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Abstract tions. Some fingerprinting tools such as Nmap [9] are used

to identify hosts running a specific operating system. There
Fingerprinting is a widely used technigque among the net- are also tools that can be used to identify different version

working and security communities for identifying differen Of the same application such as fpdns [2], Nmap, and Nes-
implementations of the same piece of networking softwareSUs [8]- These tools help network administrators to find ver-
running on a remote host. A fingerprintis essentially a set of Sion information leaked by a system, inventory the hosts in
queries and a classification function that can be applied on & nNetwork, and check for the existence of hosts running ver-
the responses to the queries in order to classify the soétwar SIONS with vuIne_rablllt_les, or versions that are not alldwe
into classes. So far, identifying fingerprints remains &yg ~ Under the security policy of a network.

an arduous and manual process. This paper proposes a However, identifying théingerprintsused by these tools,
novel approach for automatic fingerprint generation, that the fingerprint generationis currently a manual process
automatically explores a set of candidate queries and ap-which is arduous, incomplete, and makes it difficult to
plies machine learning techniques to identify the set aflval keep up-to-date with the numerous new implementations
gueries and to learn an adequate classification function. and new version updates. In this paper we propose a novel
Our results show that such an automatic process can gener-approach for automatic fingerprint generation. The goal is
ate accurate fingerprints that classify each piece of saftwa to automatically produce fingerprints that can differetia
into its proper class and that the search space for query ex-among distinct implementations of the same specification
ploration remains largely unexploited, with many new such and can be used by different fingerprinting tools.

queries awaiting discovery. With a preliminary exploratjo A fingerprint contains 1) a set of queries, and 2) a classi-
we are able to identify new queries not previously used for fication function. To use the fingerprint to identify the clas
fingerprinting. to which a piece of software belongs, one sends the queries,

collects the responses and uses the classification furtction
classify the response. In the remainder of this paper, we wil
1. Introduction use the term classifying a host when we refer to classifying
a piece of networking software running on the host. Thus,
for ease of description, we assume that there is only one rel-
Fingerprinting is a technique for identifying the differ- evant piece of networking software running on the host; we
ences among implementations of the same networking soft-can easily remove this assumption by classifying each piece

ware specification, be it applications, operating systems o of networking software on the host separately.
TCP/IP stacks. It is well-known that even when the func-

tionality of a piece of software is detailed in a specificatio
or standard, different implementations of that same func-
tionality tend to differ in the interpretation of the specéi
tion, by making assumptions or implementing only part of
the optional functionality.

In this paper, we demonstrate how to automatically iden-
tify useful queries and classification functions. Our fin-
gerprint generation process contains three phases: &irst,
Candidate Query Exploratiophase which outputs candi-
date queries. Second,l#&arningphase where those can-
didate queries are sent to different implementations aad th

In network security, fingerprinting has been used for responses are gathered and passed to the learning algorithm
more than a decade [15] and it has a variety of applica-



The Learning phase outputse query setwhich is a subset  a set of candidate querié€x., which could potentially pro-
of the set of candidate queries that includes only the can-duce different responses from hosts belonging to different

didate queries that are useful for fingerprinting, aruses- classes. This process takes as input the protocol semantics
sification function The pair formed by the query set and in the form of protocol standards and domain knowledge.
the classification function is the fingerprint. ThirdTest- Then, given a set of training hosts where the imple-

ing phase where the produced fingerprints are tested over gnentation class of every hostihis known and is in the set
larger number of different implementations to evaluate its 7 he first step in the Learning phase is to send the set of
accuracy. candidate querieg.. to each of the hosts ifi using a packet

We also study what to do when a host does not match anyinjection tool and to gather the responses from each host.
known fingerprint. One straightforward approach would be The responses and the classes are then passed to the learn-
to classify the host as unknown, but one could also performing algorithm, which identifies a set of queri€s C Q.,
anapproximate matchintp the nearest known class. In this that produces different responses from hosts belonging to
paper, we set out to validate if and when this approximate different classes, and a classification functfn

matching can be performed. Finally, in the Testing phase we need to verify that the
This paper presents a general methodology for automaticpair (@, fo) generated in the Learning phase has sufficient
fingerprint generation that covers all three phases and-gene accuracy. This phase uses a set of testing hBstwhere
ates fingerprints that can be used by different fingerpiintin none of the hosts ¥ should belong to the training set
tools. We validate our methodology by applying it on two 7', and each of the hosts ifi should belong to one of the
distinct problems: 1) generating fingerprints to diffeiate classes ifiZ. Then, this classification is compared to the
operating systems and 2) generating fingerprints to differe  known classification fofy and if the accuracy satisfies some
tiate implementations of the same application, namely DNS predefined metrics, the pai@, fo) is considered valid and
servers. becomes the output fingerprint. The fingerprints obtained
Our experimental results show that the fingerprints auto- ¢@n now be used by any fingerprinting tool to classify un-
matically generated by our approach are accurate. With aknown hosts by sending the query gtto this host, and
preliminary exploration of the search space, we are able to2PPlying the classification functiofy, on the responses.
find many novel fingerprints that are not currently used by  Besides automatically generating the fingerprints needed
fingerprinting tools. These novel fingerprints can increase by the fingerprinting tools, we also want to validate if it is
the accuracy and granularity of current fingerprintingsool possible for a fingerprinting tool to perforapproximate

The rest of this paper is structured as follows: Section 2 Matchingwhen the responses from a host cannot be clas-
introduces the automatic fingerprint generation problem. | Sified into any known class. Approximate matching could
Section 3 we present the candidate query exploration phasethen potentially be used to distinguish between hosts that
The learning algorithms are explained in Section 4 and in do indeed belong to a class not yet seen and thus should be

Section 5 we evaluate their performance. Section 6 present$lassified as unknown, and hosts that have a slightly dif-
the related work and we conclude in Section 7. ferent behavior (e.g. some networking parameters man-
ually tweaked) but actually belong to one of the known

classes. For approximate matching to be meaningful, we
2. Overview need to test if the different implementation classes aré wel

separated. We do this by clustering, and calculating the dis

tance between implementation classes. If the implementa-

Problem definition Given a set of: implementation classes tion classes are well-separated, we can, under some natural

I ={I,1,..., 1} the goal of fingerprinting is to classify assumptions, find an approximate match for a given new
a hostH into one of thosé: classes or to anothenknown host. Thus, only if the new host is far from all the known
class. The problem adutomatic fingerprint generatiois classes do we classify it as unknown.

to output a set of querigg and a classification functiofy,, In Section 3 we describe how to explore the candidate

such that when we send the set of que€e® a hostH and query space, and in Section 4 we present the learning algo-
collect the responses, from H, fo(Rq) can classify the  rithms, and how they are used to find the fingerprints.
host into one of thé& classes or into the unknown class. We

refer to the paif@, fo) as thefingerprint

. . . _ 3. Candidate Query Exploration
Approach Our automatic fingerprint generation contains 3

steps as shown in Figure 1, namely @endidate Query Ex-
ploration phase, theé.earningphase and th&estingphase. In this section we describe the Candidate Query Explo-
First, in the Candidate Query Exploration phase we produceration phase. This phase needs to select a set of candidate
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Figure 1. Fingerprint generation process.

