, (b) then, we examine the implementation
classes of the resulting clusters to check if the clusters truly
represent the implementation classes, that is, if each clus-
ter consists of a single implementation class and is well-
separated from the other clusters. If the implementation
classes form well-separated clusters, the training hosts are
representative of their respective implementation classes,
and any un-represented implementation class is also well-
separated from these classes in this feature space, then we
can use approximate matching with this feature space to
classify new hosts that have no exact fingerprint match.

There might be classes that spread over two or more clus-
ters, for example because hosts in the same class exhibit
one of two distinct behaviors. We define az-gap property
that takes this into account, and needs to hold for a well-
separated clustering: the distance between any two hosts in
different implementation classes needs to be at leastz times
the distance between any two hosts in the same cluster, be-
longing to the same implementation class.

To do the clustering, we examine two natural feature
spaces derived from the set of input candidate queries. In
the first case, for each training host, we generate the set of
all distinct position-substrings for each field in the response

1using equivalent options –osscan-guess or –fuzzy

to a single query, as described in Section 4.1. We then
remove all dynamic fields and use the remaining position-
substrings as features. In the second case, for each training
host, we generate the set of all distinct position-substrings
of length one byte in the response to a single query, and use
those as the features. This second case is independent of the
field structure of the protocol and we use it to analyze the
impact of dynamic fields contained in the responses. In both
cases, the final feature space is the cross product of the fea-
ture spaces that we have defined for each query. Once the
final feature space is defined, the responses from each host
to different queries are then turned into a{0, 1}n vector in
these feature spaces. The distance metric we use for each
feature space is the squared Euclidean distance; so, the dis-
tance between two hosts is their squared Euclidean distance
when represented in the feature space.

With thez-gap property and a feature space, we can ap-
ply any clustering algorithm to test if there is a good cluster-
ing of the hosts. Here, we useX-means [24], an extension
of the standardk-means algorithm to the case wherek is
unknown. We chooseX-means overk-means because we
do not knowk, and over hierarchical clustering because we
do not need to define a stopping criterion. In Section 5.4,
we see that this algorithm performs well when the imple-
mentation classes are well-separated.

Given a new host that needs an approximate match, we
do the following: we compute the distance from the host to
each of the clusters. If the host is within a distanced/z from
the nearest cluster, whered is the smallest distance between
any two clusters, we classify it into the nearest cluster. If
the host is farther away, we classify it as unknown. When
the z-gap property holds, this rule will give us the correct
matches. In Section 5.4, we show the results of using this
rule for classifying new hosts for OS and DNS fingerprint-
ing.

5. Evaluation

We evaluate our results using 128 hosts from 3 differ-
ent implementation classes for the OS experiments, and 54
hosts from 5 different implementation classes for the DNS
experiments. Tables 1 and 2 show the number of hosts in
each implementation class for the OS and DNS experiments
respectively. For the OS experiment we send queries to
open TCP ports, i.e. port 139 on Windows or port 22 on
Linux and Solaris.

5.1. Candidate Queries

For OS fingerprinting several protocols such as TCP,
UDP or ICMP can be used. In this paper we focus on TCP,



Class ID Hosts OS class
Class 1 77 Windows XP SP2
Class 2 29 Linux 2.6.11
Class 3 22 Solaris 9

Table 1. Hosts used in TCP/IP evaluation.

Class ID Hosts DNS class
Class 4 10 BIND 8.3.0-RC1 – 8.4.4
Class 5 12 BIND 9.2.3rc1 – 9.4.0a0
Class 6 11 Windows Server 2003
Class 7 10 MyDNS
Class 8 11 TinyDNS 1.05

Table 2. Hosts used in DNS evaluation.

due to its rich semantics. As explained in Section 3, the
candidate query exploration phase uses domain knowledge
to select some fields to be explored exhaustively and others
to be explored only with selected values.

Table 3 shows the 305 TCP/IP candidate queries that
were explored in the candidate query exploration phase. We
emphasize that this exploration can be easily expanded and
is by no means complete, these candidate queries were se-
lected as examples to test the validity of the fingerprint gen-
eration process. Three fields in the TCP header were ex-
plored using exhaustive search: the TCP flags byte (Byte
12), and Byte 13 which comprises the Data Offset and the
Reserved fields [25]. For reference the TCP & DNS headers
are reproduced in Appendix B. The reason we performed
an exhaustive search on these fields is because they have
rich semantics, and because new functionality, such as the
flags for Explicit Congestion Notification [26], has not been
thoroughly explored. For the other fields, only a few cor-
ner cases that could potentially hold interesting information
were selected.

