
Large-Scale Malware Analysis, Detection, and
Signature Generation

by

Xin Hu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor Atul Prakash
Assistant Professor J. Alex Halderman
Assistant Professor Qiaozhu Mei

c© Xin Hu 2011

All Rights Reserved

To my parents and many other important people in my life

ii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Kang G.

Shin, for his tremendous support, guidance and encouragement during the course

of my doctoral study. His insights into research, values of life and commitment

to excellence have inspired me significantly in my pursuit of research. I feel truly

grateful to be his student and work with him for all these years. I would also like

to thank Professors Atual Prakash, J. Alex Halderman, and Qiaozhu Mei for serving

on my dissertation committee. Without their insightful comments and feedback, this

dissertation would not be possible.

I am also grateful to all talented and friendly colleagues for their friendship and

accompany during my graduate student life. Special thanks go to all the past and

current members at Real-Time Computing Laboratory. In particular, I would like

to thank: Zhigang Chen for being such a good friend in my life and his willingness

to help with just about anything; Matthew Knysz for being an amazing collaborator

and tremendous help in improving my writing; Yuanyuan Zeng for collaboration and

pleasant conversations from time to time; Caoxie Zhang for the inspiring discussions

on many research areas and interesting conversations in days and nights when we

were working in the same office; Xiaoen Ju for his kindness and diligence in our

collaboration; Xinyu Zhang, Alex Min, Katharine Chang, Karen Hou, Hyoil Kim,

Ashiwini Kumar, Min-gyu Cho, Jisoo Yang, Pradeep Padala, Eugene Chai and others

for their invaluable comments on my research. I would also like to thank Bin Liu,

Joseph Xu, Simon Chen, Yi Su, Bengheng Ng, Ying Zhang, Ran Duan, Ye Du,

iii

Fangjian Jin, and Zhe Chen for their wonderful friendship that makes my life in Ann

Arbor exciting and memorable.

I was also very fortunate to work as an intern at Symantec Research Labs. Special

thanks go to my mentors Professor Tzi-cker Chiueh and Kent Griffin for their detailed

guidance and advice. My appreciation also goes to Dr. Sandeep Bhatkar, Scott

Schneider, Darren Shou, and Fanglu Guo for support and collaboration. I also would

like to thank Symantec Research Labs for their generosity in providing a large amount

of malware samples for my dissertation studies and a graduate fellowship.

Finally, I want to express sincerest and deepest gratitude to my parents as well as

special friends Yang Lin, Kun Qian and Mingming Hu for their unconditional love,

support and encouragement that have enlightened and enriched my life. I cannot

describe how thankful and fortunate I am to have them on my side through all the

happiness, sadness and joys during these years.

The work described in this thesis was supported in part by the US Air Force Office

of Scientific Research under Grant No. FA9550-10-1-0393 and the US Office of Naval

Research under Grant No. N000140911042.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xi

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 3
1.3 Malware Analysis . 5
1.4 Research Goals . 7
1.5 Contributions . 9

1.5.1 Large-Scale Malware Indexing Using Function Call
Graphs . 10

1.5.2 Malware Clustering based on Static Features 10
1.5.3 Automatically Creating String Signatures for AV De-

tection . 11
1.5.4 Integrating Static and Dynamic Analyses 12

1.6 Organization of the Dissertation 13

II. SMIT: Large-Scale Malware Indexing Using Function-Call
Graphs . 14

2.1 Introduction . 14
2.2 Related Work . 17
2.3 Function-Call Graph Extraction 20
2.4 Graph-Similarity Metric . 22

v

2.4.1 Graph Edit Distance 23
2.4.2 Approximating Graph-Edit Distance Using Graph Match-

ing . 24
2.4.3 Optimizations . 26

2.5 Multi-Resolution Indexing . 32
2.5.1 Overview . 32
2.5.2 B+-tree Index Based on Malware Features 34
2.5.3 Optimistic Vantage Point Tree 35

2.6 Evaluation . 38
2.6.1 Experiment Setup 39
2.6.2 Effectiveness of B+-tree Index 40
2.6.3 Quality of Graph-Similarity Metric 41
2.6.4 Efficiency of Optimistic VPT 43
2.6.5 Evaluation of Multi-Resolution Indexing 47

2.7 Limitations and Improvements 49
2.8 Conclusion . 52

III. MutantX: Scalable Malware Clustering Based on Static Fea-
tures . 54

3.1 Introduction . 54
3.2 Related Work . 57
3.3 Architecture . 59
3.4 Generic Unpacking Algorithm 60
3.5 Feature Extraction . 68
3.6 Clustering Algorithm . 73

3.6.1 Hashing Kernel . 74
3.6.2 Prototype-Based Clustering 75

3.7 Experimental Evaluation . 77
3.7.1 Effectiveness of Unpacking Engine 78
3.7.2 Malware Clustering Accuracy 80
3.7.3 Validity of the Hashing Trick 82
3.7.4 Impact of N -gram 84
3.7.5 Scalability of MutantX 86

3.8 Limitations and Improvements 87
3.9 Conclusion . 89

IV. Hancock: Automatic Generation of String Signatures for Mal-
ware Detection . 90

4.1 Introduction . 90
4.2 Related Work . 92
4.3 Signature Candidate Selection 95

4.3.1 Goodware Modeling 95
4.3.2 Library Function Recognition 98

vi

4.3.3 Code Interestingness Check 102
4.4 Signature Candidate Filtering 103

4.4.1 Byte-Level Diversity 104
4.4.2 Instruction-Level Diversity 105

4.5 Multi-Component String Signature Generation 108
4.6 Evaluation . 110

4.6.1 Methodology . 110
4.6.2 Single-Component Signatures 111
4.6.3 Single-Component Signature Generation Time . . 116
4.6.4 Multi-Component Signatures 117
4.6.5 Comparison of Multi-Component Signatures with

Single Component Signatures 119
4.7 Conclusion . 120

V. DUET: Integrating Dynamic and Static Analysis for Malware
Clustering . 122

5.1 Introduction . 122
5.2 System Overview . 125
5.3 Malware Clustering Using Run-time Traces 126
5.4 Cluster Ensemble . 129

5.4.1 Motivating Examples 130
5.4.2 Problem Formulation 131
5.4.3 Clustering Based on Ensemble Distance Matrix . . . 133

5.5 Improving Cluster Ensemble with Cluster-Quality Measure . 135
5.6 Evaluation . 138

5.6.1 Malware data set 138
5.6.2 Behavioral clustering results 139
5.6.3 Evaluation of Cluster Ensemble 142
5.6.4 Improving Cluster Ensemble with Cluster-Quality Mea-

sure . 148
5.6.5 Cluster-Quality Measures 149
5.6.6 Cluster ensemble results with quality measures . . . 150

5.7 Related Work . 151
5.8 Concluding Remarks . 156

VI. Conclusions . 158

BIBLIOGRAPHY . 164

vii

LIST OF FIGURES

Figure

1.1 Production of malware variations 2

1.2 Exponential increase in the number of new malware samples (Source:
Symantec [97]) . 4

1.3 Typical malware processing workflow 5

2.1 The function-call graph of the malware sample Worm.Win32.Deborm.p.
Different colors are used to represent different types of functions. . 20

2.2 Example of a function being represented by a mnemonic sequence
and other features. 22

2.3 Multi-resolution indexing structure. 32

2.4 Pruning on a VPT based on the triangular inequality 36

2.5 Quantitative comparison among graph distance metrics from NBHA,
OHA, NBM, Greedy and MSDV. The X-axis corresponds to a se-
quence of graph pairs. 43

2.6 Percentage of index entries (PIE) accessed versus the fan-out factor
of the VP tree . 44

2.7 PIE vs. the number of nearest neighbors requested (K) (fan-out factor
is 10) . 45

2.8 Scalability of the VP tree with respect to the number of indexed graphs 46

2.9 Query response time of 500 five-nearest-neighbor queries against a
100,000-malware database . 49

viii

3.1 MutantX system overview . 59

3.2 MutantX’s generic unpacking component 62

3.3 x86 instruction format . 68

3.4 Encoding a function into a standardized format 73

3.5 Precision, recall and running time of mutantX’s clustering 80

3.6 Precision, clustering time, and peak memory requirements with the
number of hash bins ranging from 28 to 216, and without using the
hashing trick . 83

3.7 Precision of clustering with different N values 85

3.8 Precision, recall and running time of MutantX’s clustering for large
number of malware programs . 87

4.1 The fractions of false positive and true positive test sequences with
occurrence probabilities below the X axis value 98

4.2 TP rate comparison between pruned models and non-pruned models
when the training set varies from 50 Mbytes to 100 Mbytes 99

5.1 An overview of DUET . 125

5.2 Malware clustering based on dynamic behavior 126

5.3 Clustering precision . 140

5.4 Clustering coverage . 141

5.5 Precision and coverage of single threshold based cluster ensemble . . 145

5.6 Precision and coverage of ball algorithm based cluster ensemble . . 146

5.7 Precision and coverage of agglomerative algorithm based cluster en-
semble. A, C, S in the figures represent Average, Complete and Single
linkage . 147

5.8 CDF for cluster cohesion . 150

5.9 CDF for cluster separation . 150

ix

5.10 Cluster ensemble results with cluster-quality measures. In the figure
(B) represents the best case scenario and (R) represents the random
case scenario . 152

x

LIST OF TABLES

Table

2.1 Statistics of different features in the feature vector 40

2.2 Accuracy and effectiveness of the NBHA in terms of K-NN search
results . 44

2.3 Impact of N on the accuracy of identifying the malware family of a
query binary file . 47

3.1 Opcodes of varying lengths . 69

3.2 Opcodes provide fine-grained representations of instruction semantics
(reg: register, mem: memory) . 70

3.3 Malware families of the reference data set 78

3.4 Unpacking effectiveness (IC: Instruction Count; NG: N -gram) . . . 80

4.1 Heuristic threshold settings . 111

4.2 Results for August 2008 data . 112

4.3 Results for 2007-8 data . 113

4.4 Raw Discrimination Power . 115

4.5 Marginal Discrimination Power . 115

4.6 Multi-Component Signature results 118

5.1 Encoding of sample system calls . 128

xi

5.2 Number of malware samples whose features can be extracted by
static, dynamic, and both approaches. The total number of malware
samples is 5647 . 131

5.3 Malware families of the reference data set 139

5.4 Number of malware samples with more than 10 n-grams and the total
number of malware samples is 5647 139

5.5 Parametric settings for the best scenario 143

5.6 Parametric settings for the random scenario 143

5.7 Summary of cluster ensemble results and improvements over individ-
ual clusterings . 149

xii

ABSTRACT

Large Scale Malware Analysis, Detection and Signature Generation

by

Xin Hu

Chair: Kang G. Shin

As the primary vehicle for most organized cybercrimes, malicious software (or mal-

ware) has become one of the most serious threats to computer systems and the In-

ternet. With the recent advent of automated malware development toolkits, such as

Zeus, it has become relatively easy, even for marginally skilled adversaries, to create

and mutate malicious codes which can bypass Anti-Virus (AV) detection. This has

led to a surge in the number of new malware threats and has created several major

challenges for the AV industry. AV companies typically receive tens of thousands of

suspicious samples every day, which have to be analyzed by human analysts in order

to 1) determine the maliciousness of incoming samples; 2) identify their labels (e.g.,

family name); and 3) create AV signatures. However, the overwhelming number of

new malware easily overtax the available human resources at AV companies, making

them less responsive to new emerging threats and eventually leading to poor detection

rates. To address the aforementioned issues, this dissertation proposes several new

and scalable systems to facilitate malware analysis and detection, with the focus on

a central theme: “automation and scalability”.

This dissertation makes four primary contributions. First, it builds a large-scale

xiii

malware database management system called SMIT that addresses the challenges in

the first step of processing each incoming suspicious sample, i.e., determining if it is

indeed malicious. The system is based on the insight that most new malicious samples

are simple syntactic variations of existing malware, and hence, a way to ascertain the

maliciousness of an unknown sample is to check if it is sufficiently similar to any

currently known malware. SMIT is designed to efficiently make such decisions based

on the malware’s function call graph—a high-level structural representation that is

less susceptible to the low-level obfuscation employed by malware writers to evade

detection. Evaluation of real-world malware samples demonstrates SMIT’s effective

pruning power and scalability to support hundreds of thousands of malware samples.

Second, due to limited human resources, a large percentage of samples received by

AV companies often remain unlabeled in the database for an extended period of

time. To overcome this problem, the dissertation develops an automatic malware

clustering system called MutantX. By quickly grouping similar samples into clusters,

MutantX allows malware analysts to focus on representative samples from each cluster

and automatically generate labels for unknown samples based on their association

with existing groups. Third, this thesis introduces a malware signature-generation

system, called Hancock, that automatically creates high-quality string signatures with

extremely low false-positive rates. Finally, observing that two widely used malware

analysis approaches—i.e., static and dynamic analyses—have their respective pros and

cons, this dissertation proposes a novel system, called DUET, that optimally integrates

malware clusterings based on both static features and dynamic behaviors. The goal

of DUET is to allow the static and dynamic analyses to complement each other and

mitigate their respective shortcomings without losing their merits.

xiv

CHAPTER I

Introduction

1.1 Background

As computer systems and the Internet become increasingly ubiquitous, the secu-

rity threat landscape has also undergone a profound transformation from unstructured

and sporadic attacks, where the primary intent is a quest for fame, to more organized

multi-vector attacks on a global scale, where the goal is financial profits. The lack of

sophisticated protection on average users’ computers and the high value of enterprise

targets have attracted skilled and motivated cyber-criminals to launch a wide range

of security attacks. These attacks compromise computers, penetrate networks, steal

confidential information, send out lots of spam emails, bring down servers and cripple

critical infrastructures, leading to severe damage and significant financial loss. Ac-

cording to a recent CSI (Computer Security Institute) survey [49], the average loss

from security attacks was about $345,000 per incident.