queries that can potentially produce distinct responses fr 4. Learning Algorithms
the different classes of hosts. During the Learning phase,

those candid_ate gueries that indeed produce disti_nglgjshin We formulate the fingerprint generation problem as a
responses will be selected as part of the query set in the f'naklassificatiorproblem: we are given a set mfstancegrom

fingerprint. different classes, along with tHabelsof the classes they

To automate the process of query exploration we could belong to, and we need to find properties that hold within
perform an exhaustive search of all possible combinations.a class and are different across classes. An instance is rep-
Besides being automatic, it is also complete, guaranteeingesented as a collection of values for a sefeatures thus,
that it will find all useful queries. However, the problem an instance is a point in tHeature spaceGiven a family
with this approach is that the search space is very large.of classification functiongver these features, our goal is
For DNS fingerprinting we have at least 16 bytes of headerto find a good function within this family that separates the
fields in a DNS query, requiring!?® combinations. For OS  classes. In our case the classes are the different implemen-
fingerprinting, the numbers become even more intractable.tations of the same functionality and our goal is to output
Even if we restrict the search to the TCP and IP headersthe fingerprint composed by the set of queries and the clas-
there are at least 40 bytes of header information, which re-sification function.

H 320 i H
quire2°= combinations. Thus, we need to define the feature space and the family

Such exhaustive search does not take advantage of thef classification functions, and then learn the classificati
semantics of the protocol, i.e. the field structure in the pro function, and turn it into our final fingerprint. We describe
tocol headers, and it can generate a large number of querieeach of these in turn in this section. First, in Section 4.1 we
that are useless for fingerprinting, thus wasting both time describe the feature space and how to obtain the instances,
and resources. For example, a query that spoofs the IFheeded by the learning algorithms, from the query/response
source address becomes useless since the reply will nevgpairs obtained from the training hosts. Then, in Section 4.2
make it back to the sender. we introduce the classes of functions we use for classifica-

We combine exhaustive search with the semantics of thetion and briefly describe the learning algorithms. In Sec-
protocol by selecting some fields with rich semantics (such tion 4.3 we describe how to take the output of the learning
as the TCP or DNS flags) and performing an exhaustive &lgorithms and convert it into our final fingerprints. Fiyall
search on those, while limiting the search to selected val-in Section 4.4 we describe how to obtain an approximate
ues for other less interesting fields. This greatly reducesmatching when there is no exact matching among the fin-
the search space and requires little human intervention. Itgerprints.
also reduces the time and resources needed to complete the
search and our results show that it is still possible to find 4.1. Feature Extraction
many useful queries not yet used for fingerprinting.

In Section 5.1 we present the specific TCP/IP and DNS  The first step for using a learning algorithm is to de-
fields that we explore. One example of how combining se- fine the feature space, which allows us to convert the
mantic and exhaustive search reduces the search space @uery/response pairs into the input for the learning algo-
byte 12 of the TCP header [25] which contains the Data Off- rithms. Thus, aninstanceis the representation of the
set (4 bits) and Reserved fields (4 bits). Assuming that thequery/response pairs from a host in the feature space; and
fields are independent, rather than searchin@theombi- the input to the learning algorithms is a set of instances.
nations in the whole byte, we can fix the value of one field at
a time, while performing an exhaustive search on the other.
This would require a total af*4-2* = 32 candidate queries.

Our feature space For simplicity, we describe our fea-
ture space for the case when the following relationships
hold between queries and responses: (a) we consider only



a single response byte string for each query, and (b) weharder to interpret.

consider each response to be independent of every Othe&eneral' ina the feature spaca his feature space could be
guery/response from that host. With these two restrictions 12Ing ure sp IS fealure sp u
generalized in many ways. To begin with, we could general-

it is sufficient to analyze only responses that come from dif- ’ .
L . __ize both the cases mentioned above easily. If we assume that
ferent hosts to the same query. Therefore, in this section,

when we discuss a feature space, we refer to the featur each response depends on the fagtiery-response pairs of
' EEhe same host (rather than being independent of the other

space with respect to a single query. We show later in this . . )
subsection how to generalize this feature space. query-response pal_rs), we can transform it into our simpler
case by concatenating everyesponses from each host. If
For a given query, we focus on the position-dependenty particular query gets multiple responses from the same
substrings of responses, which we qadkition-substrings  post, we can concatenate all responses together to reduce it

In particular, we aim to extract the position-dependenebyt g the case where there is just one response.
substrings, that are consistently present in and distietti

. . - . We could also extract more complex relationships be-
the responses of an implementation class (a similar aisalysi

could also be done at bit level). Features involving positio tween the various regions W'”"T‘ a smgle byte sequence;
e.g., we could examine if a certain position-dependent sub-

substrings allow us to exploit the underlying structurehef t string is alwavs the sum of another position-dependent sub-
byte sequences, since we are analyzing network protocols INg IS alway u positl P u

that usually have a well defined field structure. string in the same byte sequence. The study of these more
complex relationships within a sequence, and between dif-

Specifically, aposition-substringf a response string is  ferent byte sequences is left as future work.
a tuple of three elements: the start and end positions in the

original string and the bytes between these positions. So,Generating instancesGiven a query, for each training host,
for example, if the original byte string bcdefgabcpthen we extract all the possible position-substrings from the re
we have two distinct position-substrings for the byte gtrin - Sponse of that host. Then, we create the uniorUsbm
abed: the position-substring [1, 4bcd] is distinct from the position-substrings of all the responses from differen
the position-substring [8, 1Lpcd]. A position-substringis  training hosts to the same query, ordered lexicograplyicall
present in a response if it appears at the proper position inFinally, we transform each response string into a vector
the response. So, for example, the response sitingefg v € {0,1}" by setting thei-th bit of v to be one if thei-

does not contain the position-substring [5,aB¢], but the ~ th position-substring of/ is present in the response string,
response stringbedabe does. and we call this vector aimstance

With this definition of position-substrings, we can now  Figure 2 shows this process for the responses from two
describe the feature sets: for each response, the set of feadifferent hosts to the same query. The responses from
tures extracted is the set of all possible position-subgéri  the hosts are the strings: andaxz. The set of position-
in the response. For a collection of responses from differ- substrings”, obtained fromucis[1, 1, a}, 2,2, ¢, [1,2, ac],
ent hosts to the same query, the corresponding feature set i@nd the set of position-substrings obtained fromax
the union of all the features for each response string. Theis [1,1,4a],[2,2,2],[1,2,az]. Taking the union of these
feature space of a queiig the feature set of the response two sets Py and P, in lexicographical order, we get
strings from all the different hosts to this query. Inthisse U = [1,1,a],(2,2,4],[2,2,2],[1,2,ad], [1,2,az]. With
tion, and in Section 4.2, we will consider each query sepa- this U, the instance corresponding to respoaséecomes
rately. Later in this section, we illustrate the featurecgpa  (1,1,0,1,0), since only the first, second and fourth element
with an example, and show how individual response strings©f U are present in thé”. Likewise, the instance corre-
are represented in the space. sponding to responser becomeg!,0,1,0,1).