For DNS fingerprinting, bytes 2 & 3 of the DNS
header were exhaustively searched. These bytes contain the
Opcode, Rcode andFlags fields. Also theQtype field in
the Question record [21] was exhaustively searched. Like
the selected TCP fields, these fields were chosen because
they have rich semantics and support numerous options.

5.2. Conjunction and Decision List Fingerprints

As explained in Section 4.2, for each candidate query,
the learning algorithm takes two steps in order to find the
final fingerprint. First, it generates binary-fingerprints for
each implementation class, which determine whether a host
belongs to this class or not. Then, the set of all binary-
fingerprints for the same query forms the final fingerprint.

In our results, we show the number of binary and final
fingerprints found for the cases of OS and DNS fingerprint

generation. For the OS experiments the features are ex-
tracted from the TCP/IP headers in the response, while for
the DNS experiments only the DNS header in the response
is used. We run the learning algorithms on the responses of
70% of the hosts in each class and test the resulting finger-
prints using the remaining 30% hosts. Any other split of the
host set is valid as long as there are sufficient hosts in the
training set.

5.2.1 Binary and Final Fingerprints

Table 4 shows the number of binary and final fingerprints
identified in both steps of the algorithm for the OS and DNS
experiments.

For each experiment, a series of columns show the num-
ber of binary-fingerprints for the corresponding implemen-
tation classes, while the rightmost column shows the num-
ber of final fingerprints. Each binary-fingerprint for an im-
plementation class can decide whether or not a host belongs
to that class. The final fingerprint can classify the host into
any of the known classes, or state that the class is unknown.
As expected, the decision list algorithm outputs a decision
list fingerprint in many cases where the conjunction algo-
rithm cannot output a conjunction fingerprint – this happens
when the hosts that belong the class under consideration ex-
hibit multiple types of behavior.

The Final columns in Table 4 show that there is no fi-
nal conjunction fingerprint that can separate all the classes
in both the OS and DNS experiments. On the other hand,
there are 66 decision list fingerprints in the OS experiment
that can classify hosts of all 3 classes, and 19 in the DNS
experiment that can classify hosts of all 5 classes.

Intuitively, as the number of known classes increases,
we expect to find fewer queries that can classify hosts of
all known classes simultaneously. For example, when we
run the conjunction algorithm using only the Windows and
Linux classes, we find 130 final fingerprints that can sep-
arate Windows and Linux hosts, but when we add Solaris,
we find no final fingerprints that can classify hosts of all of
the three classes simultaneously. Note that as the number of
classes grows, we can apply the learning algorithms on sets
of queries, rather than on a single query. This will generate
fingerprints that contain multiple queries, each individually
covering some subset of known classes and the whole fin-
gerprint covering all classes.

Testing We evaluate the 66 OS and 19 DNS final decision
list fingerprints produced during the learning phase by send-
ing the corresponding queries, in the final fingerprint, to the
remaining 30% hosts in each implementation class. Each
of the final fingerprints properly classifies all hosts in the
testing set into their true OS or DNS class.



Field Size Type # Queries Tested values
tcp sport 16 guided 9 0,8,255,1023-4,49151-2,55000,65535
tcp offset 4 exhaustive 16 all
tcp reserved 4 exhaustive 16 all
tcp flags 8 exhaustive 256 all
tcp window 16 guided 2 0, 65535
tcp checksum 16 guided 2 good, bad
tcp urgentPtr 16 guided 4 invalid value with URG flag set, value with URG flag not set

Table 3. Candidate queries for OS fingerprinting. A total 305 queries were tested. The field size is
given in bits.

OS DNS
Fingerprint type Linux Solaris Windows Final Bind8 Bind9 Microsoft MyDNS TinyDNS Final
Conjunction fingerprints 42 53 53 0 0 0 22 2 9 0
Decision list fingerprints 130 98 98 66 33 28 32 29 41 19

Table 4. Number of binary and final fingerprints output by the l earning phase.