The main vehicle for most organized cyber crimes is various types of malware.

Malware, or malicious software, generally refers to various forms of hostile, intrusive

and annoying software designed to infiltrate a computer system and subvert the sys-

tem for unintentional uses. Typical malware types include viruses, worms, spyware,

trojan horses, rootkits, and bots. Spreading a destructive payload, they infect and

take control of vulnerable computer systems, using them to facilitate other criminal

1

activities and gain illegal profit [97]. For example, bots typically spread through ex-

ploiting software vulnerabilities or employing social engineering techniques to allure

unsuspecting users to execute malware binaries. Once a system has been infected, the

malware can install spyware and backdoors, transforming these individual victimized

systems into a vast network, called a botnet, controlled by the attackers. Botnets are

commonly used in launching DDoS (Distributed Denial of service) attacks, sending

spam emails and hosting phishing fraud.

Figure 1.1: Production of malware variations

Driven by considerable economic incentives, both the diversity and the sophistica-

tion of malware have increased significantly. Malware has evolved from rudimentary

viruses that delete system files to more versatile, highly engineered pieces of software

that are able to carry out advanced, large-scale attacks. For example, Stuxnet, dis-

covered in early 2010, is the first publicly known malware program targeting critical

industrial infrastructure. It has the capability to infect high-value industrial con-

trol systems and inject code into the systems’ PLC (Programmable Logic Controller)

unit, allowing Stuxnet to potentially control the system, altering its operations [30].

However, despite this dramatic increase in malware complexity, the knowledge re-

quired by attackers to create malware threats has actually decreased substantially in

recent years. This is due mainly to the growing popularity of easy-to-use, automatic

malware creation toolkits, such as Zeus [103] or SpyEye [24]. Such toolkits allow

even marginally skilled attackers to create and customize their own malware binaries,

significantly lowering the novice attackers’ barriers to enter the world of cyber crime

2

and resulting in a massive proliferation of new malware.

In addition, most malware programs are continuously mutated to evade anti-virus

(AV) detectors. Instead of the time-consuming and expensive process of creating a

malware program from scratch, malware authors often pursue a more cost-effective

solution; reusing existing malware (either binaries or source codes) by slightly al-

tering them to evade AV detectors. Because of this success, such malware variants

have evolved into a streamlined process [79] where malware authors employ a broad

spectrum of tools and technologies to automatically create variants capable of elud-

ing detectors. Typical techniques (Figure 1.1) include equivalent code substitution,

instruction re-ordering, noise insertion and runtime packing (i.e., encrypting or com-

pressing the original binaries into random-looking data and decrypting the content

when the malware is executed). The ability to automatically and rapidly create vari-

ants allows malware authors to replace outdated malware as soon as they become

less effective, granting them an advantageous attack window before new detection

signatures can be created and deployed. The ease of this malware-mutation process

has led to an explosive increase in the number of new malware samples seen in the

field, as shown in Figure 1.2. From the figure, we can observe that the number of

malware has nearly doubled annually year-to-year basis, and the total number of new

malware created in 2009 has reached 2.9 million, which is equivalent to over 8000 new

variants appearing daily. In fact, the total number of malware programs produced in

2009 alone is more than the sum of all malware created over the previous 20 years.

Unfortunately, this trend is likely to continue, and malware will remain the greatest

security threat faced by computer users.

1.2 Motivation

The explosive increase in malware variants has created a key challenge for the AV

industry: how to efficiently process this huge influx of malware samples and promptly

3

2002 2003 2004 2005 2006 2007 2008 2009
0

0.5

1

1.5

2

2.5

3
x 10

6

 20,254 19,159
 74,981 113,081

 167,069

 708,742

1,691,323

2,895,802

year

N
um

be
r

of
 N

ew
 M

al
w

ar
e

Figure 1.2: Exponential increase in the number of new malware samples (Source:
Symantec [97])

deploy mitigation techniques to protect end-users. An AV company typically receives

thousands of suspicious samples every day, collected from tools such as honeypots

and global monitoring sensors [97] or submitted by their partners (e.g., other AV

companies that share malware samples), clients and third-party collection channels

[3, 107]. These suspicious samples are typically processed with the following steps.

S1. Malware analysts have to determine if the incoming suspicious samples are indeed

malicious, separating malicious programs from benign ones.

S2. For malicious samples, analysts have to establish which malware family each

sample belongs to, and then create family labels for these samples.

S3. New virus signatures have to be generated and distributed to end-users for their

protection.

All the above processes require some level of human intelligence and are mostly

done through manual analysis, which, unfortunately, is expensive, time-consuming

and error-prone. The overwhelming number of new malware programs has severely

4

Figure 1.3: Typical malware processing workflow

strained the scarce human resources of AV companies, making them less responsive to

new threats and even allowing some malware to slip through and remain undetected

for a significant period of time. For instance, there is a typical time window of 54 days

between a malware’s release and its detection by AV software, and 15% of samples

remain undetected after 180 days [27]. As a result, manual analysis has become the

major bottleneck in the malware processing workflow, calling for automatic techniques

to analyze incoming samples and produce high-quality signatures. Such techniques

can allow AV vendors to keep up with rapid malware generation and deployment,

reducing their response time to new security threats.

1.3 Malware Analysis

In general, there are two types of approaches commonly used to analyze mal-

ware programs: dynamic behavior and static feature based analyses. Most dynamic

analysis systems operate by running malware samples in virtual or sandboxed envi-

ronments, monitoring their execution and extracting their run-time behavior in terms

of API or system call traces for analysis and detection [10, 13, 88]. On the other hand,

static analysis systems do not require running the malware programs; they extract

representative features directly from malware binaries [81, 113] or from disassembled

5

instructions [53, 56]. Some times, high-level structural features, such as control flow

graphs or function call graphs, [29, 32] can also be extracted from the disassembled

instructions and used as a basis for malware analysis.

The major benefit of dynamic analysis is that behavioral features are insensitive

to low-level mutation techniques, such as run-time packers or binary obfuscation,

because changes to a malware’s binary rarely affect API or system calls it invoked.

In addition, behavioral-features-based detection identifies actions performed by mal-

ware rather than syntactic signatures, thus having the potential to capture multiple

malware family variants with a single behavioral specification. Albeit very useful in

practice, approaches based on dynamic behavioral features also suffer from several

limitations. First, they may have only limited coverage of an application’s behav-

ior, failing to reveal the entire capabilities of a given malware program. This is

because, when monitoring an executed malware program, dynamic analysis can only

capture API or system call traces corresponding to the code path taken during that

particular execution. However, different code paths may be taken during different ex-

ecutions, depending on the program’s internal logics and/or external environments.

More commonly, many malware include triggers in their programs, exhibiting an in-

teresting behavior only when certain conditions are met. Typical examples include

bot programs that wait for commands from their botmasters and malware programs

designed to launch attacks at, or before, a certain date and time. Since their specific

conditions are often not met, when executed and monitored in a general environ-

ment, these trigger-based malware generate few repeatable run-time traces. Second,

dynamic-analysis is inherently resource-intensive, limiting its coverage. In order to

process the sheer number of malware samples collected daily, a dynamic-analysis sys-

tem, with limited computational resources, can only execute and monitor each sample

for a short duration, e.g., a couple of minutes. Unfortunately, this is often too short

a period for most malware programs to reveal all their behavior.

6

In contrast, the main advantage of static analysis is its potential to cover all

possible code paths of a program, including parts of the program that normally do

not execute, thereby yielding a more accurate characterization of the program’s entire

functionalities. Moreover, being less resource-intensive and time-consuming than their

dynamic counterpart, the static approaches provide the level of scalability necessary

for handling the rapid generation of new malware. Unfortunately, static-feature-based

approaches are not without limitations of their own; it is well-known that they suffer

from run-time packing and many anti-reversing and anti-disassembly techniques [117],

such as encryption, compression, garbage code insertion, code permutation, etc.

Because of their respective pros and cons, neither dynamic behavior nor static

feature based approaches provide a complete solution to the malware-analysis prob-

lem. In this dissertation, in order to scale and support the enormous number of

malware samples, we first develop static approaches, with particular emphasis on

novelty, addressing inherent limitations of static analysis. We also investigate ways

to systematically integrate dynamic and static approaches, exploiting their respective

strengths and mitigating their weaknesses. The underlying purpose of this combined

method is to improve the coverage, accuracy and efficacy of malware analysis.

1.4 Research Goals

Motivated by the trend of large-scale threats, this dissertation develops solutions

to automate the key stages in the malware processing workflow that have been tra-

ditionally done by human experts, facilitating large-scale analysis and detection of

security threats. These solutions are developed with the following objectives.

• Expediting identification of malicious samples: AV companies receive

thousands of suspicious program samples every day. The first step in process-

ing any sample is to determine if it is indeed malicious. Currently, a common

7

approach is to classify a sample as malware if a sufficient number of existing

commercial AV scanners consider it malicious. Although this approach is useful,

it does not completely solve the problem; at any point in time, a significant per-

centage of new samples are unknown to existing AV scanners. Typically, these

unknown samples are manually analyzed by security analysts, a time-consuming

process that has become a major bottleneck in the malware processing workflow.

Therefore, it is necessary to automate the handling of these rapidly increasing

malware programs. One of our goals toward meeting this need is to enable effi-

cient and scalable identification of malicious programs by using their structural

similarity to existing malware programs.

• Creating labels for unknown malware samples: Given the excessive num-

ber of malware programs and the limited computing and human resources avail-

able, a large percentage of new malware samples often remain unlabeled in the

database for an extended period of time. This delays the creation and distri-

bution of signatures, resulting in poor detection rates. This dissertation aims

to address the malware-labeling problem through malware clustering. Quickly

and automatically clustering malware samples allows analysts to focus on more

important and distinct samples instead of wasting their precious time on similar

variants. For instance, one can group similar samples into a cluster and label

them with high accuracy by analyzing only a few representative samples from

the cluster. Moreover, the label of a new sample can be automatically derived if

it is determined to belong to a known cluster. This study also intends to develop

a generic unpacking technique for statically analyzing packed programs.

• Enabling automatic generation of string signatures: Scanning files for

signatures has been a proven approach used in many commercial anti-malware

products because of its extremely low false-positive rate. However, the size of

8

the signature database has grown significantly with the exponential increase

in the number of new malware samples in recent years. One way to address

this signature-explosion problem is to use string signatures, each of which cor-

responds to a contiguous byte sequence meant to match variants of a malware

family rather than a specific malware program, thus resulting in a smaller sig-

nature set. However, most of the string signatures used today are created

manually because it is difficult to automatically determine which byte sequence

in a malware binary is less likely to generate false-positives. To address this

problem, this study develops a practical and automated framework that tackles

the problem of generating high-quality string signatures on a large scale.

• Improving integration between static and dynamic analyses: Static and

dynamic approaches are both valuable tools for malware analysis and are widely

used in practice. However, they both have inherent limitations as described in

Section 1.3. As a result, malware samples that can be effectively analyzed by

these two approaches are usually very different. This makes it very difficult to

select a single best algorithm for malware analysis. To exploit their strengths

and mitigate their weaknesses, this study aims at developing a unified frame-

work that aggregates the results generated by static and dynamic approaches,

improving the performance of analysis of a wide range of malware samples.

1.5 Contributions

To meet the aforementioned research goals, we design and implement prototype

systems that characterize the inherent features of malware programs and exploit them

for quick and accurate analysis. The key features of the proposed solutions are au-

tomation and scalability, which are imperative to cope with rampant malware and

other security threats. The applicability and efficiency of these systems are demon-

9

strated through experimentation on more than 100,000 real-world malware samples.

In the rest of this section, we summarize the major contributions of this dissertation.

1.5.1 Large-Scale Malware Indexing Using Function Call Graphs

In this dissertation, we build a system called SMIT (Scalable Malware Indexing

Tree) that attempts to speed up the process of identifying the maliciousness of a

suspicious sample. The system is based on the insight that since most new malware

samples are simple syntactic variations of existing malware, one way to ascertain

whether an incoming sample is malicious is to check if it is sufficiently similar to

any currently known malware. SMIT can efficiently make such decisions based on

the malware’s function-call graph, a high-level structural representation known to be

less susceptible to the low-level obfuscations employed by malware writers to evade

detection. To improve the speed of graph comparison, we develop a polynomial-

time graph-similarity algorithm by exploiting common sub-structures in malware call

graphs. The algorithm closely approximates the inter-graph edit distance while re-

ducing the computational complexity to O(n3). Furthermore, SMIT employs a multi-

resolution indexing scheme to solve the scalability issue related to the graph database

search. The scheme uses a computationally economical feature vector for early prun-

ing and resorts to a more accurate—but computationally expensive—graph similarity

function only when it needs to pinpoint the most similar neighbors. The unique com-

bination of these techniques affords SMIT significant pruning power and allows it to

easily scale to support hundreds of thousands of malware samples.