In this feature space, all of the information contained Optimizations We may have very large sets of features if
in the response string gets encoded into the features; ther¢hey are generated in this manner, and we might want to
is no loss of information when transforming the response reduce the number of features provided there is no informa-
string into the feature set. Such a property is good, be-tion loss. Sometimes (as in the conjunction fingerprints in
cause the learning algorithm can then decide which in- Section 4.2.1), we do not need to generate all these position
formation is useful for classification. However, there are substrings explicitly — our algorithm uses an equivalent se
other feature spaces which have this property. We choosen a more efficient manner. We describe this implicit feature
the position-substring feature space because, in combinaspace in Section 4.2.1.
tion with some simple families of classification functions, We can also use domain information to reduce the fea-
it provides meaningful fingerprints that are easy to inter- ,re set. We do this in this paper: we use the semantics

pret. The classification function we might need to learn over ¢ o packet header to break the response string by proto-
other feature spaces may need to be more complex and thugyg fields; so, each field is treated as a separate position-
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Figure 2. Feature generation.

substring. This procedure generates many fewer featuresuch as conjunctions, decision lists, decision trees, etc.
than the original feature space, and further, using thegtack We choose these over classification functions that are real-
header semantics to generate features results in fingerprin valued weighted functions of their features (such as linear
that are much easier to understand. For this reason, in theseparators, etc), because the fingerprints generated by suc
analysis of the fingerprints that we present in Section 5, we classification functions cannot be interpreted directhd a

focus only on this reduced feature set. would need to be converted into a sequence of decision rules

Further, not all of the protocol fields contain only N order to be interpreted meaningfully.
implementation-specificinformation. For example, weterm  In this paper, we consider two families of classification
dynamic fieldd¢o be protocol fields that might change from functions: conjunctions and decision lists [17]. We do not
one instance to another, such as session-specific fields (e.qise decision trees, since (a) a restricted decision list has
session id, time-to-live); host-specific fields (e.g. haste, lower sample complexity than a similarly restricted deci-
IP address, port); or configuration-specific fields (e.g. DNS sion tree, and (b) a sufficiently complex decision list can
answer). The values of these dynamic fields are based orrepresent any decision tree. We discuss these two classes
external information and are less likely to contain informa of fingerprints in more detail below. In Appendix A, we
tion that helps to identify the implementation. present the mistake-bound model for the analysis of these

The training data should include instances of different fingerprints, and show improved bounds for the conjunction
values for these dynamic fields; if it does not, they might fingerprints.
show up in the final fingerprint. For example, if we use the  Our approach to learn fingerprints is the following: first,
same open TCP port for fingerprinting all Windows hosts we learn abinary-fingerprintfor each implementation class,
(e.g. 139) and a different one for all Linux hosts (e.g. 22), which is a fingerprint that can determine whether or not the
then the conjunction fingerprint will include this field. In host belongs to that implementation class. Then we com-
this paper, we remove the dynamic fields when generatingbine many binary-fingerprints to obtain the final fingerprint
the fingerprints, but keep them for approximate matching, that can classify hosts into one of multiple implementation
where we examine the effect of including these dynamic classes.

fields. In the rest of this section, we focus on learning finger-
prints for a single query only. In the interest of readayilit
4.2. Algorithms we will use the terms fingerprint and binary-fingerprint to

refer to the classification function associated with a sngl
query. We will distinguish explicitly the fingerprint for a
Overview For each query, once we have transformed the re-single query from the overall final fingerprint when it is not
sponse from each training host into an instance, we need taclear from the context.
find a classification function that separates the implemen-
tation classes. We do this on the instances obtained using
the training hosts, and test the resulting classificatioitfu ~ 4.2.1 Learning Conjunction Binary-Fingerprints
tion on instances obtained from the testing hosts. Since we
cannot look through all possible classification functioms, Given a query, there may be protocol fields in the response
search within families of classification functions for agoo from a host that exhibit values specific to the implemen-
classification function. The goal of the learning algoritism  tation, and thus are different across implementations. We
to find a good function within a given family that separates want to include all of them in the fingerprint. For this rea-
the different implementation classes. son, we evaluate conjunctions of position-substrings &s on

We need classification functions that are easy to in- ¢1@ss of classification functions.
terpret, for understanding which queries are useful and A conjunction fingerprintC, 7 for a set of implemen-
when they are useful. Therefore, we choose classifica-tation classe§ = {I,,}1<m<k IS @ queryg and a set of
tion functions that are boolean functions of the features, position-substring$S, ;,.)}1<m<x such that for each im-



plementation clas$,, € Z, (a) all the position-substrings  no other bytes that uniquely distinguish the implementatio
in S, are always present in the response from ev- classes, we may not be able to find a conjunction fingerprint.

ery training host in the implementation clags, but (b) This type of behavior might occur because there may be
not all of the position-substrings ifi, ;,,) are presentin  gjignt differences in the same implementation class. Fer ex
any response from any host in another class,, for this ample, when collecting learning data one might think that
query g, i.e., they are distinctive with respect to the re- \windows XP SP2 hosts will behave identically but the net-
sponses from an implementation class. Thus, the conjuncyyqrk hehavior is affected by the patch level and language
tion fingerprint for a query can be represented &§ 7 = version among others. Thus, in order to capture multiple be-
{S@.n) Sq.2)> - Siq1) b whenZ = {I, ... I }. haviors in an implementation class, we need to use a more
Using conjunction fingerprints A conjunction binary- ger_1era| class of functior_13_. In_the next section, we will de-
fingerprint for class,, decides only whether a host be- Scribe such a class, decision lists.

longs to classl,, or not. To use a conjunction binary-

fingerprint to classify whether a new host isiip, we test

if all the position-substrings irf, 7. in the conjunction ~ 4.2.2 Learning Decision List Binary-Fingerprints
binary-fingerprint are present in the response of that host

for the queryq. If they are, the host belongs to the class A decision list can be viewed as an ordered sequence of
I, otherwise it does not. We describe how to use the final multiple if-then-else statements, where a conjunctiorben
conjunction fingerprint in Section 4.3. viewed as a single if-then-else statement. We will use de-
cision lists to capture the presence of multiple behaviors i

a single implementation class, that are not present in other
implementation classes.

