
Finding The Needle: Suppression of False Alarms in
Large Intrusion Detection Data Sets

James J. Treinen, Ramakrishna Thurimella
Colorado Research Institute for Security and Privacy

University of Denver
Denver, USA

jamestr@cs.du.edu, ramki@cs.du.edu

Abstract—Managed security service providers (MSSPs) must
manage and monitor thousands of intrusion detection sensors.
The sensors often vary by manufacturer and software version,
making the problem of creating generalized tools to separate
true attacks from false positives particularly difficult. Often
times it is useful from an operations perspective to know if
a particular sensor is acting out of character. We propose a
solution to this problem using anomaly detection techniques
over the set of alarms produced by the sensors. Similar to the
manner in which an anomaly based sensor detects deviations
from normal user or system behavior, we establish the baseline
behavior of a sensor and detect deviations from this baseline.
We show that departures from this profile by a sensor have
a high probability of being artifacts of genuine attacks. We
evaluate a set of time-based Markovian heuristics against a
simple compression algorithm and show that we are able
to detect the existence of all attacks which were manually
identified by security personnel, drastically reduce the number
of false positives, and identify attacks which were overlooked
during manual evaluation.

Keywords-intrusion detection; anomaly detection; markov
chain; hidden markov model

I. INTRODUCTION

The number of high profile network compromises contin-
ues to grow. Increasingly, the trend is toward profitable cyber
crime, as opposed to the relatively benign Denial of Service
(DoS) and worm attacks of the last decade. More and more,
cyber criminals are organizing and turning their attention to
corporate networks with the hopes of carrying out attacks
resulting in the theft of digital information of real value.
As a means of addressing this problem, we evaluate a set
of automated techniques to assist the security staff of large
corporate networks in the detection of malicious activity.

Generally speaking, the intrusion detection architectures
for large networks are comprised of a set of host or network
based intrusion detection sensors (IDSs) which monitor for
malicious activity. There are two main types of intrusion
detection systems: misuse and anomaly detection. Misuse
detection systems use pattern matching techniques to detect
malicious activity using a set of pre-defined signatures. The
main drawback of this approach is that it requires that the

Research supported by NSF Grant DUE–0416969

IDS have pre-existing knowledge of an attack profile in order
to detect instances of that attack. While misuse detection sys-
tems generally produce fewer false positives than anomaly
detection systems, they do not have the ability to detect
attacks which are not defined in their signature database.
On the other hand, anomaly detection systems define a
baseline profile for a system which is being monitored and
raise alarms when significant deviations from this profile
are detected. Anomaly detection systems are more flexi-
ble in detecting emerging attacks, but often exhibit higher
false positive rates. It is common in enterprise computing
environments to deploy a combination of both classes of
sensors and perform analysis of the alarms generated by both
systems at a central Security Operations Center, or SOC.
The techniques described in this paper fall into the class of
anomaly detection algorithms.

During the course of our experiments, we evaluated
the performance of a set of alarm evaluation heuristics
comprised of single step Markov Chains, Hidden Markov
Models, and a simple heuristic based on the GNU gzip
utility. The underlying intuition to our approach is that
intrusion detection sensors are inherently noisy, and although
the false positives they generate appear random, the behavior
of a given sensor will exhibit a “normal” behavior which can
be modeled over time. We further hypothesize that deviations
from this “normal” behavior have a high probability of being
attacks. It is important to note that a model must be created
for each sensor as the software versions, signature databases,
and placement of the device can vary significantly across
the installation base. As such, no general model can be
created to cover the set of sensors for the entire network.
A potential weakness of this approach is the likelihood that
the alarms generated by a particular sensor will vary over
time, especially in the case of a major software update to
the device. Events of this nature will require retraining of
the models.

To support our hypotheses, we adapt earlier work from
the field of applied statistics. Schonlau, et al. evaluate the
efficacy of five statistical heuristics in detecting masquer-
aders via the statistical analysis of system call traces [23].
We adapt their approach to the analysis of IDS alarms, and



show that Markov Chains and Hidden Markov Models prove
to be very effective at detecting all types of attacks by acting
as an anomaly detector over the set of IDS alarms. We
also evaluate the compression technique described in [23]
and show that while it is effective at intrusion detection, it
yields a significantly higher percentage of false positives for
this type of analysis. We do not evaluate the “Uniqueness”
approach described by them because we do not perform our
analysis on a per user or per IP address basis. Neither do we
evaluate IPAM or the “Sequence Match” methods described
in their paper, for similar reasons.