1.5.2 Malware Clustering based on Static Features

The current lack of rapid, automatic labeling of the massive number of malware

samples seen daily delays the distribution of malware signatures, thus lowering the

rate of malware detection and failing to detect rampant malware in the wild. Conse-

10

quently, there is a strong need to automatically cluster malware programs, enabling

analysts to make informed decisions and prioritize which samples require the most

attention. This dissertation proposes a framework, called MutantX, that is designed to

perform efficient clustering of a large number of samples into families based on static

features, i.e., code instruction sequences. This is motivated by the observation that

if malware programs share common traits in their code instructions, they are likely

derived from the same code base, and thus, from the same families. MutantX features

a unique combination of several novel techniques to address the practical challenges

of malware clustering. Specifically, it exploits the instruction format of x86 archi-

tecture and represents a binary program as a sequence of opcodes, facilitating the

extraction of N -gram features. It also utilizes a hashing trick, recently developed in

the machine learning community to reduce the dimensionality of the extracted fea-

ture vectors, significantly reducing the memory cost and computational complexity of

clustering. Our comprehensive evaluation on a MutantX prototype using a database

of more than 100,000 malware samples has shown that it can correctly cluster more

than 80% of input samples within 2 hours, achieving a good balance between accuracy

and scalability.

1.5.3 Automatically Creating String Signatures for AV Detection

The dissertation also develops the first automatic string-signature generation sys-

tem, called Hancock, that takes a set of malware programs as input and automatically

creates string signatures with extremely low false-positive rates and maximum cov-

erage. The main challenge faced by Hancock is the difficulty in ensuring that its

generated string signatures have sufficiently a low false-positive rate without access-

ing all the goodware in the wild. Based on the results of studying many false-positive

signatures, the dissertation proposes several novel techniques that effectively overcome

the false-positive problem of machine-generated string signatures: a scalable good-

11

ware modeling technique that can accurately estimate the occurrence probability of

arbitrary byte sequences in goodware programs, a content-aware string signature can-

didate selection algorithm that checks if a candidate is part of a library function or

sufficiently unique, and a set of diversity-based string signature filtering techniques

that estimate a candidate’s false-positive likelihood based on the similarity among

the malware files it covers. Incorporating these techniques together into the Hancock

prototype, we conduct experiments on numerous real-world malware programs and

demonstrate that the string signatures automatically generated by Hancock can in-

deed meet the false-positive rate requirement of 0.1%. Finally, we improve Hancock

by adding the capability to generate multi-component string signatures, where mul-

tiple disjoint byte sequences make up a single string signature. These signatures are

more effective than traditional single-component string signatures in terms of both

coverage and false-positive rate.

1.5.4 Integrating Static and Dynamic Analyses

To investigate the feasibility and the potential of integrating static and dynamic

malware analyses, we develop DUET for malware clustering based on the concept of

clustering ensembles. The basic idea is to combine the clustering results from both

types of approaches so that they complement each other, reducing the respective

limitations of dynamic and static analysis alone. For instance, static analysis can-

not process malware programs packed with sophisticated packers, which are mostly

irrelevant to dynamic analysis. On the other hand, a dynamic approach often fails

to properly handle trigger-based malware programs or those that detect virtual en-

vironments (e.g., VMware and Qemu); in these instances,static analysis could easily

extract features from all the code paths without being confused by the evasion tech-

niques. As a result, the proposed techniques provide a way to represent the consensus

across multiple clustering algorithms and account for their effectiveness on different

12

types of data. The outcome of this hybrid approach is a set of malware clusters

of higher quality and with better coverage than those created by a single approach

alone. To achieve this goal, we first build an automatic malware behavior monitor-

ing framework, taking advantage of VMware VIX API [109] and system-call hooking

tools such as Strace [16]. The framework enables automatic execution of malware

binaries inside virtual machines, collecting all system calls with detailed arguments

and enabling a comprehensive view of malware behavior. Then, the goal of DUET

is to systematically integrate two sets of clusterings (i.e., from static and dynamic

analyses) into a coherent set. The main challenge is that the number and shape of

the clusters provided by the individual solutions may vary with the type of clustering

methods and their particular view of the data. Even worse, the resulting clusterings

may be contradictory to each other. To address these challenges, we exploit cluster-

ing ensembles [95] and clustering quality assessment [1] to reconcile the differences

between clustering algorithms. Our comprehensive experimental results demonstrate

that DUET is able to improve coverage by 20–40%, while keeping the precision near

the optimal achievable by any individual clustering algorithm alone.

1.6 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter II describes our ap-

proach for efficiently indexing a prodigious malware graph database, together with

the description and evaluation of the prototype SMIT. In Chapter III, we present

and evaluate a static-feature-based analysis system, MutantX, for efficiently cluster-

ing a large number of malware programs into families. Chapter IV provides the

detailed design and implementation of the automatic string-signature-generation sys-

tem, Hancock, and demonstrates its applicability on real-world malware samples.

Chapter V presents DUET, which efficiently integrates static and dynamic clustering

approaches. Finally, Section VI concludes this dissertation.

13

CHAPTER II

SMIT: Large-Scale Malware Indexing Using

Function-Call Graphs

2.1 Introduction

With the advent of automated malware development toolkits, creating new vari-

ants of existing malware programs to evade the detection of anti-virus (AV) software

has become relatively easy even for un-skilled aggressors. This has led to a huge surge

in the number of new malware threats in recent years. According to Symantec’s latest

Internet Threat Report [97], the company received 499,811 new malware samples in

the second half of 2007 alone. The first step to process any received malware sample

is to determine if the sample is indeed malicious. Currently, this step is largely done

manually and thus is a major bottleneck of the malware processing workflow. Be-

cause most new malware samples are variants of previously-known samples through

mutation of their source or binary code, one way to ascertain the maliciousness of a

sample is to check if the sample is sufficiently similar to any previously-seen malware

program. We describe the design, implementation and evaluation of a graph-based

malware database management system, called SMIT (Symantec Malware Indexing

Tree) that is developed specifically to perform such checks efficiently.

Most existing malware-detection methods treat malware programs as sequences of

14

bytes, and ignore their high-level internal structures, such as basic blocks and func-

tion calls. These methods are generally ineffective against recent malware threats

for the following reasons. First, since most modern malware programs are written in

high-level programming languages and compiled into binaries, a minor modification

in source codes can lead to a significant change in binary codes. Second, the avail-

ability of automated obfuscation tools that implement techniques such as instruction

reordering, equivalent instruction sequence substitution, and branch inversion, al-

lows malware writers to easily generate new malware versions that are syntactically

different from, but semantically equivalent to, the original version.

One way to overcome the difficulties of recognizing syntactically different and

semantically identical variants of a malware program is to base the recognition algo-

rithm on a high-level structure that is less susceptible to minor or local modifications.

One example of such high-level structure is a program’s function-call graph, which

abstracts away byte- or instruction-level details and is thus more resilient to byte- or

instruction-level obfuscations commonly employed by malware writers or malware de-

velopment tools. Moreover, because a program’s functionality is mostly determined

by the library or system calls it invokes, its function-call graph provides a reason-

able approximation to the program’s run-time behavior. Therefore, the function-call

graphs of the malware variants that are derived from the same source or binary code

are often similar to one another. By representing each malware program in terms of

its function-call graph, we translate the problem of finding a malware sample’s closest

kin in a malware database into one that searches for a graph’s nearest neighbor in a

graph database.

Our work is unique and different from the previous work on graph database query

processing for the following three reasons. First, most previous graph database re-

search focused on exact graph or subgraph matching, which requires a solution to

the graph or subgraph isomorphism problems (both are well-known NP problems).

15

However, since malware variants are rarely subgraphs of one another, exact graph

or subgraph matching is too restricted to be useful for identifying malware variants.

Instead, SMIT supports graph-similarity search, which, given a query graph, pinpoints

graphs in a database that are most similar to the query graph. Second, because the

cost of computing a graph-similarity score, for example, the graph-edit distance, is

exponential in the number of nodes/edges, most existing graph-similarity query meth-

ods assume that the number of nodes in the graphs is on the order of 10s. They are

not directly applicable to SMIT because the number of nodes in a malware’s function-

call graph ranges from 100s to 1000s. For example, a variant of the Agobot family

has 2,759 nodes and 5,851 edges in its function-call graph. Third, many existing

graph-similarity query processing methods cannot scale to a large graph database;

their applicable size are mostly on the order of 1000s. Considering the enormous

number of malware samples that the AV industry receives every year, the main goal

of SMIT is to support efficient similarity queries for databases of the size that is at

least 100,000 and up to a million.

SMIT features a unique combination of techniques to address the scalability chal-

lenge associated with graph-similarity search. First, SMIT incorporates a polynomial-

time graph-similarity computation algorithm whose result closely approximates the

inter-graph edit distance. This algorithm exploits the structural and instruction-level

information associated with the malware programs underlying the input graphs. Sec-

ond, SMIT applies an optimistic vantage point tree [21] to index a graph database

to speed up nearest-neighbor graph-similarity search. Third, SMIT employs multi-

resolution indexing that uses a computationally economical feature vector for early

pruning and resorts to a more accurate but computationally more expensive graph

similarity function only when it needs to pinpoint the most similar neighbors. We have

successfully built a SMIT prototype and tested its performance using a test database

containing more than 100,000 distinct malware programs. Our evaluation results

16

demonstrate that SMIT exhibits effective pruning power and scales to large graph

databases in that the query service time grows slowly with the number of graphs in

the database.

The remainder of this chapter is organized as follows. Section 3.2 reviews pre-

vious related work on graph-database search and indexing. Section 2.3 and Sec-

tion 2.4 present SMIT’s graph-similarity algorithms, which is based on the Hungarian

method[62] and exploits properties of the underlying malware programs. Section 2.5

describes the multi-resolution indexing scheme used in SMIT. Evaluation results for

the current SMIT prototype are presented in Section 2.6. Section 2.7 discusses SMIT’s

limitations and Section 2.8 concludes this chapter.

2.2 Related Work

Most existing work detects or classifies malware based on either byte-level sig-

nature [23] or malware run-time behavior [11, 14]. For example, Kolter and Maloof

used n-gram of byte codes as features to train the classifier [57]. Rieck et al. [87]

monitored the malware behavior (e.g., changes to file system and registry) in a sand-

box and used supervised learning to predict malware families. Lee and Mody [101]

collected sequences of system-call events and applied clustering algorithms to group

malware families. Bailey et al. [11] defined malware behavior as non-transient state

changes on the system and applied hierarchical clustering algorithms for malware

grouping. More recently, Bayer et al. [14] applied Locality Sensitive Hashing on the

behavior profiles to achieve efficient and scalable malware clustering. Both signature-

and behavior-based approaches have their own limitations. The former is vulnerable

to obfuscation and ineffective in identifying new malware samples. The latter, on

the other hand, incurs expensive runtime overhead and tends to generate many false

positives. SMIT differs from both in that it builds a large malware database based

on their function-call graphs and supports efficient indexing techniques that allow

17

malware analysts to quickly determine whether a new binary file is malicious or not,

based on a nearest-neighbor search through the database.

Use of graphs is becoming prevalent in depicting structural information. There

exist several methods in the database field for indexing and querying graph databases.

Most of them focused on exact graph or subgraph matching, i.e., graph or subgraph

isomorphism. Ullmann [105] proposed a subgraph isomorphism algorithm based on a

tree search approach. However, because both graph and subgraph isomorphism are

NP problems [35] (and subgraph isomorphism is proven to be NP-complete), existing

algorithms for graph and subgraph isomorphism are prohibitively expensive to use

for querying large graphs against a graph database with a large number of graphs.

To reduce the search space, several indexing techniques have been proposed using

frequent features, including GraphGrep [91], GIndex [115], Tree+∆ [125] and TALE

[100], which use paths, graphs, trees and important nodes, respectively, as the main

frequent feature to remove graphs that do not match the query. Subgraph isomor-

phism is then used to prune false positives from the answer set. Several disadvantages

of these approaches make them unsuitable for a malware database that contains hun-

dreds of thousands large graphs. First, some of them rely on expensive isomorphism

algorithms and thus are only applicable to small graphs. Second, these approaches

require all the indexing features to be matched exactly with the query and thus, can-

not effectively capture the similarity among malware variants. For example, malware

writers often create malware variants by adding new features (e.g., logging) or some

cosmetic changes without affecting the essence of the original malware. However, a

new variant created this way will not be isomorphic to the original one even though

they are similar.

In this work, we take an approximate graph-matching approach and index the

malware graph database using graph similarity. Recently, several indexing meth-

ods for similarity queries have also been proposed [44, 116]. Most of them are still

18

built upon exact subgraph isomorphism and therefore, only apply to relatively small

graphs, allowing limited approximation. Another widely-used graph similarity metric

is the graph-edit distance, which has shown to be suitable for many error-tolerant

graph-matching applications [75]. However, because computing graph-edit distance

is NP-hard [124], using exact graph-edit distance is feasible only for small graphs.

To reduce the computational cost, several methods have been proposed to calculate

approximate edit distance [52, 74, 89]. Justice and Alfred [52] proposed a linear pro-

gramming method for computing graph edit distance, which can be used to derive

lower and upper bounds for the exact edit distance. Riesen et al. [89] developed a

polynomial-time algorithm to compute approximate graph-edit distance using Bipar-

tite Graph Matching. SMIT adopts this approach and tailors it to measure distances

between malware call graphs. To support similarity queries (e.g., K Nearest Neighbor

query), several techniques for metric space search have also been developed. Yianilos

[121] proposed the original Vantage Point Tree (VPT) structure for multi-dimensional

nearest-neighbor search. Later, several extensions to VPT have been made to im-

prove its efficiency, such as Multi-way VPT [17], Excluded Middle Vantage Point

Forest [120], Optimistic VPT [21], and M-tree [123]. They have been successfully

applied to various applications, for example, content-based retrieval on multimedia

data repositories [15].