Learning conjunction fingerprints Note that we describe
how to learn conjunction binary-fingerprints here; in Sec-
tion 4.3, we show how to turn binary-fingerprints into fi- L . ) i
nal fingerprints. For this, we use the standard algorithm 1he standard definition of a decision list [17] is
to learn conjunctions from a set of labeled instances [17], S follows: a decision list over boolean variables
with the following modification for efficiency. Instead of Y = {Yi,Y3,....Y,} and k classe-_s IS a §equ_ende
explicitly converting each host’s response into an instanc (c1, 1), (e2, I2), - ., (e, L), wherec; is @ conjunction on
as described in Section 4.1, our algorithm first extracts the Y @nd/; denotesthe class. We will refer to each gair 7;)
longest common position-substring for each starting posi- 25 2decision rule A decision list is thus an ordered se-
tion in each implementation class, while ensuring thateher duence of decision rules — the conditigrof each decision
is no overlap between the position-substrings. It then re- rule is tested in the order of its appearancé iand the out-

moves common elements of these position-substrings thaPUt is the classificatio; corresponding to the first satisfied
are present in every implementation class. This way. thedecision rule. When none of the conditions are satisfied, the

algorithm is linear in the length of the response strings. ~ d€cision list outputsnknown

We illustrate the operation of the algorithm with an ex-
ample. Figure 3 shows response strings for four hosis.in
The position-substrings that we extract are [3¢&; f gh]

In our setting, for each query, we use boolean variables to
denote the presence of position-substrings in the response
and each condition; is equivalent to the presence of a list

and [11, 12I]. Figure 4 shows the same process for four of position-substrings in that response. Thugje&ision

hosts in a second clags. The position-substrings that we list fingerprintis a query and an ordered sequence of rules,
extract are [3, 8stufgw] and [11, 12,k1]. Then, in fig- where each rule consists of a list of position-substrings an

ure 5 the algorithm removes [11,22} and [6,7¢] since an associated implementation class. To use the deciston lis
they are not useful for distinguishing betwegnand I. fingerprint to classify a new host, we send the query to the
Thus, we are left with the position-substrings [3¢&] and host and collect the response. We then test the response with

[8,8,1] for classI,, and [3,5stu] and [8,8y] for classls. each rule in turn to see if all the position-substrings irt tha

. . L . . rule are present in the response, and if they are, we output
. While the conjunc_tlop fmgerprmt; are S|mple and easy to the associated class.
interpret, they have limited expressivity, and in some sase , o . L
they may not be sufficient. There might, for instance, be = ASIN the case of the conjunctions, we find a decision list
two kinds of responses generated for a particular query from{INgerprint for each query separately. We use the standard
hosts within an implementation class, e.g., Windows hosts2/90rithm to learn a decision list for a given set of respsnse
may always have one of two values for the TCP window, from different training hosts to a single query [17]. As with

neither of which is present in any other implementation, and the conjunctions, this decision list is a binary-fingerprim
therefore, we could use the presence of either of these val-Section 4.3, we describe how to convert them into the final

ues in a Windows fingerprint. For such a query, if there are fingerprint.
Note that decision lists are a more general class of func-
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Figure 3. Responses from Figure 4. Responses from Figure 5. Removing com-
class I;. class I5. mon position-substrings.

tions than conjunctions, and thus, every time we have acon- For some queries, the final fingerprint may not contain
junction fingerprint for a query we will also have a decision a binary-fingerprint for every implementation class. If we
list fingerprint but the reverse is not always true. However, have enough queries with complete final fingerprints, we
since there is a larger space of candidate functions to becan discard these fingerprints; otherwise, we need to com-
explored, the algorithms for learning decision lists have a bine multiple queries with partially-complete fingerpsiats
higher space and time complexity than the algorithms thatdescribed below.

learn conjunctions. To classify a new host using a final fingerprint, we apply

each binary-fingerprinB F,,, in turn to the responses from
4.3. Obtaining the Final Fingerprint the host, and store whether the host belongd/jp or I,,,,
for eachm € [1,k]. Then, if there is only one: in which
Here we present the steps needed to obtain the final finthe host belongs td,,, we output that class,, as the re-
gerprint from the output of the learning algorithm. sult, otherwise, we report that the class is unknown. We

] ] describe an approximate matching we can use in this case
Removing unusable queriesAs we explore the query i, section 4.4.

space, we may find that some queries do not induce dis-

tinguishing behavior among the different implementation Combining multiple queries The conjunction and decision
classes, and therefore are not useful for fingerprinting. Fo list fingerprints generated in Sections 4.2.1 and 4.2.2 only
conjunctions, this happens when a query fails to produceconsider the responses for a single query. Once we have
different responses across different implementations andremoved the unusable queries, if the number of implemen-
thus an empty conjunction binary-fingerprint is generated. tation classes is large, we may not be able to find a single
For decision lists, it happens when the binary-fingerprint query that can classify all implementation classes simulta
generated for one query does not cover the complete set of€ously. In that case, we create fingerprints for multiple
instances in a class, usually because there is not enough diglueries together, where each query is able to identify some
tinct behavior that separates all hosts in the class frortshos subset of the implementation classes, so that the combina-
in the other class. Our approach is to remove these queriedion can classify all the implementation classes. We can
and their corresponding binary classification functionsfr ~ Use a greedy algorithm to create such a fingerprint that adds
the binary-fingerprints during the Learning phase, leaving queries until all the implementation classes can be classi-

only the usable queries. fied. This algorithm is guaranteed to find a small set of
. . . . ] ) gueries, since the problem is equivalent to the Set-Cover
Final fingerprints for classifying multiple implementa- problem [28].

tion classesThe conjunction and decision list algorithms

as presented are designed for binary classification of theTesting the fingerprint Once the final classification func-
responses to a single query. However, we can use thes&on has been generated for each usable query, we test it
binary classification algorithms for multi-class classific ~ using a larger set of testing hosts whose implementation
tion by repeating the following procedure for each imple- classes are known, examining for each fingerprint if it clas-
mentation clasd,,. First, separate all hosts that belong sifies all the hosts correctly. We then discard any fingetprin
to I,, as a single group, and all hosts that belongy that does not classify the hosts correctly. This may hap-
other implementation class as a second groilis,, = pen if the training hosts are not representative of the imple
7\ {I,.}. Then, generate the binary-fingerpriBf,, for mentation classes; however, in our experiments, this did no
groups{ I,,,, Wi, }1<m<x, Which will distinguish the imple- happen.

mentation clasg,,, from all other classes. Once this proce-

dure has been completed for all implementation classes, the

final fingerprint is the set of all the binary-fingerprints.



4.4. Approximate Fingerprint Matching to a single query, as described in Section 4.1. We then
remove all dynamic fields and use the remaining position-
substrings as features. In the second case, for each gainin
host, we generate the set of all distinct position-subgsrin

of length one byte in the response to a single query, and use
those as the features. This second case is independent of the
: 'field structure of the protocol and we use it to analyze the

it could happen that the host truly belongs to one of the impact of dynamic fields contained in the responses. In both

known classets buli hasf_sllgh:_dﬁferencest |nh|ts rbesponsesmses, the final feature space is the cross product of the fea-
€.g. some hetwork configuration parameter has been mang,, spaces that we have defined for each query. Once the
ually changed from the default. A more elaborate option

) _ — final feature space is defined, the responses from each host
would be to try to find an approximate match by calculating

; X to different queries are then turned intd@ 1}™ vector in
the distance to all known classes and selecting the neare%ese feature spaces. The distance metric we use for each
class [13, 19]. In this case, only if the new host is far from

Il of th o | ld the host be classified feature space is the squared Euclidean distance; so, the dis
a ko € existing classes wou € Nost be classiMed aSance between two hosts is their squared Euclidean distance
unknhown. when represented in the feature space.