5.2.2 Fingerprint Examples

In this section, we show an example of the conjunction and
decision list fingerprints for a specific TCP/IP query. First,
we show the conjunction binary-fingerprint that separates
the Linux class from the other classes (we refer to this case
as Linux/NotLinux):

Query: tcp_flags=S+P;
if (Response: ip_id=0x0000,tcp_window=0x16d0)

then Linux
else NotLinux

As shown in the first line of the conjunction binary-
fingerprint, this query explores the tcpflags field and has
the SYN+PUSH flags set. This conjunction fingerprint says
that if in the response, the IP identification field has a value
of zero and the TCP window has a value of 5,840 then the
host is Linux, otherwise it is NotLinux. The values of the
other fields in the response do not matter.

The conjunction binary-fingerprint for this query exists
for the cases of Linux/NotLinux and Solaris/NotSolaris but
not for the case Windows/NotWindows. Next, we show
the corresponding decision list binary-fingerprint for the
Linux/NotLinux case. Note that the decision list algorithm
is able to extract more than one rule for the NotLinux case.

Query: tcp_flags=S+P;
if (Response: tcp_window=0xffff)

then NotLinux
else if (Response: tcp_window=0x16d0)

then Linux
else if (Response: ip_verHdrLen=0x45,

ip_tos=0x00, ip_len=0x002c,
ip_flags&offset=0x4000, ip_protocol=0x06,
tcp_offsetReserved=0x60, tcp_flags=0x12,

tcp_urgentPtr=0x0000)
then NotLinux

Now, decision list binary-fingerprints exist for all three
cases (Linux/NotLinux, Windows/NotWindows, and So-
laris/NotSolaris) and the system can generate the following
decision list final fingerprint that can classify a host into one
of all three classes simultaneously.

Query: tcp_flags=S+P;
if (Response: tcp_window=0xffff)

then Windows
else if (Response: tcp_window=0x16d0)

then Linux
else if (Response: tcp_window=0xc0a0)

then Solaris
else if (Response: ip_verHdrLen=0x45,

ip_tos=0x00, ip_len=0x002c,
ip_flags&offset=0x4000, ip_protocol=0x06,
tcp_offsetReserved=0x60, tcp_flags=0x12,
tcp_window=0x40e8, tcp_urgentPtr=0x0000)

then Windows
else Unknown

This final fingerprint shows that all Solaris hosts set the
tcp window to 49,312 and all Linux hosts set the value to
5,840 but the Windows hosts use two different values for
that field: 65,535 or 16,616.

5.3. Interesting Queries

The final fingerprints generated in our experiments con-
tain some especially interesting queries because we are
not aware of any fingerprinting tool that currently uses
them. Here, we give some selected examples of these novel
queries.



First, we find that the hosts in the Windows and Solaris
classes respond to queries with an invalid value in the Data
Offset field of the TCP header. This field represents the
number of 32-bit words in the TCP header. The candidate
query should have a value of 5 (20 bytes) in this field but
we deliberately send queries with this field set to smaller
and larger values. Both Windows and Solaris hosts reply
with a SYN+ACK if the value in the field is less than five,
while the Linux hosts do not reply to these incorrect values.
No host in any class replies to values larger than five. This
reveals that both Windows and Solaris fail to check the TCP
header for this simple case.

Second, we see that Windows and Linux hosts ignore the
values of the ECN or CWR bits in the queries but certain
combinations trigger a different response for Solaris hosts.
For example, a query with the SYN+PUSH+ECN+CWR
flags all set, gets a SYN+ACK response from both Windows
and Linux but a SYN+ACK+ECN response from Solaris.

Finally, we find that Linux and Solaris hosts set the TCP
Acknowledgment Number in a RST packet to zero but Win-
dows hosts set it to the value that was sent in the TCP Ac-
knowledgement Number field of the query. This is interest-
ing because a single packet with the ACK flag set, that is
sent to a closed port, can distinguish Windows hosts from
both the Linux and Solaris hosts. This type of query is very
inconspicuous and might be difficult to flag as a fingerprint-
ing attempt.