Function-call and control-flow graphs have also been used frequently for malware

analysis. Carrera and Erdélyi [20] applied graph theory to function-call graphs for

clustering existing malware files. Kruegel et al. [60] constructed control-flow graphs

from network streams and detected polymorphic worms by identifying structural sim-

ilarities. Briones and Gomez [18] combined function-call graphs, control-flow graphs

and entropy of data blocks to automatically classify malware samples. SMIT differs

from others in that it proposes a function-call graph indexing approach towards the

important problem of malware classification. It focuses on developing an efficient

19

indexing structure to organize and query large malware databases. In addition, SMIT

utilizes a graph similarity metric based on an optimal bipartite matching algorithm

which can better capture the internal structure of the call graphs.

2.3 Function-Call Graph Extraction

Figure 2.1: The function-call graph of the malware sample Worm.Win32.Deborm.p.
Different colors are used to represent different types of functions.

A binary program’s function-call graph is a directed graph consisting of a set of

vertices (corresponding to functions), a set of directed edges (corresponding to caller–

callee relationships) and a set of labels, one for each vertex (containing the attributes

of the associated function). Figure 2.1 shows the function-call graph of a malware

sample, Worm.Win32.Deborm.p. To facilitate matching between function-call graphs,

we classify a program’s functions into three categories, represented as different colors

in Figure 2.1.

• Local functions (black nodes) are functions written by malware writers and

usually shared only by malware variants within the same family.

• Statically-linked library functions (cyan-colored nodes) are library func-

tions that are statically linked into the final distributed binary, such as Libc,

MFC, Delphi Visual Component Library, etc. They tend to be shared by mal-

ware samples from different families.

20

• Dynamically-imported functions (pink nodes) are dynamically-linked li-

brary (DLL) functions that are linked at run-/load-time, e.g., library functions

in Kernel32.dll, User32.dll, advapi32.dll, etc. Since these functions are dynam-

ically linked, their bodies do not appear in malware samples. These functions

also tend to be shared across malware families.

Given an incoming malware sample, SMIT extracts its function-call graph as fol-

lows. First, SMIT uses PEiD [51] and TrID [83] to check if the malware file is packed.

If so, SMIT applies SymPack (an unpacker developed inside Symantec) to unpack

or decrypt the malware file. To handle multi-layer packing, SMIT applies this step

recursively until the file is completely unpacked. Then, SMIT uses the popular disas-

sembler IDA Pro [45] to disassemble the malware into an assembly code representation

and identify the function boundaries. It then labels each identified function with a

symbolic name. For dynamically-imported functions, their names can be found by

parsing the IAT (Import Address Table) in the PE header [82] of the malware file.

For statically-linked library functions, e.g., strcmp and iota, SMIT utilizes IDA Pro’s

FLIRT (Fast Library Identification and Recognition Technology) [48] to recognize

their original names. Because the import and library functions are standard routines,

their names are consistent throughout all the programs. However, for local functions,

since most malware samples do not come with their symbol tables, their names are

in general unavailable. As a result, we assign all local functions with the same name

(sub) whenever their true symbolic names are unavailable in the input binary. These

local functions will later be matched based on their mnemonic sequences or call-graph

structures.

To facilitate matching of local functions, SMIT extracts from each local function the

sequence of call instructions it contains, and a mnemonic or opcode sequence from

instructions in its body. For example, “mov” is the mnemonic for the instruction

“mov eax, [0x403FBB]”. Such mnemonic sequences are more robust than instruction

21

Figure 2.2: Example of a function being represented by a mnemonic sequence and
other features.

sequences because they ignore offsets that may change due to code relocation. They

are used in the graph-similarity computation as a coarse-grained filter to identify

functions from two programs that are likely to be matched. That is, if two functions

have similar mnemonic sequences, they are likely to be the same function. SMIT also

computes the CRC of mnemonic sequences to speed up the exact matching between

sequences. With all the information collected from each function (shown in Figure

2.2), SMIT is able to construct the call graph representation for each malware file.

More formally, SMIT defines a program’s function-call graph as follows.

Definition II.1. (Function-Call Graph): A function-call graph g is a directed graph

defined by 4 tuples g = (Vg, Eg,Lg, Lg), where Vg is the finite set of vertices, each

corresponding to a function; Eg ⊆ Vg × Vg is the set of directed edges where an edge

from f1 to f2 implies that f1 contains a function call to f2, but not vice versa; Lg is

the set of labels each of which is comprised of 3 elements: symbolic function name,

mnemonic sequence and CRC value of the mnemonic sequence; Lg : Vg → Lg is the

labeling function that assigns labels to vertices.

22

2.4 Graph-Similarity Metric

Unlike many other graph database management systems, the central component

of SMIT is a graph database engine that finds the nearest neighbors of a given query

graph in a graph database. Rather than its subgraphs or supergraphs, SMIT uses a

graph-similarity metric that aims to capture the similarity among variants within the

same malware family, and that can be computed at low cost. Here we give details of

this metric: an approximate graph edit distance.

2.4.1 Graph Edit Distance

Mathematically, a metric between elements of a set X is the distance function d :

X×X → R that satisfies the following properties: non-negativity, identity, symmetry

and triangular inequality. When applied to graphs, the notion of equivalence is defined

in terms of isomorphism—if two graphs are isomorphic, then they are viewed as the

same graph. The triangular inequality plays an essential role in the development of

indexing schemes because it enables pruning of irrelevant portions of the database.

The edit distance between two graphs measures their similarity in terms of the

number of edit operations required to transform one graph to the other. For the

purpose of identifying malware variants, the graph-edit distance effectively captures

the amount of effort needed to convert one program to another at the function-call

graph level, and thus forms an intuitively appealing metric. Given any two graphs,

we define the following two elementary operations to transform one graph to another.

1. Vertex-edit operations including: σR, relabel a vertex; σIV , insert an isolated

vertex; and σRV , remove an isolated vertex.

2. Edge-edit operations including: σIE, insert an edge and σRE , remove an

edge.

An edit path Pg,h between graphs g and h is defined as a sequence (σ1, σ2, . . . , σn)

23

of elementary operations such that h = σn(σn−1

(. . . σ1(g) . . .)). To quantify this similarity, a cost is assigned to each edit operation:

c : σR, σIV , σRV , σIE , σRE → R. Then, the cost of an edit path is the sum of the costs

of all the constituent edit operations, i.e., P = (σ1, σ2, . . . , σn) as c(P) = Σn
i=1c(σi).

The edit distance between two graphs is defined as the minimum cost of all edit paths

between them, i.e., ed(g, h) = min c(Pg,h). If all costs are strictly positive, with

insertion cost equal to removal cost, then the graph edit distance satisfies all the

mathematical properties associated with a metric. Furthermore, for any graph q, the

sum of the distances ed(g, q) and ed(q, h) is the cost of the edit path transforming

g first into q and then into h, which is itself an edit path from g to h. Hence, by

the minimality of edit distance over all edit paths, the triangle inequality ed(g, h) ≤

ed(g, q) + eg(q, h) is maintained. Therefore edit distance is a metric on the space of

graphs. In SMIT, we assign a unit cost to each edit operation.

2.4.2 Approximating Graph-Edit Distance Using Graph Matching

The main drawback of graph-edit distance is its computational complexity, which

is exponential in the number of nodes of the graphs. Thus, application of graph-

edit distance is feasible only for relatively small graphs, say those with fewer than

50 nodes. Because the number of nodes in malware graphs is significantly larger,

we develop heuristic algorithms that can closely approximate the ideal graph-edit

distance using graph matching techniques. To this end, we first define the notion of

graph matching which is a relaxed notion of correspondence between two graphs used

later to calculate the graph edit distance.

To match two unequal-size graphs g and h, we extend the vertex set of each

graph as: V ∗
g = Vg

⋃

ǫg and V ∗
h = Vh

⋃

ǫh, where ǫg and ǫh are sets of dummy nodes

created to account for insertions and deletions. In other words, a match from u ∈ Vg

to a dummy node implies the deletion of u from graph g. Similarly, insertion is

24

denoted by matching a dummy node to v ∈ Vh. Hence, if |Vg| = m and |Vh| = n,

we take |ǫg| = n and |ǫh| = m, We set |ǫg| = |Vh| and |ǫh| = |Vg| so that the

extended graph has the same number of nodes. We denote the extended graph for g

as g∗ = (V ∗
g , Eg,Lg, Lg ∪ {ǫg}) and define the graph matching as:

Definition II.2. (Graph Matching) A matching between two graphs g and h is a

bijective function φ() between two vertex sets, φ : V ∗
g → h∗

g such that ∀v ∈ V ∗
g , φ(v) ∈

V ∗
h .

Given a graph matching φ between two graphs g and h, the distance (edit cost)

between them can be computed by considering mismatched nodes and edges with the

following algorithm.

1. Let CE represent the number of edges that are mapped from one graph to

the other. Specifically, for any edge (i, j) ∈ Eg, if (φ(i), φ(j)) ∈ Eh, then the

matching preserves the edge (i, j) and the counter CE is incremented by 1.

2. EdgeCost = (|Eg| −CE)× c(σRE) + (|Eh| −CE)× c(σIE). Since we assign unit

cost to each edit operation, EdgeCost = |Eg|+ |Eh| − 2× CE.

3. For any node in graph g that is matched to a dummy node in h, we add c(σRV)

to the NodeCost to penalize for deleting the node. Similarly, when a node in

graph h is matched with a dummy node in g, we add c(σIV) to the NodeCost.

4. For any two matched nodes, we add c(σR) to the NodeCost if they have different

labels, i.e., the relabeling cost.

5. Edit distance under φ is: edφ(g, h) = NodeCost + EdgeCost.

Because graph-edit distance is defined as the minimum edit cost between two

graphs, the above algorithm casts the problem of computing graph-edit distance into

finding a function φ that minimizes the total matching cost, i.e., a minimum-cost

25

bipartite matching problem, where each of the two sides of the bipartite graph cor-

responds to nodes from one of the two input graphs. whose edit distance is to be

computed. An optimal (minimum-cost) bipartite matching can be found in polyno-

mial time (O(n3)) by using the well-known Hungarian algorithm [62]. SMIT uses an

well-known optimal bipartite matching algorithm called the to solve this problem. To

further reduce the performance overhead of the Hungarian algorithm, SMIT employs

various optimizations that exploit properties of the malware programs underlying

their function-call graphs. These optimizations are discussed next.

2.4.3 Optimizations

2.4.3.1 Exploiting Instruction-Level Information

Since the complexity of the Hungarian algorithm depends on the number of nodes

in the input graphs, the first optimization aims to reduce the number of nodes in

the two input graphs that need to be matched by removing those nodes that can

be matched through other cheaper means. Specifically, SMIT uses each function’s

mnemonic sequence, CRC value of its mnemonic sequence and symbolic name to

quickly determine if a function in one input graph matches another function in the

other input graph, and compute a common function set C = {v : v ∈ Vg

⋂

Vh}

containing:

• Functions that IDA Pro identifies as static library functions or dynamically-

imported functions and that share the same symbolic names in two input graphs.

• Functions that have the same mnemonic sequence and thus the same CRC value

of their mnemonic sequence; and

• Functions that have similar mnemonic sequences. We compute the edit dis-

tance between the mnemonic sequences of two functions, and consider them a

match when the distance is below 15% of the length of the shorter mnemonic

26

sequence of the two, where the threshold 15% is chosen empirically. We use

a greedy algorithm to find all matched functions. That is, we start with two

functions that have the smallest edit distance; if their distance is smaller than

the threshold, they are marked as a match and put into C. Then, we repeat

the same procedure with respect to the remaining functions until no function

pair whose edit distance is smaller than the threshold exists.

To further decrease the number of nodes to which the Hungarian algorithm needs

to be applied, we apply a neighborhood-driven algorithm [20] that exploits the matched

neighbor information associated with functions. Let’s call the functions in C = {v :

v ∈ Vg

⋂

Vh} atomic functions and let V r
g = Vg − C and V r

h = Vh − C denote the

sets of the remaining functions in g and h that are not yet matched. A call-sequence

signature for each remaining function is a sequence of calls to atomic functions in

this function. If the call-sequence signatures of two functions f1 ∈ V r
g and f2 ∈ V r

h

are identical, meaning that they call the same sequence of functions, we generate a

match between f1 and f2 because they are likely very similar or the same. Whenever

a new match between two local functions is found, we move them from V r
g and V r

h

to the common function set C, and repeat the algorithm until it yields no additional

matches. At the end of the process we apply the Hungarian algorithm to the remain-

ing V r
g and V r

h . For malware variants from the same family, this optimization can

match over 90% of functions. On the other hand, the number of matched functions

for malware from different families is often below 20, most of which are shared library

functions.

2.4.3.2 Bipartite Graph Matching

The problem of finding a min-cost bipartite graph matching can be solved in

polynomial-time using the Hungarian algorithm [62]. Once the lowest-cost match is

found, it can be used to create an edit path and compute an estimate of the true edit

27

distance (Section 2.4.2). Note that, although the Hungarian algorithm is optimal,

the edit-distance result returned by the match function φ that the algorithm finds is

only suboptimal [62], because the cost matrix used to search for the optimal node

assignment is computed without global knowledge (to be elaborated). To mitigate

this problem, we develop an optimized Hungarian algorithm that biases the matching

process towards the neighboring functions of already-matched functions. Comparing

with the original algorithm, the improved Hungarian algorithm often finds a better

matching function φ that yields closer approximation to the true edit distance.