With the z-gap property and a feature space, we can ap-
ply any clustering algorithm to test if there is a good cluste
ing of the hosts. Here, we usé-means [24], an extension
of the standard:-means algorithm to the case whéras
unknown. We choos& -means ovek-means because we
: _ . do not knowk, and over hierarchical clustering because we
each implementation class is well-separated from the oth-OIO not need to define a stopping criterion. In Section 5.4,

ers. So, we want to answer the following question: gVen a e see that this algorithm performs well when the imple-
feature-space, how can we tell when we can do approximate

. ) ' Mmentation classes are well-separated.
matching, and how can we do approximate matching? P

Once shipped in a fingerprint tool, the fingerprints are
used to classify new hosts. Sometimes, however, no fin-
gerprint may match a new host and then one simple ap-
proach might be to classify the host as unknown. However

Some current fingerprinting tools such as Nrhlagve an
option to do approximate matching, where the tool will print
that no perfect match was found, but it was able to find a
match with some percentage overlap. However, we need
to validate when such a match is meaningful: an approx-
imate matching is only meaningful when the behavior of

Given a new host that needs an approximate match, we

we zlmstwgr th||s m_ttrr:e IOII(?W'?Q manner: (@) f':cSt th do the following: we compute the distance from the host to
;Js.e ac ur;s e{mg ggt%” m o cluster etr:es_ponlses r(:n:_ Ceach of the clusters. If the host is within a distad¢e from
raining hosts, (b) hen, we examine the Implementation y, o hearest cluster, whetlgs the smallest distance between
classes of the resulting clusters to check if the clusteis tr

. . o any two clusters, we classify it into the nearest cluster. If
represer_n the |mpI(_amen?at|on classe_s, that is, if ea_ch CIusthe host is farther away, we classify it as unknown. When
ter consists of a single implementation cla_ss and is w_eII- the z-gap property holds, this rule will give us the correct
separated from the other clusters. If the |mp_lementat|on matches. In Section 5.4, we show the results of using this
classes form weII-separated C|l.JSte.I’S, the ”a'”'T‘g hasts a rule for classifying new hosts for OS and DNS fingerprint-
representative of their respective implementation clsse ing.
and any un-represented implementation class is also well-
separated from these classes in this feature space, then we
can use approximate matching with this feature space to5, Evaluation
classify new hosts that have no exact fingerprint match.

There might be classes that spread over two or more clus-  \yg evaluate our results using 128 hosts from 3 differ-
ters, for example because hosts in the same class exhibignt jmplementation classes for the OS experiments, and 54
one of two distinct behaviors. We define:&gap property  pogts from 5 different implementation classes for the DNS
that takes this into account, and needs to hold for a well- experiments. Tables 1 and 2 show the number of hosts in
separated clustering: the distance between any two hosts iR, ch implementation class for the OS and DNS experiments
differentimplementation classes needs to be atlesies oqpaciively.  For the OS experiment we send queries to
the distance between any two hosts in the same cluster, be(‘)pen TCP ports, i.e. port 139 on Windows or port 22 on
longing to the same implementation class. Linux and Solaris.

To do the clustering, we examine two natural feature
spaces derived from the set of input candidate queries. In
the first case, for each training host, we generate the set OP'
all distinct position-substrings for each field in the resp®

1. Candidate Queries

For OS fingerprinting several protocols such as TCP,
lusing equivalent options —osscan-guess or —fuzzy UDP or ICMP can be used. In this paper we focus on TCP,




Class ID | Hosts | OS class generation. For the OS experiments the features are ex-
Class 1 77 | Windows XP SP2 tracted from the TCP/IP headers in the response, while for
Class 2 29 | Linux2.6.11 the DNS experiments only the DNS header in the response
Class3 | 22 | Solaris9 is used. We run the learning algorithms on the responses of
70% of the hosts in each class and test the resulting finger-
prints using the remaining 30% hosts. Any other split of the
Class ID | Hosts | DNS class host set is valid as long as there are sufficient hosts in the
Class 4 10 | BIND 8.3.0-RC1-8.4.4 training set.

Class 5 12 BIND 9.2.3rc1 —9.4.0a0
Class 6 11 Windows Server 2003
Class 7 10 MyDNS

Class 8 11 TinyDNS 1.05

Table 1. Hosts used in TCP/IP evaluation.

5.2.1 Binary and Final Fingerprints

Table 4 shows the number of binary and final fingerprints
identified in both steps of the algorithm for the OS and DNS
experiments.

Table 2. Hosts used in DNS evaluation.

due to its rich semantics. As explained in Section 3, the
candidate query exploration phase uses domain knowledgeDe
to select some fields to be explored exhaustively and others[at
to be explored only with selected values.

For each experiment, a series of columns show the num-
r of binary-fingerprints for the corresponding implemen-
ion classes, while the rightmost column shows the num-
ber of final fingerprints. Each binary-fingerprint for an im-
Table 3 shows the 305 TCP/IP candidate queries thatplementation class can decide whether or not a host belongs
were explored in the candidate query exploration phase. Weo that class. The final fingerprint can classify the host into
emphasize that this exploration can be easily expanded anginy of the known classes, or state that the class is unknown.
is by no means complete, these candidate queries were seas expected, the decision list algorithm outputs a decision
lected as examples to test the validity of the fingerprintgen |ist fingerprint in many cases where the conjunction algo-
eration process. Three fields in the TCP header were ex+ithm cannot output a conjunction fingerprint — this happens

plored using exhaustive search: the TCP flags byte (Bytewhen the hosts that belong the class under consideration ex-
12), and Byte 13 which comprises the Data Offset and the hibit multiple types of behavior.

Reserved fields [25]. For reference the TCP & DNS headers The Einal columns in Table 4 show that there is no fi-

are reproduced in Appendix B. The reason we performednal conjunction fingerprint that can separate all the classe

an exhaustiye search on these fields is_ bec_ause they hav% both the OS and DNS experiments. On the other hand,
rich semantics, and because new functionality, such as th

) . e Shere are 66 decision list fingerprints in the OS experiment
flags for Explicit Congestion NOtIflcatI.OH [26], has not been that can classify hosts of all 3 classes, and 19 in the DNS
thoroughly explored. For the other fields, only a few cor-

. . AP experiment that can classify hosts of all 5 classes.
ner cases that could potentially hold interesting infoforat P - y ]
were selected. Intuitively, as the number of known classes increases,

For DNS fingerprinting, bytes 2 & 3 of the DNS we expect to find fewer queries that can classify hosts of

header were exhaustively searched. These bytes contain th?%-II known classes simultaneously. For example, when we
Opcode, Reode and Flags fields. Also theQtype field in un the conjunction algorithm using only the Windows and

the Question record [21] was exhaustively searched. Like Linux clgsses, we fm_d 130 final fingerprints that can sep-
X . arate Windows and Linux hosts, but when we add Solaris,
the selected TCP fields, these fields were chosen because

thev have rich semantics and SUDDOT NUMETOUS options we find no final fingerprints that can classify hosts of all of
y P P " the three classes simultaneously. Note that as the number of

_ _ o _ _ _ classes grows, we can apply the learning algorithms on sets
5.2. Conjunction and Decision List Fingerprints of queries, rather than on a single query. This will generate
fingerprints that contain multiple queries, each individua

As explained in Section 4.2, for each candidate query, Covering some subset of known classes and the whole fin-
the learning algorithm takes two steps in order to find the 9€rprint covering all classes.

final fingerprint. First, it generates binary-fingerprints f  rggting We evaluate the 66 OS and 19 DNS final decision
each |mpleme_ntat|on class, which determine whether. a hosjjgt fingerprints produced during the learning phase by send
belongs to this class or not. Then, the set of all binary- jnq the corresponding queries, in the final fingerprint, ® th
fingerprints for the same query forms the final fingerprint. remaining 30% hosts in each implementation class. Each

In our results, we show the number of binary and final of the final fingerprints properly classifies all hosts in the
fingerprints found for the cases of OS and DNS fingerprint testing set into their true OS or DNS class.