Among the DNS queries we also find interesting behav-
ior. For example, DNS servers should copy the value of the
Qdcount field (i.e. the number of DNS queries) from the
query packet to the response packet. This value is usually
one, but if the query is not valid, some implementations, de-
pending on the error, will set the field to one in the response
while others will keep it to zero. Note that current tools
such as fpdns do not test this field because they consider it
uninteresting.

Our preliminary exploration of the candidate query space
has been able to find multiple novel fingerprints, which
reaffirms our intuition that the space of queries that could
be used for fingerprinting remains largely unexplored and
demonstrates the effectiveness of our automatic approach.

5.4. Clustering

For the clustering experiments, we generate the clusters
using 70% of the hosts in each class and then evaluate ap-
proximate matching using the remaining 30% hosts, sim-
ilarly to the fingerprint generation experiments. To gen-
erate the clusters, we run the X-Means algorithm on the
two feature spaces that we described in Section 4.4, that
is, we compute the features either from a selected set of
fields that contains implementation-dependent information

or from the complete TCP/IP or DNS headers. We name
these casesChosen Fieldsand Full Header respectively.
The X-means range that we use is from one to twenty. This
range is chosen conservatively, and we check that the upper
limit is never reached.

Table 5 shows the clustering results for the OS and DNS
experiments. As expected, many of the classes defined in
Tables 1 and 2 spread over more than one cluster, which
indicates the presence of multiple behaviors inside the same
class. We manually check a few of the DNS clusters and
find that some of them are due to multiple versions in the
same class such as BIND 9.2.3 and 9.3.2 being placed in
the same class although they behave differently. Also, some
BIND tags like 9.3.0 represent up to 8 different versions (3
betas, 4 releases candidates and the final version) [1].

In order to analyze the differences between the Chosen
Fields and Full Header cases and to check if hosts that be-
long to different classes are well-separated, Figure 6 shows
the visualization of distances between hosts by projecting
the feature space into the first two principal components.
All hosts belonging to the same class are plotted using the
same icon. This visualization does not reflect the precise
distances, as there are a number of less significant principal
components, but the first two principal components are sig-
nificant enough to show the qualitative distances between
different clusters.

Figures 6(a) and 6(b) show the results with Chosen
Fields. The classes in the OS case are well-separated with
only one Windows cluster (6 hosts) farther from the rest of
the class but still clearly separated from the other classes. In
the DNS case, the classes are more spread and the distances
between hosts in the same class are larger. For example,
some of the BIND9 hosts are close to the BIND8 hosts but
others are close to the MyDNS hosts. This could be due to
the evolution of versions of the same implementation that
are expected to be close when they share a significant code
base and move farther apart as the evolution of the new ver-
sion progresses. With Chosen Fields, no cluster contains
hosts from two implementation classes.

Figure 6(c) shows the results with the full DNS header.
Results for the full TCP/IP header are similar and omitted
for brevity. Using the full header, the hosts in the same
class are further apart and hosts from different classes are
closer or even overlap. For example, in this case one cluster
contains hosts from the BIND8 and BIND 9 classes, shown
with the nameMixed in Table 5. These results indicate
that using an approach without any domain knowledge, that
just considers the complete protocol header, does not ob-
tain well-separated clusters. This is because some protocol
fields that include session or host-specific information, such
as the DNS ID or the DNS answers, may have more weight
than the implementation-specific differences.



−6 −4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5

6

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

Linux
Solaris
Windows

(a) Chosen Fields: OS

−2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

Bind8

Bind9

Win2003

MyDNS

TinyDNS

(b) Chosen Fields: DNS

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

Bind8

Bind9

Win2003

MyDNS

TinyDNS

(c) Full Header: DNS

Figure 6. Principal component plots of the responses from th e hosts for both OS and DNS clustering.

OS DNS
Fingerprint type Linux Solaris Windows Bind8 Bind9 Microsoft MyDNS TinyDNS Mixed
Chosen Fields 1 1 10 2 3 3 2 1 -
Full Header 1 1 3 2 4 6 2 1 1

Table 5. For each implementation class, the number of cluste rs that contain hosts from this class.
Multiple clusters indicate different behaviors inside the implementation class.

Now, we quantitatively measure how well approximate
matching works for the OS and DNS cases with Chosen
Fields. We perform the following experiment: from the set
of implementation classes, we remove one class and extract
the clusters using 70% of the hosts in the remaining classes.
Then, we perform approximate matching using thez-gap
rule on the remaining 30% hosts from the classes used to
extract the clusters, plus all the hosts from the class that
was removed. We repeat this process multiple times, each
time removing a different class and at the end, we calculate
the average classification error for different values ofz.