The algorithm first constructs a complete bipartite graph with vertex classes X =

V r
g

⋃

ǫg and Y = V r
h

⋃

ǫh, where ǫg and ǫh are sets of dummy nodes with |ǫg| = |V r
h |

and |ǫh| = |V r
g |. In this bipartite graph, each edge is assigned a weight corresponding

to an estimate of the cost of mapping a vertex x ∈ X to a vertex y ∈ Y . The choice of

weights for the edges of the bipartite graph is a vital component of the algorithm, as

well-assigned weights that are closer to the real cost will result in a near-optimal edit

path, and thus, the Hungarian estimate will more closely approximate the true edit

distance. Assume the first graph gr has size n, and the second graph hr has size m, we

form an (m+n)× (m+n) cost matrix. In the top left we have an n×m sub-matrix

giving the costs of matching a real node in g to a real node in h. In the bottom right

is an m×n zero sub-matrix, representing the costs of associating a dummy node with

another dummy node. Finally, the off-diagonal square sub-matrices give the cost of

pairing a real node from a graph to a dummy node from the other graph (thereby

deleting it). On the diagonal, these matrices store the cost of deleting a node and all

its incident edges (both In and Out). We set all non-diagonal components of these

matrices to∞ to ensure that each real node is associated with a unique dummy node.

This will simplify the matching process.

In [89], the cost of matching any two real nodes was taken simply as the relabeling

cost. To find a better estimate of the true edit cost, we improve the algorithm by

28

considering the edges as well. Specifically, the cost estimate, Ci,j, of matching node

i to node j, is the sum of the Relabeling Cost and the Neighborhood Cost,

where the latter is calculated from the difference between i and j’s adjacent nodes.

This introduces structural information by giving a lower-bound for the edit cost of

matching the neighbors of i and j.

1. Relabeling Cost: If the label of node i is not the same as the label of node j,

we set Ci,j to be the relabeling cost (σR).

2. Outgoing Neighborhood Cost: For any graph g and node i ∈ Vg, Ng
Out(i) ≡

{Lg(k)|(i, k)} ∈ Eg. Then, the outgoing neighborhood cost of matching node i

to node j ∈ Vh is |Ng
Out(i)|+ |Nh

Out(j)| − 2× |Ng
Out(i) ∩Nh

Out(j)| to Ci,j.

3. Incoming Neighborhood Cost is similarly defined with the incoming edges.

The cost computed from the above algorithm is a lower-bound of the true edit

cost for the following reasons. As mentioned in Section 2.3, due to lack of symbolic

information for all local functions written by malware writers, we assign the same

label to those functions. As a result, when computing the estimated matching cost

between i and j, any local functions in i’s and j’s neighborhood are conservatively

considered matched (i.e., incurring no matching cost). However, in the final matching

function φ (found by applying the Hungarian algorithm on the cost matrix), these two

neighbor nodes can be unrelated, in which case, the true edit cost between i and j is

higher than the estimate. In other words, because the cost matrix is predetermined,

the algorithm will only be able to consider the local structure of the nodes without any

information about the matching. This lack of global knowledge when computing the

cost matrix leads to the sub-optimality of the resulting edit distance as calculated

by the algorithm in Section 2.4.2, even though the Hungarian algorithm by itself

is optimal in the sense that it finds the min-cost matching according to the pre-

determined cost matrix. To alleviate this problem, in the next subsection, we present

29

our improved Hungarian algorithm that actively exploits the structural information

of already-matched nodes as the algorithm progresses.

2.4.3.3 Neighbor-Biased Hungarian Algorithm

One drawback of the standard bipartite matching approach to computing the

graph-edit distance is that it assumes a fixed cost of matching two function nodes.

However, as observed in [44], when two nodes are matched, their neighbors are also

likely matched, because if more neighbors of a node are matched with those of another

node, the edge-edit cost of matching these two nodes will decrease (thus reducing the

real edit cost). Based on this intuition, we develop a modified Hungarian algorithm

that adaptively biases the order of matching towards those pairs of nodes whose

neighboring nodes have already been matched.

Given two malware call graphs g and h, we first find the initial set of matched

functions (Section 2.4.3.1). For each matched function f , we decrease the cost (in

the cost matrix) of matching all the unmatched neighbors of function f in g with

their counterparts in h by a predefined percentage. Then, the Hungarian algorithm is

applied to the remaining graphs gr and hr with the updated cost matrix. In each it-

eration of the algorithm, whenever two functions, for instance (u, v), are chosen to be

matched, the costs of matching their unmatched neighbors in the cost matrix are sim-

ilarly lowered, thus increasing their chances of being matched later by the algorithm.

The procedure repeats itself until a complete match is found in the bipartite graph.

As an additional optimization, whenever (u, v) is selected to be matched, the amount

of cost reduction for their unmatched neighboring functions is positively proportional

to the matching quality of (u, v), defined as the percentage difference between the

mnemonic sequences of (u, v). Intuitively, the extent to which the Hungarian algo-

rithm is biased toward the neighbors of a matched node pair is proportional to the

degree to which they are considered matched. The pseudocode for the new algorithm

30

Figure 2.3: Multi-resolution indexing structure.

is shown in Algorithm1.

The above algorithm generates the cost-minimizing matching between function

nodes φ : Vg∪ ǫg → Vh∪ ǫh, from which the edit-path cost (denoted as edφ(g, h) under

φ) can be calculated, which is a close approximation to the true edit distance. Note

that edφ(g, h) gives the cost of a particular edit path from g to h. The minimality

of edit distance across all edit paths ensures that the distance from the Hungarian

method is an upper bound on the edit distance. That is, for any two graphs g and h,

ed(g, h) ≤ edφ(g, h).

2.5 Multi-Resolution Indexing

Having defined a similarity metric, the next important problem is to efficiently

index our graph database such that when a new query comes along, the graphs most

similar to it can be retrieved with as few distance computations as possible. In this

section, we introduce our multi-resolution indexing scheme to achieve this goal.

31

Algorithm 1 NBHA: Neighbor-Biased Hungarian Algorithm

1: Input: A bipartite graph with vertex classes X = V r
g

⋃

ǫg and Y = V r
h

⋃

ǫh. and a
Cost Matrix C

2: Output: the minimum-cost node Matching M

3: Create a weight matrix ω where ωi,j = max{Ci,j}−Ci,j so that the problem is converted
to the maximum-weight matching in bipartite graphs based on the weight matrix ω

4: STEP 1:

5: Find an initial feasible vertex labeling function ℓ : V →R such that ℓ(x)+ℓ(y) ≥ ω(x, y)
and an initial matching M in the Equality Graph G = (V,Eℓ) where Eℓ = {(x, y) :
ℓ(x) + ℓ(y) = ω(x, y)}.

6: STEP 2:

7: if M is perfect i.e., every vertex is adjacent to some edge in M then

8: GOTO DONE
9: else

10: Pick a free vertex u ∈ X and set S = {u}, T = ∅
11: end if

12: STEP 3:

13: Define neighbor of u ∈ V and a set S ⊆ V to be Nℓ(u) = {v : (u, v) ∈ Eℓ} and
Nℓ(S) =

⋃

u∈S Nℓ(u)
14: if Nℓ(S) = T then

15: αℓ = mins∈S,y/∈T {ℓ(x) + ℓ(y)− ω(x, y)},

ℓ(v) =







ℓ(v)− αℓ if v ∈ S

ℓ(v) + αℓ if v ∈ T

ℓ(v) otherwise.
16: else

17: Pick y ∈ Nℓ(S)− T

18: if y is matched to some vertex say z then

19: S = S
⋃{z}, T = T

⋃{y}
20: GOTO STEP 3

21: else

22: Define slackx[y] to be the vertex that ℓ(slackx[y])+ℓ(y)−ω(slackx[y], y) = slack[y]
where slack[y] = min

x∈S
(ℓ(x) + ℓ(y)− ω(x, y).

Define prev[cx] to be the parent vertex of cx in the alternating path
23: for cx = slackx[y], cy = y, ty; cx ≥ 0; cx = prev[cx], cy = ty do

24: ty = col mate[cx]
25: row mate[cy] = cx {Augment M}
26: col mate[cx] = cy

27: for each i ∈ neighbors of cx and j ∈ neighbors of cy do

28: increase ω(i, j) {Bias towards the matching between cx’s neighbors and cy’s
neighbors}

29: end for

30: end for

31: GOTO STEP 2

32: end if

33: end if

34: DONE: Matching pairs are indicated by two arrays: row mate and col mate

32

2.5.1 Overview

For the purpose of identifying malware variants, it is not necessary to pinpoint

the exact nearest neighbor for a new malware file. As long as one can identify a

neighbor that is close enough to the new file, one can “convict” it. For scalability

to a large database, SMIT exploits this latitude and incorporates a multi-resolution

indexing technique that makes a good balance between pruning efficiency and search

effectiveness.

Conventional indexing methods decompose a database into partitions and orga-

nize them hierarchically, so that a search can focus on a subset of these partitions

at each level of the hierarchy, thus reducing the total number of database items that

it needs to touch. These indexing methods are inadequate for SMIT for two reasons.

First, SMIT requires an indexing scheme that supports nearest-neighbor search, rather

than exact search that conventional methods are designed for. Second, since com-

putation of graph similarity is expensive, SMIT must minimize the number of such

computations. For instance, our evaluation shows that a modern desktop PC can

perform an average of 20 graph-similarity computations per second for our malware

set. At this performance level, even if an indexing scheme could reduce the number

of graphs that a search needs to touch, to less than 10% of the database, it will still

take hours to answer a single query for a database of 1,000,000 malware graphs.

To address the first problem, SMIT organizes the input malware graph database

using the optimistic Vantage Point Tree (VPT), which is designed for nearest-neighbor

search and can exploit the fact that sufficiently near neighbors are usually good

enough. To solve the second problem, SMIT uses a two-level indexing scheme, where

the first level is a standard B+-tree index based on coarse-grained malware features

that can be computed inexpensively and that can effectively prune irrelevant parts

of the malware database. Graphs associated within each leaf node of the B+-tree

index are organized with a second-level index, i.e., the VPT Tree, which uses a more

33

accurate but computationally more expensive graph-similarity function to pinpoint

the most similar neighbors. The two-level indexing (Figure 2.3) in SMIT is an instance

of multi-resolution indexing because similarity functions with different accuracy and

computational requirements are used in the different levels of the index tree.

2.5.2 B+-tree Index Based on Malware Features

The feature vector used in SMIT’s first-level index must satisfy two requirements.

First, its computation cost must be low. Second, it must be able to identify parts

of the malware database that are not relevant to a given malware query. That is,

the feature vector needs to be able to pinpoint the obviously irrelevant, but not

necessarily the most relevant. Specifically, SMIT uses the following feature vector

v = (Ni, Nf , Nx, Nm) derived from the assembly code of each malware program,

where:

• Ni: total number of instructions,

• Nf : total number of functions,

• Nx: total number of control transfer instructions, such as jumps and calls, which

indicates the degree to which a program deviates from a straight-line code and

thus is a good approximation of a program’s complexity, and

• Nm: median number of instructions per function.

The feature vector has the following property: if two malware programs are similar

to each other, so are their feature vectors. However, if two malware are dissimilar,

their feature vectors may or may not be similar. Therefore, it is only useful when the

feature vectors of two malware are drastically different, meaning that the underlying

programs are definitely different, but not when their feature vectors are somewhat

different or similar.

34

Because leaf nodes in a B+tree need to be ordered by their keys (feature vectors),

we impose a total ordering among feature vectors by giving priority to more useful

features (Ni > Nf > Nx > Nm). We also augment the B+ tree structure by adding

a backward sibling pointer to each leaf node, which points to the previous leaf node.

Together with the forward sibling pointer in the B+-tree, it facilitates navigation

across leaf nodes and indexed search.

Given a malware query, SMIT first extracts its feature vector and uses it as a key

to search the B+-tree index. Suppose the probing ends in a lead node X. SMIT then

follows X’s forward and backward sibling pointers to locate N leaf nodes before and

after X, and further explores the second-level index trees (VPT) associated with these

2N +1 leaf nodes. Here N is an empirically-determined parameter that is designed to

reduce the probability of the feature vector pruning away sufficiently close neighbors.

Because these 2N + 1 VPTs are independent of one another, they can be queried in

parallel to reduce the query response time. Finally, the K nearest neighbors returned

from the exploration of each of the 2N +1 VPTs are combined to determine the final

K nearest neighbors.

2.5.3 Optimistic Vantage Point Tree

The Vantage Point Tree (VPT) is designed for database items whose similarity

to each other must be explicitly computed (e.g., graphs), and exploits the triangu-

lar inequality to prune irrelevant database items. To construct a VPT for a graph

database, we first select a graph as the root pivot V , compute the distance between

V and all the remaining graphs, and then divide these graphs into M approximately

equal-sized partitions (Pi, i = 1, 2, ..., m) based on their distance to V . Geometrically,

this method first places all graphs essentially split the area around the pivot into m

concentric areas, each corresponding to a child of the current node. In addition, at

the pivot V , we record the distance range associated with each partition Pi, which is

35

represented by low[i] and high[i]. This same procedure is repeated for each partition

recursively, until all partitions fall below a certain size. The construction of the index

takes O(n2) time in the worst case where n is size of the database. In SMIT, n is equal

to the number of elements in the leaf node of the higher level B+-tree structure.

VPT supports two types of search: range and K-nearest-neighbor (KNN) search.

SMIT focuses on KNN search because malware analysts are more interested in locating

all existing malware samples that are most similar to a new sample. In addition, it

is quite hard for user to specify a meaningful range value. As a result, here we only

present the k-NN search algorithm. Given a query graph g, the K-nearest-neighbor

(KNN) search of a VPT with a root pivot p starts with computation of the edit

distance d(p, q) between p and q, and then decide which partitions to explore further

by exploiting the triangular inequality of the distance metric. More specifically, let

δnow be a parameter indicating to the search algorithm that it should ignore any

database item whose distance to the query q is larger than δnow. Given δnow, the

search only needs to explore those partitions whose distance range overlaps with the

range of interest, [d(p, q) − δnow, d(p, q) + δnow], as shown in Figure 2.4. That is,

partition Pi is pruned if and only if

high[i] < d(p, q)− δnow or low[i] > d(p, q) + δnow. (2.1)

This search procedure is applied recursively at each visited node until all nodes are

either pruned or visited.