Field Size Type # Queries | Tested values

tcpsport 16 guided 9 0,8,255,1023-4,49151-2,55000,65535

tcp_offset 4 exhaustive 16 all

tcpreserved 4 exhaustive 16 all

tcp_flags 8 exhaustive 256 all

tcp_window 16 guided 2 0, 65535

tcp_checksum| 16 guided 2 good, bad

tcp_urgentPtr | 16 guided 4 invalid value with URG flag set, value with URG flag not set

Table 3. Candidate queries for OS fingerprinting. A total 305 gueries were tested. The field size is
given in bits.

oS DNS
Fingerprint type Linux | Solaris | Windows | Final || Bind8 | Bind9 | Microsoft | MyDNS | TinyDNS | Final
Conjunction fingerprints| 42 53 53 0 0 0 22 2 9 0
Decision list fingerprints| 130 98 98 66 33 28 32 29 41 19
Table 4. Number of binary and final fingerprints output by the | earning phase.
5.2.2 Fingerprint Examples t cp_ur gent Pt r =0x0000)

t hen Not Li nux

In this section, we show an example of the conjunction and
decision list fingerprints for a specific TCP/IP query. First Now, decision list binary-fingerprints exist for all three
we show the conjunction binary-fingerprint that separatescases (Linux/NotLinux, Windows/NotWindows, and So-
the Linux class from the other classes (we refer to this caselaris/NotSolaris) and the system can generate the follgwin
as Linux/NotLinux): decision list final fingerprint that can classify a host inte@o

of all three classes simultaneously.
Query: tcp_flags=S+P;
if (Response: ip_i d=0x0000,tcp_wi ndow=0x16d0)  Query: tcp_flags=S+P;

t hen Li nux if (Response: tcp_w ndow=0xffff)
el se Not Li nux t hen W ndows
else if (Response: tcp_w ndow=0x16d0)
As shown in the first line of the conjunction binary- then Linux

fingerprint, this query explores the tdfags field and has €l se if (Response: tcp_w ndow=0xc0a0)
the SYN+PUSH flags set. This conjunction fingerprint says t h_en Solaris )

that if in the response, the IP identification field has a value ®' S€ ' T (Response: ip_ver Hdr Len=0x45,
of zero and the TCP window has a value of 5,840 then the | Pt ©5=0%00, ip_I en=0x002c,

L . . i p_fl ags&of f set =0x4000, i p_pr ot ocol =0x06,
host is Linux, otherwise it is NotLinux. The values of the tcp_of f set Reser ved=0x60, tcp_flags=0x12,

other fields in the response do not matter. t cp_wi ndow=0x40e8, tcp_urgent Pt r=0x0000)
The conjunction binary-fingerprint for this query exists then W ndows

for the cases of Linux/NotLinux and Solaris/NotSolaris but €! s€ Unknown

not for the case Windows/NotWindows. Next, we show

the corresponding decision list binary-fingerprint for the

Linux/NotLinux case. Note that the decision list algorithm

is able to extract more than one rule for the NotLinux case.

This final fingerprint shows that all Solaris hosts set the
tcp.window to 49,312 and all Linux hosts set the value to
5,840 but the Windows hosts use two different values for
that field: 65,535 or 16,616.
Query: tcp_flags=S+P;
if (Response: tcp_w ndow=0xffff) 5.3. Interesting Queries

t hen Not Li nux

else if (Response: tcp_w ndow=0x16d0) . . . . .
then Li nux The final fingerprints generated in our experiments con-

el se i f (Response: ip_verHdr Len=0x45, tain some especially interesting queries because we are
i p_tos=0x00, ip_l en=0x002c, not aware of any fingerprinting tool that currently uses
i p_fl ags&of f set =0x4000, i p_pr ot ocol =0x06, them. Here, we give some selected examples of these novel
tcp_of f set Reserved=0x60, tcp_flags=0x12, queries.



First, we find that the hosts in the Windows and Solaris or from the complete TCP/IP or DNS headers. We name
classes respond to queries with an invalid value in the Datathese case€hosen Fieldsand Full Header respectively.
Offset field of the TCP header. This field represents the The X-means range that we use is from one to twenty. This
number of 32-bit words in the TCP header. The candidaterange is chosen conservatively, and we check that the upper
guery should have a value of 5 (20 bytes) in this field but limit is never reached.

we deliberately send queries with this field set to smaller  Tapje 5 shows the clustering results for the OS and DNS
and larger values. Both Windows and Solaris hosts reply experiments. As expected, many of the classes defined in
with a SYN+ACK if the value in the field is less than five, Tgpjes 1 and 2 spread over more than one cluster, which
while the Linux hosts do not reply to these incorrect values. jngicates the presence of multiple behaviors inside theesam
No host in any class replies to values larger than five. This ;5355 We manually check a few of the DNS clusters and
reveals that both Windows and Solaris fail to check the TCP §ind that some of them are due to multiple versions in the
header for this simple case. same class such as BIND 9.2.3 and 9.3.2 being placed in
Second, we see that Windows and Linux hosts ignore thethe same class although they behave differently. Also, some
values of the ECN or CWR bits in the queries but certain BIND tags like 9.3.0 represent up to 8 different versions (3
combinations trigger a different response for Solaris$iost betas, 4 releases candidates and the final version) [1].
For example, a query with the SYN+PUSH+ECN+CWR | order to analyze the differences between the Chosen
flags all set, gets a SYN+ACK response from both Windows gig|gs and Full Header cases and to check if hosts that be-
and Linux but a SYN+ACK+ECN response from Solaris.  |5nq o different classes are well-separated, Figure 6 show
Finally, we find that Linux and Solaris hosts set the TCP the visualization of distances between hosts by projecting
Acknowledgment Number in a RST packet to zero but Win- the feature space into the first two principal components.
dows hosts set it to the value that was sent in the TCP Ac-All hosts belonging to the same class are plotted using the
knowledgement Number field of the query. This is interest- same icon. This visualization does not reflect the precise
ing because a single packet with the ACK flag set, that is distances, as there are a number of less significant principa
sent to a closed port, can distinguish Windows hosts from components, but the first two principal components are sig-
both the Linux and Solaris hosts. This type of query is very nificant enough to show the qualitative distances between
inconspicuous and might be difficult to flag as a fingerprint- different clusters.