We chose to evaluate the alarm sequences on a per sensor
basis as opposed to a per IP address basis. The IP space on
any given network is extremely large, and analysis of the
alarms generated per IP not only has the potential to require
the modeling of millions of distinct IPs, but the number of
alarms generated per IP address is not significantly large to
lend itself to training a model of any kind. In addition to this
fact, we chose to model at the sensor level of aggregation to
fix a potential weakness in Ourston’s work [18]–[20]. While
Ourston, et al. made a significant contribution to the field of
intrusion detection by introducing the concept of Markovian
modeling to the field of IDS alarm analysis, it is ineffective
when an attacker spoofs his IP address using a Sybil attack
[8]. By not relying on connection records as our level of
aggregation for alarm analysis, but rather aggregating one
level higher at the sensor, our techniques are immune to
this type of attack.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III provides an
in depth discussion of the nuances of the data used in our
experiments, and discusses experimental design and nota-
tion. Section IV formally defines our models, and provides
results from each approach. An overview of the strengths
and weaknesses of each technique and a discussion of open
problems are provided in Section V.

II. RELATED WORK

It is well established that it is possible to detect attacks
based on deviations from normal system behavior by model-
ing a baseline set of system calls, and detecting anomalous
activities via departure from this profile. We expand this
concept to the evaluation of alarms and show that it is very
effective at detecting attacks at the sensor level.

Little research has been performed in the area of profiling
IDS sensors. Previous work consists mainly of research
which was performed by the IBM Zurich Research Lab
on techniques for creating sensor profiles using Association
Rules [1]. Our approach differs from this work in that we
take into account the order in which the alarms are generated
by the sensor.

Krügel et al. propose a system for improving the accuracy
of anomaly based IDS sensors using Bayesian networks [17].
Our approach differs from this in that Bayesian networks

do not model the inter-dependence of alarms using time
based sequencing. We show that there is a strong relationship
between the order in which alarms are generated, and
whether they in fact are the result of a genuine attack.

In the field of intrusion detection, Hidden Markov Models
have been applied in various ways to the problem of learning
normal user or process behavior based on system call traces
in Unix. These generally have extended earlier work on
modeling traces of Unix system calls using N-grams [13],
or Markov Chains [14]. The application of Hidden Markov
Models to Unix system calls generated by operating system
processes is explored in [9], [27]. Ju presents research on
using HMMs to model user generated system calls in [15].
The application of HMMs to network data is explored in
[26], and [2].

The application of Hidden Markov Models to intrusion
detection has received renewed attention after work by
Ourston, et al. [18], [20] which presents a technique for
detecting multi-stage attacks. The main weakness with this
approach is its reliance on connection records, which are
trivial to compromise if an attack originates from multiple
source IPs or if an attacker spoofs their IP address using a
Sybil Attack [8]. A secondary limitation of this approach is
that they train the HMMs for positive response. If a new
category of attack emerges, until a new HMM is trained for
that attack, the alarm sequences falling into this category
have a high probability of going undetected. Haslum et al.
present a technique for quantifying risk to a network based
on the set of alarms from multiple intrusion detection sensors
in [12] and use this merged alarm stream to calculate a risk
score using a Hidden Markov Model. They extend their work
in [10], [11] to build an intrusion prevention sensor which
predicts whether an alarm sequence has a high probability of
being followed by an alarm which will complete an attack
scenario and takes preventative action to mitigate the threat.

A general framework for the application of Markov
Chains in anomaly based intrusion detection systems is given
by Jha in [14]. A series of experiments is conducted using
system call data. Jha’s framework is frequently adapted by
other researchers. Sallhammar presents a method for apply-
ing Markov Chains in conjunction with a cost and reward
system for computing the probability of an attack based on
game theory [22]. Khanna presents a novel approach for
detecting attacks on mobile ad-hoc networks using Hidden
Markov Models in [16]. Zanero uses a combination of
Hidden Markov Models based on system call traces, and
theory from the field of Ethology to create formalized
characterizations of system interactions resulting in what he
calls a “Behavioral Intrusion Detection System” [28].