Eq. (2.1) shows that at each node, the pruning power of the VPT search algorithm

is dependent on the value assigned to δnow. If δnow is small, only a few partitions need

to be traversed. However, too small a δnow may lead to pruning of the partitions that

actually contain the nearest neighbors. One way to keep δnow as small as possible is to

update it during the search. At any point in a KNN search, the algorithm remembers

36

pivot

query

range

Partition1

Partition 2

Partition 3
Partition 4

Figure 2.4: Pruning on a VPT based on the triangular inequality

the K closest neighbors that it has encountered so far together with their distance to

the query graph q in a priority queue, and sets δnow to the largest of these distance

values after accumulating K closest neighbors. Every time the search encounters a

database item p whose d(p, q) is smaller than δnow, it adds p together with d(p, q) to

the priority queue and updates δnow accordingly. Another way to reduce the value

of δnow is to traverse the partitions that are closer to the query graph earlier than

those that are farther away. For example, in Figure 2.4, partition 3 is traversed before

partition 2 or 4, because closer partitions are more likely to contain closer neighbors.

To make an optimal balance between accuracy and efficiency when initializing

δnow, we take an optimistic approach (OVPT) [21] by starting with a small initial δnow

value, and exponentially increasing it at subsequent iterations if previous iterations

fail to identify K nearest neighbors. Specifically, for a VPT rooted at node p, the

initial δnow is chosen to be

δnow =
m−1
max
i=1

low[i + 1]− high[i]

2
+ 1 (2.2)

where low[i] and high[i] are the lower and upper ends of the i-th partition’s

distance range. This choice of the initial δ value guarantees that for any query graph

37

q, at least one partition will be traversed, because d(q, p) will fall within at least one

partition’s extended distance range, [low[i]− δnow, high[i] + δnow].

When the initialized value of δnow is too small, the search may not find all K

nearest neighbors. In such a case, SMIT increases the initialized value δnow using

δnow,M = δnow,M−1 + α or δnow,M = δnow,0 ∗ βM−1where α and β are additive and

multiplicative constants and M is the number of iterations that have been attempted

to find the K nearest neighbors. To reduce the performance overhead of OVPT, all

the distance-computation results in previous iterations are cached so that no distance

computation may ever be done more than once in an OVPT search.

The performance gain of OVPT comes from two sources. First, we notice empiri-

cally that there is a big difference between the time needed to locate the K nearest

neighbors and the time needed to verify that they are indeed nearest neighbors. Using

a smaller initial δnow value significantly reduces the verification cost because it cuts

down the number of candidates considered, especially when the query graph is indeed

close to its nearest neighbors. Second, the optimistic approach carries almost no ad-

ditional performance overhead because all distance-computation results in previous

iterations are cached and can thus be readily reused. More concretely, any partitions

that are not pruned in the (M − 1)-th iteration will never be pruned in the M-th

iteration because δnow,M−1 < δnow,M . This means that all the distance computations

in previously iterations are necessary, and their caching guarantees that no distance

computation will be done more than once.

2.6 Evaluation

In this section, we apply SMIT to a large collection of real-world malware files

and evaluate its performance using K-nearest-neighbor (K-NN) search queries based

on the following three metrics: effectiveness (whether the results produced by SMIT

are meaningful and similar to those produced by human analysts), efficiency, and

38

scalability. We focus on the K-NN search, because, given the polymorphic nature of

modern malware, finding the most similar samples in the database to a given malware

file is more useful in determining if it is malicious than pinpointing its exact match

or the ones that are sub-graphs/super-graphs of it.

2.6.1 Experiment Setup

The dataset used in the evaluation contains 102,391 unique malware programs

recently submitted to Symantec Corporation. These malware samples range from

simple trojan/virus (less than 100 instructions) to considerably larger malware (more

than hundreds of thousand instructions). All the malware files had been analyzed by

human experts and classified into families. Each file is labeled with a VID (Virus ID)

representing the malware family to which it belongs. As a result, we can determine

that a binary file used in a query is a variant of an existing malware file if both share

the same VID (i.e., belong to the same family). In total, these malware programs

come from 1747 families. We first create a function-call graph representation for

each malware file. The graphs have an average number of 504 nodes and 1074 edges,

and a maximum number of 37809 nodes and 83737 edges. We implement SMIT in

C++ and conduct all experiments on a Dell R905 Server with 1.90 G Quad-Core

CPU running Windows Server 2003. SMIT is a CPU-bound application because of

the graph distance computation and has a moderate memory requirement (less than

100MB).

To evaluate the performance of SMIT, we use the following three metrics: 1) the

percentage of index entries that are accessed to locate the K nearest neighbors of

the query file; 2) the percentage of the returned K-NN malware files that are in the

same family as the query file; and 3) the average runtime of K-NN search. The

first metric measures the average portion of the SMIT index tree that needs to be

examined to service a query. The second reflects the accuracy and effectiveness of

39

Feature Min Max Average Median STD
Ni 1 1807413 24233.0 7319 55390.9
Nf 1 37130 480.6 85 1077.6
Nx 1 9998 39.1 18 181.4
Nm 0 731350 4932.3 1090 10519.7

Table 2.1: Statistics of different features in the feature vector

the SMIT index tree in correctly identifying a new malware. The last one represents

the total computation cost for each query. Because SMIT comprises two indexing

structures (B+tree and OVPT), we first evaluate them separately and then their

aggregate performance when they are combined.

2.6.2 Effectiveness of B+-tree Index

The first-level B+-tree index in the SMIT index tree uses a computationally eco-

nomical feature vector representation to attain pruning-efficiency. The minimum,

maximum, average and median value for different features in this feature vector are

summarized in Table 2.6.1, showing that the value distribution of different features

varies significantly across malware samples.1 This wide variation gives the feature

vector considerable pruning power and enables SMIT to search only a small number

of most relevant VPT trees.

SMIT’s B+ tree index takes the following two parameters: 1) the fan-out of each

B+ tree node (the maximum number of data entries in each node); 2) the number

of adjacent leaf nodes (denoted as N) whose associated second-level VPT trees are

further searched. As the fan-out parameter increases, more keys and pointers can be

packed into a B+ tree node, fewer nodes are required to hold the index, and fewer tree

nodes need to be accessed during a query search. However, larger fan-out parameters

also require bigger second-level VPT trees to be explored to achieve better accuracy.

1There are very low feature values such as 0 or 1, because some malware employ various packing
or anti-disassemble techniques and cannot be successfully disassembled.

40

This is a typical trade-off between query result accuracy and computation overhead.

According to our experience, setting the fan-out parameter to between 300 to 400

achieves a good balance between query result accuracy and computation overhead.

By default, SMIT sets the fan-out of its B+ tree index to 400, which results in a three-

level B+ tree with 209 leaf nodes. On average, each leaf node contains 273 keys (the

occupancy ratio 68.3%) and 398 malware programs (some are mapped to the same

key). 65% of time, malware programs that are mapped to the same key also have the

same VID, i.e., belong to the same malware family.

To evaluate the effectiveness of SMIT’s B+ tree index, we randomly select 426

unique malware files and use them as queries against the SMIT’s malware database.

For 90.8% of these queries, the returned B+tree leaf node contains at least one mal-

ware sample that belongs to the same family as the query, and for 96.2% of them,

the returned leaf node or its immediate two neighboring leaf nodes contain at least

one malware sample that belongs to the same family as the query. Although the

end-to-end accuracy in pinpointing a query file’s nearest neighbor also depends on

SMIT’s second-level indexing, i.e., OVPT, and is thus smaller, the high success rate of

finding samples of the same malware family as the query file in the same or close-by

leaf nodes, demonstrates the efficacy of SMIT’s choice of feature vector as used in its

B+ tree index.

2.6.3 Quality of Graph-Similarity Metric

Accurate graph-distance metric is crucial for SMIT’s VPT to correctly prune away

irrelevant parts of its malware graph database while servicing K-NN search queries.

Therefore, we first evaluate the quality of the proposed graph distance metric—

Neighbor Biased Hungarian Algorithm (NBHA). We compare NBHA with the orig-

inal Hungarian Algorithm (OHA) [89], the Neighbor Biased Matching (NBM) algo-

rithm [44] and a Greedy algorithm, which computes the distance between two graphs

41

from an edit path formed by repeatedly matching the most similar node pairs ac-

cording to the cost matrix. The results of all these algorithms, including NBHA,

have been shown to be an upper bound for the Exact Graph-Edit Distance (EGED).

Because EGED computation incurs an exponential cost, we cannot directly compare

NBHA with EGED. Instead, we qualitatively evaluate the closeness of NBHA to

EGED by computing a graph distance metric called the multi-set degree-vector dis-

tance (MSDV), which compares the vertices’ label and in/out degree between two

graphs without considering their connectivity structure. It has been shown that the

MSDV distance is a lower bound for the exact edit distance [28].

We randomly select 66 malware graphs, and compute their pair-wise distance us-

ing the graph-distance metrics, NBHA, OHA, NBM, Greedy and MSDV. We order

the pair-wise distance values obtained from the NBHA algorithm, and present the

distance values from other algorithms according to this order. The results are shown

in Figure 2.5, where each point on the X-axis corresponds to a particular pair of

graphs. In general, NBHA is a good approximation to EGED. By definition, true

edit distance (EGED) lies between its upper-bound metrics (NBHA, OHA, NBM,

Greedy) and lower-bound metric (MSDV). Because in many cases the upper bounds

and lower bound shown in Figure 2.5 are close to each other, these bounds empir-

ically approximate EGED effectively. Moreover, NBHA outperforms other upper-

bound metrics (OHA, NBM and Greedy algorithm) in terms of accuracy, because in

most cases NBHA’s results are smaller than other algorithms’. For upper-bound met-

rics, smaller metric values imply more accurate approximation to EGED. Specifically,

NBHA results are smaller than or equal to those of OHA and NBM, about 95% and

70% of all graph-distance computations in this experiment, respectively.

Next, we evaluate the accuracy and effectiveness of NBHA in terms of the similar-

ity of NBHA results to those produced by human analysts. Specifically, if the distance

between two malware files is considered sufficiently small according to NHBA, would

42

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

200

400

600

800

1000

1200

1400

Graph Pairs

G
ra

ph
 D

is
ta

nc
e

MSDV
Greedy
Original Hungarian Algorithm (OHA)
Neighbor Biased Matching (NBM)
Neighbor Biased Hungarian Algorithm (NBHA)

Figure 2.5: Quantitative comparison among graph distance metrics from NBHA,
OHA, NBM, Greedy and MSDV. The X-axis corresponds to a sequence
of graph pairs.

the human analysts classify them into the same malware family? To answer this

question, we randomly selected from the test database 991 malware samples that be-

long to 122 malware families. In each experimental run, we first select one malware

sample as a query and build up a VP Tree for the remaining 990 malware samples.

Then, we perform a K-NN search for the query to find the K malware samples that

are closest to the query. We repeat the above process for each of the 991 malware

samples while varying K, and summarize the results in Table 2.2. In this table, a

K-NN query result is a Success if at least one out of K nearest neighbors belongs

to the same malware family as the query malware file. Average Hit is defined as the

average number of the returned K nearest neighbors that are in the same family as

the query malware. Results in this table suggest that NBHA is effective in classifying

unknown malware samples, because it not only achieves high success rate (over 80%

for K >= 5) but also produces correct labeling in many cases because the most preva-

lent malware family among the K nearest neighbors is indeed the query malware’s

family. This result shows that SMIT can indeed facilitate, and even automate, the

43

K=1 K=3 K=5
Success Success Average Success Average
Rate Rate Hit Rate Hit

71.30% 78.20% 2.36 80.10% 3.11

K=7 K=9
Success Average Success Average
Rate Hit Rate Hit

81.80% 3.64 82.50% 4.14

Table 2.2: Accuracy and effectiveness of the NBHA in terms of K-NN search results

process of convicting incoming malware samples.

2.6.4 Efficiency of Optimistic VPT

We now evaluate the efficiency of Optimistic Vantage-Point Tree (OVPT) using

the percentage of index entries (PIE) that need to be accessed to locate the K nearest

neighbors of a query file. Because accessing each index entry involves one graph-

distance computation, PIE is a proper metric that captures OVPT’s computation

cost.

We first explore the performance impact of the fan-out factor of SMIT’s OVPT

(i.e., the number of children each tree node has) and the results are plotted in Figure

2.6. Although a larger fan-out factor reduces the number of levels in the tree, it

also increases the number of child nodes that need to be explored at each tree level,

because the coverage of each child node is smaller and more of them intersect with

the current query range. As a result of these two conflicting influences, Figure 2.6

shows that the fan-out factor does not have a significant impact on PIE. However,

the larger fan-out factor increases slightly the overall computation overhead of the

OVPT.

Intuitively, as K decreases, less graph-distance computation is required to service

each query, because smaller K allows δnow to decrease faster so that fewer partitions

of each intermediate OVPT visited need to be traversed. However, in practice, a K

44

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Fan out Factor

P
e

rc
e

n
ta

g
e

 (
%

)

K = 5

K = 10

Figure 2.6: Percentage of index entries (PIE) accessed versus the fan-out factor of
the VP tree

value of between 5 and 10 is required for human analysts to determine if an incoming

binary file is malicious or not. Specifically, if a dominant number of returned K

neighbors belong to the same family, there is a very good chance that the query

binary file indeed belongs to that family. As shown in Figure 2.7, although PIE

increases with K, SMIT’s OVPT can still prune away an average of about 70% of the

database even when K = 10, i.e., for 10-NN search queries. This result demonstrates

the effectiveness of SMIT’s OVPT index.