Ing attempt. Figures 6(a) and 6(b) show the results with Chosen
Among the DNS queries we also find interesting behav- Fields. The classes in the OS case are well-separated with
ior. For example, DNS servers should copy the value of the only one Windows cluster (6 hosts) farther from the rest of
Qdcount field (i.e. the number of DNS queries) from the the class but still clearly separated from the other cladses
guery packet to the response packet. This value is usuallythe DNS case, the classes are more spread and the distances
one, but if the query is not valid, some implementations, de- between hosts in the same class are larger. For example,
pending on the error, will set the field to one in the responsesome of the BIND9 hosts are close to the BIND8 hosts but
while others will keep it to zero. Note that current tools others are close to the MyDNS hosts. This could be due to
such as fpdns do not test this field because they consider ithe evolution of versions of the same implementation that
uninteresting. are expected to be close when they share a significant code

Our preliminary exploration of the candidate query space b_ase and move farthgr apartas th(_a evolution of the new ver-
has been able to find multiple novel fingerprints, which SiON progresses. With Cho_sen Fields, no cluster contains
reaffirms our intuition that the space of queries that could h0sts from two implementation classes.
be used for fingerprinting remains largely unexplored and  Figure 6(c) shows the results with the full DNS header.
demonstrates the effectiveness of our automatic approach. Results for the full TCP/IP header are similar and omitted

for brevity. Using the full header, the hosts in the same
5.4. Clustering class are further apart and hosts from different classes are

closer or even overlap. For example, in this case one cluster
For the clustering experiments, we generate the cIustersC(.)ntalns hosts frpm the BINDS and BIND 9 classgs, _shown
using 70% of the hosts in each class and then evaluate ap\_NIth the nameMixed in Table 5. These results indicate

proximate matching using the remaining 30% hosts, sim- _that using an approach without any domain knowledge, that

ilarly to the fingerprint generation experiments. To gen- Ju.St considers the complete prqto.col header, does not ob-
erate the clusters, we run the X-Means algorithm on thetam well-separated clusters. This is because some pirotoco

two feature spaces that we described in Section 4.4 thatfieldsthatinclude session or host-specific informationhsu
is, we compute the features either from a selected set of?S the DNS ID or the DNS answers, may have more weight

fields that contains implementation-dependent infornmatio than the implementation-specific differences.
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Figure 6. Principal component plots of the responses from th e hosts for both OS and DNS clustering.
os DNS
Fingerprinttype | Linux | Solaris| Windows || Bind8 | Bind9 | Microsoft | MyDNS | TinyDNS | Mixed
Chosen Fields 1 1 10 2 3 3 2 1
Full Header 1 1 3 2 4 6 2 1 1

Table 5. For each implementation class, the number of cluste rs that contain hosts from this class.
Multiple clusters indicate different behaviors inside the implementation class.

Now, we quantitatively measure how well approximate TCP fingerprinting focused on standard compliance testing
matching works for the OS and DNS cases with Chosento identify flaws, support for optional functionality, powtol
Fields. We perform the following experiment: from the set violations and design decisions taken by the different im-
of implementation classes, we remove one class and extracplementations [22]. Besides active probing, there has been
the clusters using 70% of the hosts in the remaining classesresearch on how to passively identify TCP implementations
Then, we perform approximate matching using thgap looking at traffic traces [23] and how to passively classify
rule on the remaining 30% hosts from the classes used tohost’s operating systems [13, 19]. Franklin et al. [16] pro-
extract the clusters, plus all the hosts from the class thatposed a passive fingerprinting technique to identify wire-
was removed. We repeat this process multiple times, eacHess device drivers on IEEE 802.11 compliant devices. In
time removing a different class and at the end, we calculatethe context of finding approximate matches, Lippmann et
the average classification error for different values.of al. [19] proposed to use k-nearest-neighbor classifier to

The results show that the classification error is mini- @v0id hosts being classified as unknown when no exact
mized with values: ~ 2 for both the OS and DNS cases Match was found. Our approximate matching differs in that
and that in the DNS case the error quickly increases for W€ Use a clustering approach and focus on evaluating when
otherz values. The OS case does not show such a strongsUch approximate matching is possible. Hardware finger-
increase. We show the corresponding graphs in Figure 7.Printing has also been proposed with applications such as
Setting the value of to be 2, the classification error is 3% rémotely tracking a host in a network [18]. However, to the
for the OS case and 12% for the DNS case. This indicatesP€st of our knowledge, this is the first work to address the
that the class separation for OS with Chosen Fields is moreProblem of automatically generating fingerprints.
robust and might be used for approximate matching but in  TCP/IP fingerprinting can also be used to identify the
the case of DNS with Chosen Fields, approximate matchingoperating system running on a host [3, 4]. There exists
is unlikely to yield good results. multiple tools for both active and passive OS fingerprinting
The most common active fingerprinting tool in use today is
Nmap [9] written by Fyodor, which uses a similar approach
to older tools such as Queso [11]. Other active fingerprint-
ing tools include Xprobe [12] that focuses on ICMP probes

Fingerprinting has been used for more than a decade. Inand Snacktime that identifies hosts based on the TCP time-
1994 Comer and Lin proposed probing to find differences out and retransmission policy. Passive fingerprintinggool
between TCP implementations [15]. Early application for such as pOf [10] and siphon [6] do not need to send traffic

6. Related Work
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Berlin, 2001. Since our fingerprints denote the presence of position-
substrings corresponding to pre-specified queries, we will
APPENDIX define anelementof a fingerprint to be a single position-

substring along with the corresponding query identifiet. Le
U be the set of all the elements in the fingerprints of all the
A. Mistake Bounds for Conjunctions implementation classes under consideration, anfllet=
n. An instanceX; represents the response strings of a host
that needs to be classified, and is a vectoflnl }" where
theith coordinate id if the ith element ofU is presentin
the response strings andtherwise.