The results show that the classification error is mini-
mized with valuesz ≈ 2 for both the OS and DNS cases
and that in the DNS case the error quickly increases for
otherz values. The OS case does not show such a strong
increase. We show the corresponding graphs in Figure 7.
Setting the value ofz to be 2, the classification error is 3%
for the OS case and 12% for the DNS case. This indicates
that the class separation for OS with Chosen Fields is more
robust and might be used for approximate matching but in
the case of DNS with Chosen Fields, approximate matching
is unlikely to yield good results.

6. Related Work

Fingerprinting has been used for more than a decade. In
1994 Comer and Lin proposed probing to find differences
between TCP implementations [15]. Early application for

TCP fingerprinting focused on standard compliance testing
to identify flaws, support for optional functionality, protocol
violations and design decisions taken by the different im-
plementations [22]. Besides active probing, there has been
research on how to passively identify TCP implementations
looking at traffic traces [23] and how to passively classify
host’s operating systems [13, 19]. Franklin et al. [16] pro-
posed a passive fingerprinting technique to identify wire-
less device drivers on IEEE 802.11 compliant devices. In
the context of finding approximate matches, Lippmann et
al. [19] proposed to use ak-nearest-neighbor classifier to
avoid hosts being classified as unknown when no exact
match was found. Our approximate matching differs in that
we use a clustering approach and focus on evaluating when
such approximate matching is possible. Hardware finger-
printing has also been proposed with applications such as
remotely tracking a host in a network [18]. However, to the
best of our knowledge, this is the first work to address the
problem of automatically generating fingerprints.

TCP/IP fingerprinting can also be used to identify the
operating system running on a host [3, 4]. There exists
multiple tools for both active and passive OS fingerprinting.
The most common active fingerprinting tool in use today is
Nmap [9] written by Fyodor, which uses a similar approach
to older tools such as Queso [11]. Other active fingerprint-
ing tools include Xprobe [12] that focuses on ICMP probes
and Snacktime that identifies hosts based on the TCP time-
out and retransmission policy. Passive fingerprinting tools
such as p0f [10] and siphon [6] do not need to send traffic



0 5 10 15 20
0

10

20

30

40

50

60

70

z

C
la

ss
ifi

ca
tio

n 
er

ro
r 

(%
)

(a) Chosen Fields: OS

0 5 10 15 20
10

15

20

25

30

35

40

45

50

z

C
la

ss
ifi

ca
tio

n 
er

ro
r 

(%
)

(b) Chosen Fields: DNS

Figure 7. Classification error of approximate matching usin g z-gap rule for different values of z.

and can be used to fingerprint hosts that might not reply to
a query, such as those firewalled, but require access to the
traffic sent by a host

There has also been work on defeating OS fingerprinting.
Smart et al. [27] proposed a stack fingerprinting scrubber
that sits on the border of a protected network and limits the
information gathered by a remote attacker by standardizing
the TCP/IP communication. This work is based on the pro-
tocol scrubber proposed by Malan et al. [20]. More recent
tools such as Morph [7] and IPPersonality [5] operate on
the host-level and allow to change the responses to specific
queries by faking the behavior of a chosen OS.

7. Conclusion

Fingerprinting is a useful technique that allows us to
identify different implementations of the same functional-
ity. But, the fingerprint generation process is at large ardu-
ous and manual. In this paper we have proposed a novel ap-
proach for automatic fingerprint generation, that produces
fingerprints with minimal human interaction.

We have shown how to automatically generate finger-
prints and have demonstrated that our approach is flexible
and can be applied to different uses. In this paper we have
presented its application to two concrete examples: OS fin-
gerprinting and DNS fingerprinting. Our results show that
the produced fingerprints are accurate and can be used by
fingerprinting tools to classify unknown hosts into given
classes. We have also evaluated approximate matching as
a technique to assign an unknown host to a known imple-
mentation when no exact fingerprint match is available.

In addition, our preliminary exploration of the candidate
query space has been able to find new interesting queries,
not currently used by fingerprinting tools. This confirms our
intuition that the space of candidate queries remains largely
unexplored and demonstrates the effectiveness of our auto-
matic approach.