Finally, we evaluate the scalability of SMIT’s OVPT with respect to the number of

graphs being indexed. Because each leaf node in SMIT’s first-level B+ tree corresponds

to a second-level OVPT tree, this evaluation also helps shed light on the impact of

the fan-out factor of the first-level B+ tree. We construct OVPT trees that contain

a different number of malware samples, from 100 to 1000 in increments of 50, and

for each resulting OVPT, we query it with 100 randomly-selected malware samples

and measure the average number of graph distance computations required for different

45

0 5 10 15
0

10

20

30

40

50

60

70

80

90

K

P
e

rc
e

n
ta

g
e

 (
%

)

Average

Minimum

Maximum

Figure 2.7: PIE vs. the number of nearest neighbors requested (K) (fan-out factor is
10)

values of K. Figure 2.8 summarizes the results and suggests that the number of graph

distance computations approximately increase logarithmically with the size of the

OVPT tree (the time complexity of searching VP tree is O(logn) [122]), demonstrating

its scalability. This also suggests that the number of child nodes explored at each tree

level remains largely the same regardless of the total number of levels in the index

tree.

2.6.5 Evaluation of Multi-Resolution Indexing

Despite the great pruning power of the OVPT tree, it cannot be directly applied to

organize the entire malware graph database, which we envision will grow to millions.

For example, even if an OVPT tree can achieve an excellent PIE of 10%, pinpointing

the nearest neighbors of a query in a 100,0000-malware database necessitates over

10,000 graph-distance computations, which is unacceptable for practical use. To

ensure reasonable response time while maintaining good query accuracy, SMIT uses a

46

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Number of Indexed Graphs

A
ve

ra
ge

 N
um

be
r

of
 D

is
ta

nc
e

C
om

pu
ta

tio
n

Linear Scan
OVPT K = 3
OVPT K = 5
OVPT K = 7

Figure 2.8: Scalability of the VP tree with respect to the number of indexed graphs

multi-resolution indexing structure that removes irrelevant parts of the database with

a B+ tree and queries multiple relevant OVPT trees in parallel . Next, we evaluate

the accuracy and performance of SMIT’s combined indexing structure using 102,391

unique malware programs.

2.6.5.1 Impact of N on Query Accuracy

The parameter N for SMIT’s B+ tree determines the number of sibling leaf nodes

(2N + 1) in the first-level index that need to be searched in the second-level index

search. A larger N improves the probability of locating the true K nearest neighbors

in the database of the query file, and of correctly identifying the true malware family it

belongs to, if any. However, increasing N inevitably increases computational overhead

because more second-level OVPT trees are searched. To evaluate the impact of N

on SMIT’s accuracy, we randomly select 50 malware programs and perform K-NN

searches for them with different K (5 and 10) and N (0, 1, 2, 3 and 4). Table

2.3 summarizes the experimental results. Success Rate and Average Hit are defined

47

K=5
n Success Rate Dominant Family Rate Average Hit
0 76.7% 66.7% 3.24
1 83.3% 70.0% 3.20
2 83.3% 66.7% 3.12
3 86.7% 66.7% 3.13
4 86.7% 66.7% 3.13

K=10
n Success Rate Dominant Family Rate Average Hit
0 78.3% 65.2% 6.29
1 87.0% 69.6% 6.30
2 87.0% 69.6% 5.99
3 91.3% 69.9% 5.91
4 91.3% 69.9% 5.98

Table 2.3: Impact of N on the accuracy of identifying the malware family of a query
binary file

as in Section 2.6.3 and Dominant Family Rate is defined as the percentage of 50

experiments where the most prevalent family among K returned nearest neighbors

is also the family to which the query malware belongs. As expected, Success Rate

increases with the increase in N . However, the difference in Success Rate among

N = 2, 3 and 4 does not appear significant enough to warrant the extra performance

cost. This is because leaf nodes that are far away from the current leaf node usually

contain malware files whose feature vectors are quite different from the query malware,

indicating that they are likely not in the same family as the query malware. Hence,

exploring more leaf nodes (i.e., larger N) does not significantly improve the accuracy

because they are less likely to contain malware with the same family. In our current

SMIT prototype, we choose N = 2 as the default setting. In addition, the high

values of Dominant Family Rate and Average Hit in Table 2.3 also demonstrate the

effectiveness of SMIT’s multi-resolution index in helping human analysts identify the

malware family of incoming samples.

48

Figure 2.9: Query response time of 500 five-nearest-neighbor queries against a
100,000-malware database

2.6.5.2 Query Response Time of SMIT

Finally, we measure the response time of SMIT for K-NN queries against the entire

test database, where N is set to 2 and K is set to 5. We randomly select over 500

malware files and use them to query SMIT. The response times of these queries and

their cumulative distribution function are shown in Figure 2.9. The X-axis of the

left figure is the number of graph-distance computations required for a query and the

corresponding Y-axis is the response time in seconds for that query. From the right

figure, for over 95% of all queries, the response time is less than 100 seconds, although

several queries (mostly for very large malware files) incur a significantly longer delay

and thus skew the overall average response time. More specifically, each 5-NN query

requires, on average, 112 graph-distance computations (median is 78 and maximum is

918). The query response time ranges from 0.015 second to 872 seconds with average

21 seconds and median 0.5 second. This result demonstrates that SMIT’s performance

is adequate for day-to-day use even for relatively large malware databases.

49

2.7 Limitations and Improvements

We now discuss several limitations of the current SMIT prototype that may limit

its classification effectiveness, and possible improvements to remove or alleviate them.

One way for malware authors to evade SMIT’s classification is to prevent SMIT

from extracting useful features by applying packers/protectors to their malware files.

SMIT’s classification accuracy will degrade significantly if it cannot successfully unpack

packed malware files. To counter the packing problem, the current SMIT prototype

employs several packer detection (PEiD, TrID) and unpack tools (SymPack), but

they are by no means complete. For example, PEiD can be misled by a simple

modification to a PE file’s entry point. Most existing unpack tools fail to handle

sophisticated packers, such as ASProtect [8], Armadillo [99] and VMProtect [108]. To

improve SMIT’s unpacking capabilities, we plan to incorporate generic unpackers, such

as OmniUnpack [72] and Justin [41], which execute malware samples, detect the end of

unpacking and then dump the process image at that instant. The extra performance

overhead associated with these techniques is generally acceptable, because SMIT is

mainly positioned as a back-end malware classification and analysis tool.

Second, because SMIT analyzes malware samples at the level of individual instruc-

tions and function calls, it may be susceptible to advanced obfuscation techniques. For

instance, attackers may circumvent SMIT’s function matching by obfuscation, such as

instruction reordering, equivalent instruction substitution, import table modification

(to hide the symbolic names of imported functions), etc. Alternatively, they could

also modify the function-call graph by, for example, inserting useless functions into

the graph, breaking existing functions into several smaller functions, inlining certain

functions, etc. Although SMIT cannot completely handle all types of obfuscation, it

makes these attacks more difficult. For instance, SMIT uses the edit distance between

mnemonic sequences to evaluate inter-function similarity, which enables SMIT to be

relatively resilient to simple code obfuscation and relocation. To defeat more sophisti-

50

cated obfuscation, SMIT could pre-process malware files with advanced deobfuscation

techniques [85]. More importantly, because SMIT relies on structural similarity to

match function-call graphs, changes to a few nodes in the graphs are unlikely to sig-

nificantly influence the matching results. On the other hand, generating semantically

equivalent but syntactically significant different malware samples is a difficult task

for attackers. In the future, we plan to investigate and quantify SMIT’s resilience to

common obfuscation techniques.

Third, SMIT extracts function-call graphs using IDA Pro, which may occasionally

fail to identify all the functions in a malware binary. IDA Pro finds function-start

addresses by traversing direct function call or recognizing function prologues. As a

result, if the functions are indirectly referenced or have non-standard prologues, IDA

Pro may fail to identify their starting points. A more thorough approach [42] that

uses a new function model based on a multi-entry control flow graph could mitigate

this problem.

Finally, the dominant family metric used in SMIT may lead to false positives. Be-

cause SMIT is mainly used to help malware analysts quickly determine the malicious-

ness and the identity of incoming malware, it assumes that the query malware sample

belongs to the same family as the majority of its nearest neighbors in the database.

However, this assumption is not always valid and a false positive may occur if the

distance between an input malware sample and its dominant family neighbors is too

large. One way to address this problem is to apply a distance threshold in the clas-

sification process so that an input sample is classified into a malware family if and

only if it is sufficiently close to the returned nearest neighbors. The optimal threshold

could be chosen based on the average inter-member distance within a malware family

as well as the inter-family distance between the centroids of adjacent families.

In summary, although there are ways malware writers could use to detract SMIT’s

overall effectiveness, SMIT is still very effective in practice against modern malware

51

samples, as demonstrated in Section 3.7, and thus represents a very efficient tool

available for malware analysts to handle the exponentially-growing influx of malware

samples as seen in recent years.

2.8 Conclusion

In recent years, attacks that target a smaller number of victims. As a result, the

number of malware samples seen in the field has increased exponentially, and automat-

ing the malware processing workflow is crucial to commercial anti-virus companies

such as Symantec. A critical step in malware processing workflow is to determine if

an incoming sample is indeed malicious or not. A common approach taken today is

to apply multiple commercial Anti-Virus scanners to a sample and convict the sam-

ple as malware if a sufficient number of Anti-Virus scanners consider it malicious.

Although this approach is useful, it does not completely solve the problem, because

at any point in time a significant percentage of new samples are unknown to existing

Anti-Virus scanners.

This chapter describes the design, implementation and evaluation of a malware

database management system called SMIT that implements a malware conviction ap-

proach which casts the problem of determining if a new binary sample is malicious into

one of locating the sample’s nearest neighbors in the malware database. SMIT con-

verts each malware program into its function-call graph representation, and performs

nearest neighbor search based on this graph representation.To efficiently capture the

similarity among malware variants, SMIT supports an approximate graph-edit distance

metric rather than isomorphic graph match. To efficiently support accurate and scal-

able nearest neighbor search, SMIT features a multi-resolution indexing scheme that

combines a B+ tree based on high-level summary features and a vantage-point tree

based on the graph-distance metric. With these techniques, SMIT is able to detect

malware samples at a speed and accuracy level that can keep up with the current

52

malware sample submission rate. The main contributions of this work include:

• an efficient graph-distance computation algorithm whose result closely approx-

imates the ideal graph-edit distance metric;

• a multi-resolution indexing scheme that supports efficient pruning through a

combination of exact indexing based on summary features and nearest-neighbor

indexing based on graph-edit distance; and

• A fully working SMIT prototype and a comprehensive performance study of this

prototype that demonstrates its efficacy and scalability with a 100,000-malware

database.

53

CHAPTER III

MutantX: Scalable Malware Clustering Based on

Static Features

3.1 Introduction

Over the last few years, we have witnessed a significant increase of malware threats.

According to the Symantec’s latest Internet Threat Report, the number of new ma-

licious code signatures created in 2009 has reached 2,895,802 which is a 71% increase

over the 2008 number and accounts for 51% of all the malicious code signatures.

This exponential growth of malware samples has already outpaced the current man-

ual analysis techniques, causing anti-virus (AV) companies to face a major challenge,

“how to process this huge influx of incoming samples and accurately label them?”

Typically, AV companies receive several thousands of suspicious samples everyday.

It is practically impossible to manually analyze—as AV companies do—such a huge

number of samples, thus leaving a large percentage of samples unlabeled. This slow

rate of processing incoming malware samples delays the signature distribution and

ultimately results in poor detection of malware in the wild. One possible solution

to this problem is to automatically cluster malware samples and assign them labels

according to their similarities. The intuition behind this is that malware programs

bearing significant similarities are likely to have been derived from the same code

54

base, and hence from the same malware family. One can group similar samples into

a cluster and label it with high accuracy by analyzing only a few representative sam-

ples from the cluster. Moreover, the label of a new sample can be automatically

derived if it is determined to belong to an existing known cluster. In this chapter, we

design, implement and evaluate MutantX, a novel and scalable system, that can effi-

ciently cluster a large number of malware samples into families based on their static

features, i.e., code instruction sequences.

Most existing malware clustering/classification systems are based on dynamic be-

havioral features. These dynamic-analysis systems operate by running malware sam-

ples in virtual or sandboxed environments, monitoring their execution and extracting

their run-time behaviors in terms of API or system call traces [10, 13, 88]. The ma-

jor benefit of using dynamic behavioral features is that they are less susceptible to

mutation schemes, such as run-time packers or binary obfuscation, frequently em-

ployed by malware writers to avoid static analysis. Albeit very useful in practice,

approaches based on dynamic behavioral features suffer from several limitations as

follows. First, they may have only limited coverage of an application’s behavior, fail-

ing to reveal the entire capabilities of a given malware program. This is because for

a particular execution run, a dynamic analysis can only capture API or system call

traces corresponding to the code path that was taken during that particular execu-

tion. Different code paths may be taken in different runs, depending on the program’s

internal logics and/or external environments. More commonly, many malware include

triggers in their programs and exhibit an interesting behavior only when certain con-

ditions are met. Typical examples include bot programs that wait for commands from

their botmasters, and malware programs designed to launch attacks at or before a

certain date and time. These trigger-based malware generate very few repeatable run-

time traces unless specific conditions are met. Second, dynamic-analysis is inherently

resource-intensive and does not scale well, limiting their coverage. To process the

55

sheer number of malware samples collected everyday with the limited computational

resource, a dynamic-analysis system can only execute and monitor each sample for a

short period of time, e.g., a couple of minutes. Unfortunately, this time is often too

short for typical malware programs to reveal all their behaviors.