The primary difference between our work and that of the
prior art is that we build profiles which are intended to model
normal behavior for a particular sensor. The majority of the
prior research models specific attacks, or attack profiles, and
attempts to make predictions based on those models [11].



In contrast, we model the baseline false positive noise of a
sensor as “normal” behavior. By detecting deviations from
this baseline, we are able to detect a change in the sensor
state. We then show that this anomalous behavior has a high
probability of representing malicious activity on the network.

III. ON DATA AND EXPERIMENTAL DESIGN

Using supervised training techniques as described in [18],
[20] is extremely difficult. Significant portions of these
two papers are dedicated to preprocessing routines which
generalize the base alarm data to a form where creating
abstract models of attacks is feasible. Our approach is funda-
mentally different. Rather than attempt to train our models to
behave as misuse detection systems with the ability to detect
predefined categories of attacks, we train our models to be
anomaly detection systems. We establish baseline sensor
profiles and use our models to detect deviations from the
normal stream of false alarms which are emitted from by
sensor.

Because we have access to a large repository of known
security incidents, we generate training sequences of obser-
vations based on periods of data which contain no known
attacks. This approach carries the inherent risk that the SOC
personnel overlooked an attack that may be present in a
training sequence. We mitigate this risk as much as possible
by using a large number of training sequences, and closely
examining false positives that are detected on the training
data to ensure that no attacks were inadvertently introduced
during the training period.

We conducted our experiments on the set of alarms
generated by two IDS sensors running in production mode
on large corporate networks. We label these sensors sensor A
and sensor B. Sensor A was a Cisco NetRanger network IDS.
Sensor B was a SourceFire network IDS Sensor. We selected
these two sensors for our experiments to demonstrate that
our techniques were technology agnostic, and to compare
our results on sensors which had received differing levels
of filtering and tuning. We also wished to conduct our
experiments on sensors which are representative of typical
technologies in use in current corporate environments. We
evaluated the set of alarms generated by each sensor for
the 30-day period starting May 1, 2008 and ending May
30, 2008. Sensor A was tuned to be relatively quiet, and
generated 3483 alerts for this time period. Sensor B was
not tuned as aggressively and monitored a larger network.
Sensor B generated 172,839 alerts during the test period.
During the test period, 17 of the 3483 alarms generated by
sensor A were reflective of true attacks. For sensor B, 308
alarms represented genuine attacks. For both sensors, the
false positive rate was well over 99%, making the discovery
of genuine attacks extremely difficult.

Table I shows a typical set of IDS alarms consisting of
the IP address of the attacker, the IP address of the victim,
the numeric signature ID, and the name of the signature for

Figure 1. Sensor A Signature Distribution

Figure 2. Sensor B Signature Distribution

Source IP Target IP Signature ID Signature

10.0.0.1 10.0.0.4 1 TCP port scan
10.0.0.2 10.0.0.4 1 TCP port scan
10.0.0.3 10.0.0.4 2 sendmail overflow
10.0.0.5 10.0.0.7 3 ftp brute force login

Table I
TYPICAL INTRUSION DETECTION ALARMS

which the alarm was raised. The only column of significance
for our analysis is Signature ID. In order to analyze the
alarms we map the Signature ID field from the alarm to an
identity field in a database which we custom built to facilitate
this analysis. The mapped signature IDs are monotonically
increasing integers, ranging from 1 to m where m represents
the number of distinct signatures, i.e. the number of different
attack types, for which an alarm was raised during the 30-
day test period. m = 22 for sensor A and m = 800 for sensor
B.

Figure 1 is a plot of the signature frequency distribution
for sensor A over 30 days. Figure 2 is the same plot
with alarm frequencies for sensor B. In both cases, the



vast majority of the alarm traffic for the 30-day period is
comprised of a relatively small number of signatures, and
drops off quickly for the remainder of the signature set. We
have evaluated many other production sensors and found this
to be typical for any given IDS. Given this phenomenon, it
is normal to see that each of the sequences of alarms that
we test look very similar in composition. This is the main
inspiration for our research. Given that the majority of the
alarms generated by an IDS are the same signatures over and
over, it makes sense that deviations from these alarms, and
the order in which they appear, are indicative in a change
in state of the sensor, i.e. from emitting false positives, to
detecting genuinely malicious activity on the network. This
change in state is an artifact of a change in the type of
traffic which is being monitored, i.e. from legitimate traffic
that the sensor mis-classifies as an attack, to genuine attacks
resulting in genuine alarms.