8. Acknowledgements

We would like to thank David Brumley for helpful dis-
cussions. We would also like to thank Fyodor, Bruce Maggs
and the anonymous reviewers for their valuable comments
to improve this paper. Juan Caballero would like to thank
la Caixa Foundationfor the generous support through their
fellowship program.

References

[1] BIND. http://www.isc.org/index.pl?/sw/bind/.
[2] fpdns. http://www.rfc.se/fpdns/.
[3] Fyodor. Remote OS detection via TCP/IP fingerprinting

(2nd generation). http://insecure.org/nmap/osdetect/.
[4] Fyodor. Remote OS detection via TCP/IP stack fin-

gerprinting. Phrack 54, Vol. 8. December 25, 1998.
http://www.phrack.com/phrack/51/P51-11.

[5] IPpersonality. http://ippersonality.sourceforge.net/.
[6] Know your enemy: Passive fingerprinting. identifying re-

mote hosts, without them knowing. Honeynet project.
http://project.honeynet.org/papers/finger/.

[7] Morph. http://www.synacklabs.net/projects/morph/.
[8] Nessus. http://www.nessus.org/.
[9] Nmap. http://www.insecure.org/.

[10] p0f. http://lcamtuf.coredump.cx/p0f.shtml.
[11] Queso. http://www.l0t3k.net/tools/FingerPrinting/.
[12] Xprobe2. http://www.sys-security.com/.
[13] R. Beverly. A robust classifier for passive TCP/IP finger-

printing. InProceedings of the 5th Passive and Active Mea-
surement Workshop, 2004.

[14] A. Blum. On-line algorithms in machine learning. InOnline
Algorithms, pages 306–325, 1996.

[15] D. Comer and J. C. Lin. Probing TCP implementations. In
USENIX Summer, 1994.

[16] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk,
and D. Sicker. Passive data link layer 802.11 wireless de-
vice driver fingerprinting. InProceedings of the 15th Usenix
Security Symposium, 2006.

[17] M. Kearns and U. Vazirani.An Introduction to Computa-
tional Learning Theory. MIT Press, 1994.



[18] T. Kohno, A. Broido, and kc claffy. Remote physical device
fingerprinting. InProceedings of the IEEE Symposium on
Security and Privacy, 2005.

[19] R. Lippmann, D. Fried, K. Piwowarski, and W. Streilein.
Passive operating system identification from TCP/IP packet
headers. InProceedings of the ICDM Workshop on Data
Mining for Computer Security, 2003.

[20] G. Malan, D. Watson, and F. Jahanian. Transport and appli-
cation protocol scrubbing. InProceedings of IEEE INFO-
COM, 2000.

[21] P. V. Mockapetris. RFC 1035: Domain names — implemen-
tation and specification, 1987.

[22] J. Padhye and S. Floyd. Identifying the TCP behavior of web
servers. InProceedings of ACM SIGCOMM, 2001.

[23] V. Paxson. Automated packet trace analysis of TCP imple-
mentations. InProceedings of ACM SIGCOMM, 1997.

[24] D. Pelleg and A. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. InProceed-
ings of the Seventeenth International Conference on Ma-
chine Learning, pages 727–734, San Francisco, 2000.

[25] J. Postel. Transmission control protocol. RFC 793 (Stan-
dard), 1981.

[26] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
Explicit Congestion Notification (ECN) to IP. RFC 3168
(Proposed Standard), 2001.

[27] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP
stack fingerprinting. InProceedings of the 9th USENIX Se-
curity Symposium, 2000.

[28] V. V. Vazirani. Approximation Algorithms. Springer-Verlag,
Berlin, 2001.

APPENDIX

A. Mistake Bounds for Conjunctions

We now bound the number of mistakes a fingerprint will
make under certain assumptions. We givemistake-bounds
in an online model of learning [14], where the algorithm
starts with an initial fingerprint and refines it with every mis-
take. Sections 4.2.1 and 4.2.2 presentofflinealgorithms for
learning fingerprints using a set of training hostsT . How-
ever, these fingerprints may be too specific toT . Even after
testing the fingerprints over the set of hostsE, the finger-
prints may not be sufficiently general. IfT andE are not
large enough or sufficiently representative of the implemen-
tation classes, the confidence guarantees we get on the re-
sulting fingerprints might not be very high. This could hap-
pen, for example, when one is restricted to hosts within the
local network. In this case, the generated fingerprints might
be too specific to the local network.