We now bound the number of mistakes a fingerprint will
make under certain assumptions. We givistake-bounds
in an online model of learning [14], where the algorithm

starts with an initial fingerprint and refines it with everyami Next, we describe how to represent a fingerprint as a
take. Sections 4.2.1 and 4.2.2 pres#fitnealgorithms for boolean function. Ley; be a boolean variable that denotes
learning fingerprints using a set of training hostsHow-  the presence of théth element inU (e.g., if theith ele-
ever, these fingerprints may be too specifidtcEven after ~ ment of U must be present in the fingerprin; is in the
testing the fingerprints over the set of hoststhe finger-  corresponding boolean function.) L&t = {y1,...,yn}.

prints may not be sufficiently general. Ifand E are not ~ Let H be the class of monotone conjunctions o¥e(so,
large enough or sufficiently representative of the implemen no negative literals ot are allowed in the conjunctions).
tation classes, the confidence guarantees we get on the rd-€t k1, ho € H be the conjunctions that represent classes
sulting fingerprints might not be very high. This could hap- 1 and 2 respectively. Leti; be the set of boolean vari-
pen, for example, when one is restricted to hosts within the ables presentin; and letA, be the set of boolean variables
local network. In this case, the generated fingerprints migh present in;.

be too specific to the local network. We give bounds under two cases: first, with no further

In an online model of learning, an algorithm starts with assumptions; second, under the following two assumptions:
an initial fingerprint, and keeps refining it every time it (1) A1 and A, are disjoint, and (2) any instance that be-
makes a mistake; i.e. the algorithm predicts a classifica-longs toh, contains no variable ir; and vice versa. The
tion based on the current fingerprint and is then given thefirst assumption is that; and A, are disjoint; no variable
right answer, which it uses to update its fingerprint. In our presentim; is also presentih, and vice versa. In our set-



ting, this implies that the position-substrings presertne When we get a new instanc¥; (from I; or I,) that
conjunction fingerprint are not present in the other. This is needs to be classified, we do the following: If the num-
not an unreasonable assumption; we see this in the testingber of variables ifil'rues(X;) is greater than the number
especially when there are only two implementation classesof variables inFlalses(X;), we classifyX; as true, other-
under consideration. The second assumption is that no inwise we classify it as false. If we make a mistake on an
stance that belongs tio, contains the variables id; and instance which does not belong kg (so we report “true”
vice versa. We might, for example, expect this to be true when we should have reported false), we remove the vari-
when all the position-substrings consist of distinct value ables inTrueg(X;) from S. If we make a mistake on an
for the same fields of the underlying packet headers. instance that belongs th; (so we report false when we

) ~ should have reported true), we will remove all the variables
Theorem 1. Assume that there are two implementation j, Falses(X;) from S.

classes, each of which has fingerprints that can be rep-
resented by a conjunction of position-substrings. Eet
be the class of monotone conjunctions owér and let
h1, he € H denote the conjunction fingerprints witlvari-
ables for clasd; and/; respectively. Lefl; and A, denote
variables present ith; andh, respectively. With no further
assumptionsh; and hy have a mistake bound ef — ¢.
WhenA; and A, are disjoint, and when every instance that
is consistent withh; does not contain any variable i,
and vice versa, we can learn a conjunction fingerprint with
t variables with a mistake bound flog(%)] on instances
that belong to/; and I5.

This procedure will give us a bound of at mgig (7 )]
mistakes, since each mistake causes us to remove at least
half the variables that are presentdnbut are not present
in the true hypothesis. So, if we make a mistake on an
instance that belongs th;, at least half the variables in
S must have been false iX;. All of these will belong
to Falses(X;). Now, none of these variables will be
present inA;: sinceX; belongs toh; andh; is a mono-
tone conjunction, all variables id; must be set to true
in X; (i.e., A1 C Ones(X;)). So, A4, is disjoint from
Zeros(X;), therefore, none of the variablesdn will be in
Falses(X;). Therefore we can remove all of the variables
in Falses(X;) from S.

Likewise, if we make a mistake on an instance that does

. . . . . not belong toh;, at least half the variables ii must have
Proof. We will show how to use a conjunction fingerprint ! .
J gerp been true inX;. LetY,., denote the set of variables

to get a bounded number of mistakes for each case in the I )
theorem statement. Lét denote the set of variables in the Q Y tg‘?‘t ar(athrlot_ 'n‘t41 0&426 To YT”’; I_ }l; - (AU
current conjunction hypothesis fdi. Let X; € {0,1}" ti02r)1. 0 mceX_ |sclnzarbcyj eilr;%]se gf zthegea\f';l:égfe's
denote the current instance. L Btueg(X,) denote the set  Ones(X;) © A Upem.

of variables inX; that are set to true and are also present “&" Ee %r_esendt m;lf(s:gceﬁl anfdAQ are d§|§10|nt), ;0 thCey
in S. Let Falses(X;) denote the set of variables iK; can be discarded fror. Therefore, sincd’rues(.X;) C

that are set to false are also presenfinLet Ones(X;), Ones(X;), we can discard the s@trues(.X;) from S.

We now present the proof of this theorem.

Zeros(X;) denote the sets of variables In that are set ~ Thus, since we reduce the set of variables in the con-
to true and false respectively in the instankg. Note  junction by at least half with every mistake, we will make
thatTrues(X;) = Ones(X;) N S, while Falses(X;) = [log(%)] mistakes when we start with a conjunction of size
Zeros(X;) N S. n, and our true conjunction is of size

The proof for the first case is well known but we sketch O
it for completeness. In the first case, we will begin with _ . S
the most specific conjunction ov&: the conjunctiony; A There are also mistake-bounds for learning decision lists
Ya ... Ayn. SO, we begin witt§ = Y. We do the following: in the literature [14], however, they are quite loose and
every time we make a mistake on an instatég € hy, therefore not of practical use.

we remove all the variables iR'alses(X;) from S. We
never make a mistake on an instanke ¢ h; since we
start withS O A; and never remove a variableih . Thus,
the number of mistakes we can make is bounded byt.

Next, we outline the proof for the second case. We
will analyze the number of mistakes made to reach the cor-
rect conjunction for the implementation clags on the in-
stances that come frofy and ;. We begin with the most
specific conjunction ovér': the conjunctiony; Ays . . . Ay,,.

So, we begin withs =Y.



B. Headers

TCP header from [25] with added ECE and CWR flags.

0 1 2

3

01234567890123456789012345678901

B i I S i s S S S S i S S R IR N S
| Sour ce Port | Desti nati
T e R R R R T o
| Sequence Nunber

B i I S i s S S S S i S S R IR N S
| Acknow edgrent Number

B i I S i s S S S S i S S R IR N S
| Data | | C| E| U Al P| R S| F|

| Ofset|Reserv.|WC R CS|SlVYI| W nd
I I IRREIG KIH TN N

B i I S i s S S S S i S S R IR N S
| Checksum | Ur gent
B i I S i s S S S S i S S R IR N S
| Options |
b L e T e e R R
| dat a

B S S T i i i o S S i e

DNS header from RFC 1035 [21].

Header

11 1 1 1 1
0 1 2 3 45 6 7 8 9 01 2 3 4 5
e

1D
|+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|+
| Rl Opcode | AA] TC| RD| RA| Z | RCCDE |
LT = S S S R S S
I QDCOUNT I
LT = S S S R S S
| ANCOUNT |
A A S S
| NSCOUNT |
LT = S S S R S S
| ARCOUNT |

i S T S S e e e
Question

11 1 1 1 1
0 1 2 3 45 6 7 8 90 1 2 3 4 5
i S T S S T e e

/ QNAME /
/ /
T i S I Supu Supas
| QrYPE |
T < S S S
I QCLASS I

LT i S S S R S i S

B i i
on Port |
s i S I S S
B i i
B i i
ow |
B i i
Poi nt er |
B i i

Paddi ng |
B s i S R S S

B ik S S S S S

o,
| Header
e,
| Question
o,
| Answer
o,
| Aut hority
e,
| Addi ti onal
o,