It is important to note that the set of alarms present in
the training data, and those in the test data, are not mutually
exclusive. If this were to be the case, separating legitimate
alarms from false alarms would be the trivial exercise of
simply filtering the “noisy” signatures. In fact, all signatures
from the test data were represented in the training data as
well. This further demonstrates that the order in which the
alarms are generated is a significant indication of whether
the alarms are false positives, or manifestations of an attack.

In order to build the data sets that were used in our
experiments, we constructed training and test sequences in
the following manner. Let A = {a1, a2, . . . , an} be the
complete set of alarms generated by the sensor over the
30-day experimental time period. We subdivided A into two
subsets consisting of training data R and test data S. We
selected a period of days during which no known attacks
were identified by the SOC and generated a set of training
sequences R such that each rt ∈ R is a sub-sequence
{rt . . . rt+k} beginning at time t. The set of sequences was
generated using a sliding window of length k. For both
sensor A and sensor B, this training data was comprised
of the first 5 days of the month. We defined the set of test
data as S = {A−R} and generated test sequences st ∈ S
in the same manner as the training sequences. Originally
we attempted to model the sensors in a state of silence by
inserting a signature id of “0” for each second of the day
during which no alarm was generated. Given that there are
86,400 seconds in a day, this had the effect of diluting the
signal produced by the sensors to the point where analyzing
the signal produced by the sensor became ineffective. As
such, we made the decision to model only the actual signal,
and not introduce the notion of silence to the models. On
average sensor A generated an alarm every 12 minutes,
and sensor B generated an alarm every 17 seconds. This
is the same approach used in [18]–[20], [23]. A good topic
for future research would be to introduce continuous time
Markov Chains to the set of experiments, and model the

absence or presence of alarms as a Poisson process. This
would provide a facility for analyzing bursty behavior by
a sensor, or a normally noisy sensor which suddenly goes
quiet, both of which are potential indicators of malicious
activity on either the network, or the sensor itself.

A. Experimental Design

We evaluated three different methods during the course of
experiments, “Compression”, “Single Step Markov Chain”,
and “Hidden Markov Model”. All three of these methods
attempt to detect anomalies in a stream of alarms generated
by production intrusion detection sensors as a means of
detecting attacks based on deviations from normal sensor
behavior.

The methods share a common data foundation, in that the
set of alarms is segmented into training data and test data,
each of which are further subdivided into training and test
alarm sequences. To facilitate discussion for the remainder
of this paper, we define the following notation:

A = {R ∪ S} The set of alarms
R The training data
rt The training sequence starting at time t
S The test data
st The test sequence starting at time t
M The set of distinct integer signature IDS
m The size of M
k The length of the training and test sequences

The sequence length evaluated during all experiments
was 10. This choice appears somewhat arbitrary, but it
was determined during the course of the experiments that
a sequence length of 10 yielded the best results. We also
evaluated sequence lengths of 2, 5, 15, 25, and 50, all of
which yielded inferior results for both sensors.

IV. OVERVIEW OF METHODS AND MODEL
CONSTRUCTION

A. Compression

1) Intuition: The underlying intuition behind the com-
pression method [23] is that test data which are appended
to a training data set will yield a higher compression ratio
if they are similar to the training data than if they vary
significantly. This is due to the nature of the compression
algorithm used in the gzip utility, as defined in [25]. The
underlying Lempel-Ziv algorithm builds compression rules
starting from the beginning of the file to be compressed.
Given this fact, it makes sense that as these rules are built
from the front of the file, data appended to the end of the
file will compress more readily if it is similar in nature to
the data which was used to build the rules. If the appended
test data differs significantly from the training data, the
compression ratio will suffer. Informally, this method tries
to capture changes in entropy [24] as test data is appended
to the training data.