In an online model of learning, an algorithm starts with
an initial fingerprint, and keeps refining it every time it
makes a mistake; i.e. the algorithm predicts a classifica-
tion based on the current fingerprint and is then given the
right answer, which it uses to update its fingerprint. In our

setting, these initial fingerprints could be generated offline.
After learning overT and testing overE, we can use these
offline fingerprints with online algorithms and guarantee
that over the set ofall hosts classified (i.e., hosts classified
by the fingerprint after it was generated usingE andT ), the
number of mistakes we make is bounded. Obviously, small
mistake-bounds are what we want.

We derive improved mistake bounds for learning con-
junction fingerprints in this online model of learning. For
the conjunction fingerprint, Theorem 1 shows that the mis-
take bound is small: when the initial fingerprint hasn
position-substrings and the true fingerprint hast, the mis-
take bound isn−t. Under certain assumptions, it is⌈log n

t
⌉,

wheren is the number of position-substrings considered,
andt is the number of position-substrings in the conjunction
fingerprint. This implies that we will make only⌈log n

t
⌉

mistakes (under certain assumptions) before reaching the
right conjunction fingerprint. The mistake bound for the de-
cision lists is much larger [14] and therefore, not practically
useful.

We now present the theorem for the mistake-bounds for
conjunction fingerprints. To do so, we need the following
definitions and notation, so that we can represent the fin-
gerprints and the response strings from the hosts as boolean
functions and boolean vectors respectively.

Since our fingerprints denote the presence of position-
substrings corresponding to pre-specified queries, we will
define anelementof a fingerprint to be a single position-
substring along with the corresponding query identifier. Let
U be the set of all the elements in the fingerprints of all the
implementation classes under consideration, and let|U | =
n. An instanceXj represents the response strings of a host
that needs to be classified, and is a vector in{0, 1}n where
the ith coordinate is1 if the ith element ofU is present in
the response strings and0 otherwise.

Next, we describe how to represent a fingerprint as a
boolean function. Letyi be a boolean variable that denotes
the presence of theith element inU (e.g., if theith ele-
ment ofU must be present in the fingerprint,yi is in the
corresponding boolean function.) LetY = {y1, . . . , yn}.
Let H be the class of monotone conjunctions overY (so,
no negative literals ofY are allowed in the conjunctions).
Let h1, h2 ∈ H be the conjunctions that represent classes
1 and 2 respectively. LetA1 be the set of boolean vari-
ables present inh1 and letA2 be the set of boolean variables
present inh2.

We give bounds under two cases: first, with no further
assumptions; second, under the following two assumptions:
(1) A1 andA2 are disjoint, and (2) any instance that be-
longs toh2 contains no variable inA1 and vice versa. The
first assumption is thatA1 andA2 are disjoint; no variable
present inh1 is also present inh2 and vice versa. In our set-



ting, this implies that the position-substrings present inone
conjunction fingerprint are not present in the other. This is
not an unreasonable assumption; we see this in the testing,
especially when there are only two implementation classes
under consideration. The second assumption is that no in-
stance that belongs toh2 contains the variables inA1 and
vice versa. We might, for example, expect this to be true
when all the position-substrings consist of distinct values
for the same fields of the underlying packet headers.

Theorem 1. Assume that there are two implementation
classes, each of which has fingerprints that can be rep-
resented by a conjunction of position-substrings. LetH
be the class of monotone conjunctions overY , and let
h1, h2 ∈ H denote the conjunction fingerprints witht vari-
ables for classI1 andI2 respectively. LetA1 andA2 denote
variables present inh1 andh2 respectively. With no further
assumptions,h1 and h2 have a mistake bound ofn − t.
WhenA1 andA2 are disjoint, and when every instance that
is consistent withh1 does not contain any variable inA2

and vice versa, we can learn a conjunction fingerprint with
t variables with a mistake bound of⌈log(n

t
)⌉ on instances

that belong toI1 andI2.

We now present the proof of this theorem.