2) Approach: To score this approach we define a score
xst

for each test sequence st ∈ S as the number of
additional bytes required to compress the test sequences
when appended to the training data R

xst = gzip(R+ st)− gzip(R)

3) Thresholds: The threshold used in the compression
experiments was determined by calculating a set of cross
validated scores xcv

t for each sequence in the training data
for both sensor A and sensor B. For each training sequence
rt ∈ R we compute

xcv
t = gzip(R+ rt)− gzip(R).

We fixed our target detection rate at 100% for known at-
tacks and experimentally determined the appropriate thresh-
old for each of the two sensors. The resulting thresholds
were the 97th percentile for Sensor A, and the 89th per-
centile for Sensor B. When evaluating the test sequences
st ∈ S, any sequence receiving a score xst > threshold,
was marked anomalous.

4) Results: The compression algorithm, when applied to
sensor A, generated 1021 meta-alarms, yielding an alarm
reduction rate of 71%. When applied to sensor B, 19231
meta-alarms were generated, yielding an alarm reduction
rate of 88%. Overall, the use of the gzip utility yielded
the worst results of the three techniques explored in this
paper. Rather than relying on the gzip utility to perform the
calculations, a formal investigation of the efficacy of entropy
based anomaly detection on IDS alarms may yield better
results, and warrants further exploration.

B. Markov Chains

1) Motivation: Markov Chains and Hidden Markov Mod-
els come from the field of signal processing, and have been
used extensively in various speech recognition and machine
learning applications. The benefit of these two techniques
lies in the fact that they model the the order in which events
occur in a training data set, and can be used to evaluate the
probability of a sequence of events from a test data set. It is
intuitive that the order in which alarms occur is important in
the detection of attacks, and that this order will differ from
the order in which alarms are generated as false positives.
We show that detecting these changes is a very effective
means of detecting attacks in a network, with a low rate of
false positives, and a high rate of alarm reduction.

2) Model: Markov Chains are stochastic processes which
are effective at modeling the behavior of a system over time.
A complete discussion of Markov Chains is provided in [7],
which defines a Markov Process as{

X(n), n = 0, 1, 2, . . .
}
. (1)

which takes a finite or countable set M , in this case the
integer signature ids emitted by IDS sensors.

As in the compression technique, we define A as the
total set of alarms emitted over the 30-day experimental
time period. We further divided A into two subsets R ⊆ A,
the attack free training data, and S ⊆ A, the test data. R
and S are decomposed into sub-sequences using the same
sliding window technique described for the compression
experiments such that rt ∈ R is the training sequence
starting at time t and st ∈ S is the test sequence starting at
time t. st and rt are of the same predetermined length k.
As such,

M = {0, 1, 2, 3, 4, . . . ,m}

which may be realized as:

st = {5, 7, 5, 6, 6, 6, 2, 4, 7, 7}
st+1 = {7, 5, 6, 6, 6, 2, 4, 7, 7, 3}
st+2 = {5, 6, 6, 6, 2, 4, 7, 7, 3, 2}
st+3 = {6, 6, 6, 2, 4, 7, 7, 3, 2, 9}

...

Definition 1. Suppose a fixed probability Pij independent
of time exists such that

P (X(n+1) = j|X(n) = i,X(n−1) = jn−1, . . . , x
(0) =

j0) = Pij , n ≥ 0

where {j, i, j0, j1, . . . , jn−1} ∈ M . Then this is called a
Markov Chain process.

This probability can be interpreted as the conditional
distribution of any future state X(n+1) given the past states

X(0), X(2), . . . , X(n−1)

and present state X(n) is independent of the past states and
depends solely on the present state. The probability Pij thus
represents the probability that the process will transition to
state j given that it is currently in state i.

The transition probability Pij is contained in a transition
matrix, which holds the transition probabilities between all
states in the Markov Chain.

P =


P00 P01 · · ·

P10
. . .

...
...

...
...


We use the technique of maximum likelihood to fit our

data to the Markov Chain Model, and estimate the values of
P . P is known as the one-step transition Matrix, and holds
the probabilities of transition from one state to another state
in a single step.

In order to determine the probability of being in a cer-
tain state n steps from now, we must calculate the n-step
transition matrix. We call these probabilities the outlook
probabilities. Using the transition values from P and an



initial probability vector X , we are then able to calculate
an “outlook” probability as follows

Definition 2. Let X(n+1) = PX(n) be the probability
distribution of the states one step from time n. We then
know that X(n+1) = P (n+1)X(0) and X(n+1) holds the
probabilities of being in a given state at time n + 1, given
the initial probability distribution X(0) and the one-step
transition matrix P .

We are then able to determine the probability of a sensor
emitting an alarm n steps from the current time (t).

Definition 3. Let X, the initial probability distribution vector
be constructed in such a way that given a sequence of
alarms st ∈ S beginning with the signature id st0 , let
xst0

∈ X(0) = 1 and all other x ∈ X(0) = 0 indicating
that the known starting state of the test sequence is st0 with
probability 1. Given the one-step transition matrix P, we
define the alarm outlook measurement to be

Ost =
k∏

n=1

P (n)X(0) (2)

where t is the time of the first alarm in the sequence being
evaluated, n is the nth element of the sequence, and k = 10
is the sequence length, as before.

3) Threshold: The threshold for the set of experiments
using Markov Chains was calculated in the following man-
ner. Given the one step transition matrix P , and an initial
state probability vector X(0), for each training sequence
rt ∈ R calculate

{
P (rt)|P,X(0)

}
using equation (2).

We calculated the 99.9th percentile of these scores, sorted
highest to lowest, and marked any sequence as anomalous
which had a probability lower than the threshold determined
by the training data.

4) Results: For this set of experiments we were able to
detect 100% of those attacks which were manually identified
by the SOC using k = 10 as the sequence length for
both sensors. In addition to accomplishing the automation
of attack detection in the alarm logs, we were able to
successfully identify multiple attacks and reconnaissance
events which had gone unnoticed during manual inspection
of the alarms. Over the 30-day period, the Markov Chain
anomaly detector raised 482 meta-alarms for sensor A,
yielding a suppression rate of 86%. For sensor B 1230 meta-
alarms were generated, yielding a suppression rate of 99%.

C. Hidden Markov Models

1) Model: Hidden Markov Models were first proposed
by Baum in [3]–[6]. A Hidden Markov Model (HMM)
is a doubly embedded stochastic process which models a
set of symbol observations. Hidden Markov Models differ
from basic Markov models in that the state which emits the
observation is invisible, i.e. hidden from the observer. In a

standard Markov process, the states themselves are visible to
the observer. The observations in Hidden Markov Models are
dependent on observation probability distributions at each
hidden state, and transitions between the hidden states are
governed by a secondary, hidden, stochastic process.

Rather than use the simple Markov Model described in
the previous section, where each observation corresponds to
a single state, the Hidden Markov model allows increased
flexibility by modeling a set of observations as a probabilis-
tic function of the current state, followed by a state change
to either a new state, or the ability to remain in the current
state prior to emitting the next observation, based on a state
transition probability distribution. An in depth tutorial on
Hidden Markov Models is presented by Rabiner in [21].

A Hidden Markov Model is defined by the following.
1) N . Let N denote the number of physical, hidden

states of the model. This number is significant to
some reality of state change in the real world which
is represented in the model. After experimenting with
different values for N , we found that N = 2 con-
sistently produced the highest detection rates with he
lowest false positive rates.

2) m. Let m denote the number of distinct observations
that can be emmited per state. m is thus the size
of the alphabet M of symbols which are actually
observed by the user of the system. For the sensor
profiling problem, m is the number of distinct IDS
alert signatures which are produced by the sensor. The
observation symbols are given as V = v1, v2, . . . , vm.

3) αij . Let αij denote the transition probability distribu-
tion for the hidden states such that

αij = P [qt+1 = Hj |qt = Hi], 1 ≤ i, j ≤ N. (3)

4) B = bj(l) Let B = bj(l) denote the observation
symbol probability distribution in a given state j such
that

bj(l) = P [vl at t|qt = Hj ], 1 ≤ j ≤ N, 1 ≤ l ≤M.
(4)

5) Let π = πi denote the initial state probability distri-
bution such that

πi = P [q1 = Hi], 1 ≤ i ≤ N. (5)

Given this set of parameters a Hidden Markov Model can
be fully specified as λ = (N,m,α,B, π).