Proof. We will show how to use a conjunction fingerprint
to get a bounded number of mistakes for each case in the
theorem statement. LetS denote the set of variables in the
current conjunction hypothesis forI1. Let Xj ∈ {0, 1}n

denote the current instance. LetTrueS(Xj) denote the set
of variables inXj that are set to true and are also present
in S. Let FalseS(Xj) denote the set of variables inXj

that are set to false are also present inS. Let Ones(Xj),
Zeros(Xj) denote the sets of variables inY that are set
to true and false respectively in the instanceXj . Note
thatTrueS(Xj) = Ones(Xj) ∩ S, while FalseS(Xj) =
Zeros(Xj) ∩ S.

The proof for the first case is well known but we sketch
it for completeness. In the first case, we will begin with
the most specific conjunction overY : the conjunctiony1 ∧
y2 . . .∧yn. So, we begin withS = Y . We do the following:
every time we make a mistake on an instanceXj ∈ h1,
we remove all the variables inFalseS(Xj) from S. We
never make a mistake on an instanceXj /∈ h1 since we
start withS ⊇ A1 and never remove a variable inA1. Thus,
the number of mistakes we can make is bounded byn − t.

Next, we outline the proof for the second case. We
will analyze the number of mistakes made to reach the cor-
rect conjunction for the implementation classI1, on the in-
stances that come fromI1 andI2. We begin with the most
specific conjunction overY : the conjunctiony1∧y2 . . .∧yn.
So, we begin withS = Y .

When we get a new instanceXj (from I1 or I2) that
needs to be classified, we do the following: If the num-
ber of variables inTrueS(Xj) is greater than the number
of variables inFalseS(Xj), we classifyXj as true, other-
wise we classify it as false. If we make a mistake on an
instance which does not belong toh1 (so we report “true”
when we should have reported false), we remove the vari-
ables inTrueS(Xj) from S. If we make a mistake on an
instance that belongs toh1 (so we report false when we
should have reported true), we will remove all the variables
in FalseS(Xj) from S.

This procedure will give us a bound of at most⌈log(n
t
)⌉

mistakes, since each mistake causes us to remove at least
half the variables that are present inS, but are not present
in the true hypothesis. So, if we make a mistake on an
instance that belongs toh1, at least half the variables in
S must have been false inXj . All of these will belong
to FalseS(Xj). Now, none of these variables will be
present inA1: sinceXj belongs toh1 andh1 is a mono-
tone conjunction, all variables inA1 must be set to true
in Xj (i.e., A1 ⊆ Ones(Xj)). So, A1 is disjoint from
Zeros(Xj), therefore, none of the variables inA1 will be in
FalseS(Xj). Therefore we can remove all of the variables
in FalseS(Xj) from S.

Likewise, if we make a mistake on an instance that does
not belong toh1, at least half the variables inS must have
been true inXj . Let Yrem denote the set of variables
in Y that are not inA1 or A2; so Yrem = Y − (A1 ∪
A2). Since this instanceXj belongs toI2, by assump-
tion, Ones(Xj) ⊆ A2 ∪ Yrem. None of these variables
can be present inA1 (sinceA1 andA2 are disjoint), so they
can be discarded fromS. Therefore, sinceTrueS(Xj) ⊆
Ones(Xj), we can discard the setTrueS(Xj) from S.

Thus, since we reduce the set of variables in the con-
junction by at least half with every mistake, we will make
⌈log(n

t
)⌉ mistakes when we start with a conjunction of size

n, and our true conjunction is of sizet.

There are also mistake-bounds for learning decision lists
in the literature [14], however, they are quite loose and
therefore not of practical use.



B. Headers

TCP header from [25] with added ECE and CWR flags.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Acknowledgment Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Data | |C|E|U|A|P|R|S|F| |
| Offset|Reserv.|W|C|R|C|S|S|Y|I| Window |
| | |R|E|G|K|H|T|N|N| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Checksum | Urgent Pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| data |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

DNS header from RFC 1035 [21].

Header
1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
| ID | | Header |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
|QR| Opcode |AA|TC|RD|RA| Z | RCODE | | Question |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
| QDCOUNT | | Answer |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
| ANCOUNT | | Authority |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
| NSCOUNT | | Additional |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ +------------------+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
Question

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ QNAME /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QTYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QCLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+