As in the Markov Chain experiments, the set of IDS
alarms, A is divided into two sets of sequences R and S
where rt ∈ R and st ∈ S represent the sequence of length k
at time t. The parameters α,B, π are all estimated using the
Baum-Welch algorithm using the set of training sequences
rt ∈ R [21]. We train the HMM using 5 days of IDS alarms
for which no attacks are known to have occurred. Once
trained, we are able to determine the probability score of



a test sequence st ∈ S, the probability of a sequence of
alarms, using the Forward Verterbi Algorithm [21] as

xst
= V erterbi(st) (6)

2) Thresholds: To determine the threshold for marking
test sequences as anomalous we calculated the score xrt

=
V erterbi(Rt) for each sequence rt in the training data R.
As in the previous experiments, we fixed our target detection
rate at 100% of known attacks and adjusted the threshold to
achieve this goal. In order to detect 100% of known attacks
we set the threshold for Sensor A at the 99.7th percentile.
For Sensor B, we were able to tighten this threshold to the
99.9th percentile and still achieve total attack detection. Any
sequence from the test data st was marked as anomalous if
xst < threshold.

3) Results: Over the 30-day experimental time period,
239 meta-alarms were created for sensor A using the Hidden
Markov Model approach, yielding an alarm suppression rate
of 93%. For the same time period, 7813 meta-alarms were
generated, yielding a 95% alarm reduction rate. As with the
Markov Chain approach, we were able to detect attacks and
reconnaissance activity which had gone unnoticed by the
SOC.

V. CONCLUSIONS

Technique Sensor Reduction Threshold
Compression A 71% 97
Compression B 88% 89
Markov Chain A 86% 99.9
Markov Chain B 99% 99.9
Hidden Markov Model A 93% 99.7
Hidden Markov Model B 95% 99.9

Table II
SUMMARY OF RESULTS FOR PROFILING HEURISTICS

Table II summarizes the results of our experiments. In
order to provide a stable point over which to compare the
performance of the three profiling heuristics, we set the
threshold for each technique at a value where we were
able to detect 100% of the known attacks from the test
data. As expected, Markov Chains and Hidden Markov
Models out performed the use of compression to detect
anomalies in sensor behavior. Markov Chains suppressed
the greatest percentage of false alarms for the noisy sensor,
Sensor B, eliminating 99% of the false positives. The use of
Hidden Markov Models was more successful in eliminating
false alarms on the quieter sensor, Sensor A, yielding a
suppression rate of 93%.

The relatively small number of alarms produced by Sensor
A, overall, made it more difficult to train the models. As
such, the performance of the tested techniques for Sensor A
is not as good as for Sensor B. This can be attributed to the

smaller amount of training data, and the greater mean time
between alarms emitted by this sensor.

It is interesting that the compression algorithm performed
as well as it did, given the small sequence lengths which
were evaluated. For example, compression missed only one
attack comprised of a single alarm on a day where the other
4284 alarms were all false positives. By definition, these
“one shot, one kill” attacks are extremely difficult to detect
due to the small footprint they leave in the data. Because
of this, it is not surprising that simple compression was
not enough to detect the existence of such an attack. This
attack was detected by both the Markov Chain and HMM
techniques, solely because it represented an anomalous state
transition in a sequence of alarms that would otherwise be
representative of normal system behavior on the part of the
sensor.

Overall, we were able to suppress a very large number
of the false alarms which were generated by both sensors.
This has the net effect of reducing the work load of SOC
personnel, while increasing the accuracy of the monitoring
infrastructure as a whole.

Interesting further research on this topic would involve
exploration of the alarm rate produced by a sensor. It is
intuitive that significant changes in the rate in which an
IDS emits alarms could be indicative of attacks. The authors
suggest exploring this problem in terms of Poisson processes
and continuous time, multi-step Markov Chains.

REFERENCES

[1] K. Ali, S. Manganaris, and R. Srikant. Partial classification
using association rules. In Proceedings of the Third Interna-
tional Conference on Knowledge Discovery and Data Mining,
pages 115–118, 1997.

[2] D. Ariu, G. Giacinto, and R. Perdisci. Sensing attacks in
computers networks with hidden markov models. In MLDM,
pages 449–463, 2007.

[3] L. Baum. An inequality and associated maximization tech-
nique in statistical estimation for probabilistic functions of
markov processes. Inequalities, 3:1–8, 1972.

[4] L. Baum and J. Egon. An inequality with applications to
statistical estimation for probabilistic functions of a markov
process. Bulletin of the American Meteorological Society,
73:360–363, 1967.

[5] L. Baum and T. Petrie. Statistical inference for probabilistic
functions of finite state markov chains. Ann. Math. Stat.,
30:1554 – 1563, 1966.

[6] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization
technique occurring in the statistical analysis of probabilistic
functions of markov chains. Ann. Math. Stat., 41:164–171,
1970.

[7] W. Ching and M. Ng. Markov Chains Models, Algorithms,
and Applications. Springer Science+Business Media, Inc.,
New York, 2006.



[8] J. Douceur. The sybil attack. In IPTPS, pages 251–260, 2002.

[9] Y. Du, H. Wang, and Y. Pang. Hmms for anomaly intrusion
detection. In CIS, pages 692–697, 2004.

[10] K. Haslum, A. Abraham, and S. Knapskog. Dips: A frame-
work for distributed intrusion prediction and prevention using
hidden markov models and online fuzzy risk assessment. In
IAS, pages 183–190, 2007.

[11] K. Haslum, A. Abraham, and S. Knapskog. Fuzzy online risk
assessment for distributed intrusion prediction and prevention
systems. In Tenth International Conference on Computer
Modeling and Simulation, UKSIM, pages 216–223, 2008.

[12] K. Haslum and A. Årnes. Multisensor real-time risk assess-
ment using continuous-time hidden markov models. In CIS,
pages 694–703, 2006.

[13] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection
using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[14] S. Jha, K. Tan, and R. Maxion. Markov chains, classifiers,
and intrusion detection. In CSFW, pages 206–219, 2001.

[15] W. Ju and Y. Vardi. A hybrid high-order markov chain
model for computer intrusion detection. National Institute
of Statistical Science Technical Report Number 92, 1999.

[16] R. Khanna and H. Liu. Distributed and control theoretic
approach to intrusion detection. In IWCMC, pages 115–120,
2007.

[17] C. Krügel, D. Mutz, W. Robertson, and F. Valeur. Bayesian
event classification for intrusion detection. In ACSAC, pages
14–23, 2003.

[18] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Ap-
plications of hidden markov models to detecting multi-stage
network attacks. In Proceedings of the 36th Hawaii Interna-
tional Conference on System Sciences (HICSS), 2003.

[19] D. Ourston, S. Matzner, W. Stump, and B. Hopkins. Ap-
plications of hidden markov models to detecting multi-stage
network attacks. In HICSS, page 334, 2003.

[20] S. Ourston, S. Matzner, W. Stump, and B. Hopkins. Co-
ordinated internet attacks: responding to attack complexity.
Journal of Computer Security, 12(2):165–190, 2004.

[21] L. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. In Proceedings of the
IEEE, pages 257–286, 1989.

[22] K. Sallhammar, B. Helvik, and S. Knapskog. On stochastic
modeling for integrated security and dependability evaluation.
JNW, 1(5):31–42, 2006.

[23] M. Schonlau, W. DuMouchel, W. Ju, A. Karr, M. Theus,
and V. Yehuda. Computer intrusion: Detecting masquerades.
Statistical Sciences, 16(1):1–17, 2001.

[24] C. Shannon. A mathematical theory of communication. In
Bell System Technology Journal, pages 379–423,623–656,
1948.

[25] T.A. Welch. A technique for high performance data compres-
sion. IEEE Computer, pages 8–18, 1984.

[26] Y. Yasami, M. Farahmand, and V. Zargari. An arp-based
anomaly detection algorithm using hidden markov model in
enterprise networks. In ICSNC, page 69, 2007.

[27] N. Ye, Y. Zhang, and C. Borror. Robustness of the markov-
chain model for cyber-attack detection. IEEE Transactions
on Reliability, 53(1):116–123, 2004.

[28] S. Zanero. Behavioral intrusion detection. In ISCIS, pages
657–666, 2004.