In this chapter, we present MutantX, a new and practical system that exploits

static features of code instruction sequences for efficient and automatic malware clus-

tering and labeling. MutantX is motivated by the common observation that a large

portion of today’s malicious programs are file-level variations of a small number of

malware families and tend to share similar instruction sequences in their binaries.

Analysis of static features of malware offers several unique benefits. For example, it

has the potential to cover all possible code paths of a (malicious) program, yielding

more accurate clusters based on the entire functionalities of the programs. More-

over, approaches based on static features are much more scalable than their dynamic

counterparts, as they do not require resource-intensive execution and time-consuming

monitoring of malicious programs. This is particularly important for AV companies

to process a rapidly-increasing number of new malware samples. Unfortunately, the

static-feature-based approaches are not without limitations of their own. It is well-

known that they suffer from run-time packing and obfuscation. Therefore, the goal

of MutantX is not to replace existing dynamic-behavior-based systems, but to com-

plement and collaborate with them to achieve higher clustering accuracy and better

coverage of malware programs.

MutantX features a unique combination of techniques to address the deficiencies

of static-feature-based malware clustering. First, it employs an efficient encoding

mechanism that exploits the IA32 instruction format to encode malware binaries into

a opcode sequence, facilitating the extraction of N -gram features. Second, it applies

a hashing-trick on the extracted N -gram features that help the clustering algorithm

handle very high dimensional features. Finally, it tailors a generic unpacking tech-

56

nique to handle commonly-seen run-time packers so that the clustering algorithms

may be applied to a larger set of malware samples. We have successfully imple-

mented a fully-automated prototype of MutantX and evaluated its performance using

a database of more than 100,000 distinct malicious programs. Our evaluation results

demonstrate that MutantX can effectively create clusters corresponding to malware

families which can help improve the accuracy of malware labeling and reduce/remove

the manual analysis effort, thereby enabling faster response to new malware threats.

3.2 Related Work

Malware poses one of the severest threats to computer systems and the Internet.

As a result, automatic malware clustering and classification have recently attracted

considerable attention from the security industry and research community. Various

schemes have been proposed to tackle this problem based on the dynamic behavior

and static features of malware.

The major benefit of dynamic-analysis approaches is the ease of handling packed

and obfuscated malware samples. Dynamic analysis works by executing malware pro-

grams in a virtual or sandboxed environment and collecting their behavior in terms

of system or API calls and their arguments. Lee and Mody [64] proposed use of a

sequence of events (e.g., registry and file system modifications) to capture rich be-

havioral semantics. They applied a nearest-neighbor approach and assigned the same

class label to a new malware code as that of its nearest neighbor in a set of known

samples. Rieck et al. [86] embedded the run-time behavior, such as copy file and cre-

ate processes, into feature vectors according to each feature’s frequency and applied

SVM (Support Vector Machine) to learn and classify unknown samples. One limita-

tion of this approach, as noted in [13], is that it uses supervised learning techniques

and thus requires labeled training sets. Later, Bailey et al. [10] defined the malware

behavior as non-transient state changes caused to the system and applied a hierarchi-

57

cal clustering algorithm to group similarly-behaving malware samples. Unfortunately,

the complexity of this clustering algorithm is O(n2), limiting its applicability only to

a small number of samples. To address this problem, Bayer et al. [13] and Rieck

et al. [88] developed different methods to make the clustering algorithm scalable.

Bayer et al. [13] applies locality-sensitive hashing (LSH) to efficiently compute an

approximate hierarchical clustering with a significantly smaller number of distance

computations. By contrast, Rieck et al. [88] developed a prototype-based cluster-

ing algorithm that reduces the runtime complexity by performing clustering only on

representative samples (i.e., prototypes). Comparing with the approximate LSH clus-

tering, a prototype-based algorithm facilitates the analysis of behavior groups because

each prototype corresponds to regular malware samples [88]. In MutantX, we adopt

the same prototye-based algorithm as in [88] because of its efficiency and explicit

expression of malware features.

Static analysis, on the other hand, extracts various features from malware bina-

ries and use them as the basis for analysis, classification and detection. For example,

Christodorescu et al. [22] extracted unique malicious patterns from disassembled mal-

ware that are resilient to obfuscation. Wicherski [113] utilizes static features extracted

from PE headers, e.g., raw size, entry point, import table and section characteristics

to group malware. Such PE header features have also been used by Perdisci et

al. [81] to accurately differentiate between packed and unpacked malware samples.

Karim et al. [53] took a different approach and studied the malware evolution by

creating phylogeny models of malware families based on N -gram and N -perm on

assembly instructions. Similar features have also been used in [56] to perform super-

vised learning with various methods, such as naive Bayes, decision trees, SVM, etc.,

and validate their effectiveness in classifying samples. MutantX falls into the static-

analysis category because it relies on malware features extracted from the malware

code instructions to cluster samples. The main difference of MutantX from previous

58

approaches is its unique combination of techniques that ensures the scalability to

large malware datasets corresponding to the huge number of current malware files.

Although malware sets of a similar size have been studied with dynamic-behavior-

based clustering [13], static analysis is still necessary and sometimes advantageous

because it does not suffer from the limited coverage of dynamic analysis. Another

system similar to MutantX is BitShred independently developed by Jang et al. [50]

and also focuses on improving the scalability of malware comparison and triage on

a large scale. BitShred developed a fast code comparison algorithm based on hashes

of byte sequences in code section and made use of distributed computing resources,

i.e., hadoop and MapReduce to achieve a high throughput in binary comparison and

good scalability.

3.3 Architecture

Figure 3.1: MutantX system overview

This section presents an overview of MutantX as shown in Figure 3.1. At a high

level, MutantX takes a set of malicious or suspicious program samples as input and

extract their features using static analysis to avoid the computation overhead and

maximize code coverage. Specifically, MutantX first uses existing tools (e.g., PeID,

TrID, SymPack) to identify malware files that have been processed by the binary

packing tools such as UPX [106], ASPack[7], and other customized packers. These

files will be unpacked with a generic unpacking technique tailored for MutantX. To-

gether with samples that are in their original binary (not packed), unpacked binaries

59

are disassembled to extract their code instructions. These pre-processing steps ensure

that MutantX can successfully extract the features inherent to malware families with-

out influence of encryption or compression. After their pre-processing, all malware

samples are passed to the second component of MutantX and processed with three

algorithms to extract their representative features: (1) Instruction Encoding for con-

verting each instruction to a sequence of encoded operation codes that capture the

underlying semantics of the programs, (2) N-gram analysis for constructing feature

vectors that allow computation of similarities between any programs, and (3) Hashing

Trick for compressing the feature vectors, significantly improving the speed of similar-

ity computation while incurring only a small penalty in clustering accuracy. Finally,

a prototype-based clustering algorithm is applied on the set of compressed feature

vectors and partitions samples into different clusters, each representing a group of

similar malicious programs.

3.4 Generic Unpacking Algorithm

For its simplicity and effectiveness, run-time packing is most commonly used by

malware programs to circumvent anti-virus detection tools and evade their static anal-

ysis. More than 50% of all malware programs are estimated to be packed by some

type of packers. A typical packer like UPX works as follows. When compressing a

PE binary (the executable file format used by the Windows operating systems), UPX

merges all of its (both codes and data) sections as well as the original PE header,

compresses them into a single section, and creates a new PE binary containing the

compressed data followed by the unpacker code. When athe packed program is ex-

ecuted, it first invokes the decryption routine to restore the original program codes

into memory and then jump to the first instruction of the unpacked codes (i.e., the

original entry point) to resume execution. As a result, packing enables malware pro-

grams to disguise their malicious instructions in random-looking data while keeping

60

the original functionality intact. Since MutantX relies on similarity between origi-

nal code instructions to cluster malware samples, As a result, it is imperative for

MutantX to handle packing correctly and efficiently.

While there exist static unpacking tools such as SymPack and ArmaGedoon, they

are often targeted specifically at one or a few packers, and are not optimal. The

practical use of these unpacking tools is limited for two reasons. First, it entails

significant investments in the engineering effort for each distinct packer, because

human experts have to manually reverse-engineer packers and develop unpacking tools

for each and every of them. As more packers appear in the wild, the cost of continually

updating unpacking tools is expected to grow over time. Second, requiring manual

analyses will incur a (often significant) delay between the appearance of a new packer

and the creation of unpacking tools for the packed malware, leaving a dangerous time

window for malware to evade the detection.

MutantX thus adopts a generic unpacking mechanism and tailoring it to meet

the particular need for malware clustering. Its basic idea is to exploit the inherent

properties of an unpacking procedure, i.e., a packed binary has to output the unpacked

code into some memory space and transfer control to the modified memory locations

to continue execution. By continual monitoring of memory access, we can learn that

some form of unpacking, self-modification or on-the-fly code generation occurs when

the program executes instructions in a memory address that has been written after

the program was loaded. These written-then-executed memory locations are likely to

contain the original (unpacked) program codes and thus are targets to be analyzed

by MutantX.

The unpacking component of MutantX is derived from Justin [41] and exploits the

physical non-execution (NX) support in modern x86 CPUs and Windows OS to track

memory page status. It consists of a kernel driver responsible for tracking system

calls and a user-level component that is injected as a remote thread into a program’s

61

address space (Figure 3.2). The unpacking component of MutantX achieves two goals:

(1) dump the memory image at an appropriate time when the binary is likely to finish

unpacking, and (2) determine the correct original entry point (OEP) of the unpacked

program. Finding the correct OEP is critical for program disassembly and feature

extraction, because a wrong entry point may cause MutnatX to miss all the code

instructions between the original and the wrong entry points (if there is no other

reference to this portion of code). In addition, because the disassembling starts from

the entry point, if the entry point is incorrectly set in the middle of an instruction,

the disassembler will either fail or generate completely wrong assembly codes.

Figure 3.2: MutantX’s generic unpacking component

MutantX unpacks a packed binary as follows.

1. It loads the packed program into memory, suspends its execution and commu-

nicates with the MutantX kernel driver to inject the user-level hooking DLL

(Dynamic Linked Library) into the process’ memory space.

2. Inside the hooking DLL, MutantX registers an exception handler with the OS

to intercept and process memory access exceptions generated by the unpacker

violating the W ⊕X write-xor-execute policy.

62

Algorithm 2 MutantX generic unpacking algorithm
1: Input: A packed binary program B
2: Output: a reconstructed PE file containing unpacked program codes
3: STEP 1:

4: Load the packed program into memory
5: for all p in the program’s memory pages do

6: Permission(p)| = W̃

7: end for

8:

9: STEP 2:

10: while B is running and Truntime < Tthresh do

11: a: The address of the page fault
12: t: The page fault type t ∈ {WRITE, EXECUTE}
13: p← Page(a)
14: if t = WRITE then

15: Permission(p)| = (W |X̃)
16: LAST WRITTEN(p)← current time
17: end if

18: if t = EXECUTE then

19: Permission(p)| = (W̃ |X)
20: LAST EXEC(p)← current time
21: ADDR EXEC(k)← a

22: end if

23: end while

24:

25: STEP 3:

26: Dump process memory
27: reconstruct B′ by setting OEP to be ADDR EXEC(k)
28: k = arg mink(LAST EXEC(k) > max(LAST WRITTEN(i))
29: return B′

63

3. It marks all the memory pages of the loaded program as executable but non-

writable, and resumes its execution.

4. During the execution, when the unpacker attempts to restore unpacked codes

into memory, a write exception will occur on a non-writable page. MutantX marks

the page as dirty and changes its permission to writable but non-executable.

5. When the unpacker accesses the the newly-generated code for execution, the

absence of execution permission causes an access exception. MutantX intercepts

such exceptions and records addresses where the exceptions had occurred. For

a simple unpacker that completes unpacking the entire program before transfer-

ring control to it, this memory address corresponds to the original entry point.

However, this is not necessarily true for more sophisticated packers (e.g., self-

modifying code that may rewrite to the same memory location). Therefore,

MutantX removes the write permission from these memory pages again, grants

execution privilege and continues execution.

6. To ensure the integrity of the W⊕X policy, MutantX tracks all system calls that

change the permission of a memory page such that when the program attempts

to modify attributes of the pages in ways that conflict with MutantX settings

(e.g., granting write permission on non-writable pages), MutantX pretends that

the operation is successful while keeping the original settings. MutantX also

monitors dynamic allocation of memory pages and removes their write permis-

sion to track unpacking on these pages.

7. MutantX dumps the process memory image either at the end of program execu-

tion (by hooking LdrProcessShutdown function in NtDll.dll) or after a certain

period of time. The basic intuition behind this is that after the program has

been running for a sufficient amount of time (e.g., 30 seconds to 1 minute), it is

64

fairly safe to assume that the program has finished unpacking and restores the

original codes in memory.

From the dumped memory image, MutantX creates a new PE header and recon-

structs a valid PE file so that a standard disassembler can extract instructions. The

major challenge is to identify the correct entry point of the original program in order

to ensure proper disassembly. MutantX exploits the same W ⊕ X policy to address

this problem. For a simple packer like UPX, which starts the execution of the original

program after restoring the entire program in the memory, the OEP of the original

program is simply the address of the dirty memory page (i.e., memory page that has

been modified and marked as non-executable) where the first execution exception

occurs. Unfortunately, as adversaries are becoming increasingly aware of the generic

unpacking techniques, they have developed various evasion schemes that complicate

the detection of OEP. A typical method is to fake end-of-unpacking by writing some

instructions into a reserved memory page, transfer control to it, and jump back to

the unpacker code. This creates an illusion to unpacking tools that unpacking has

ended, and misleads the unpacking tools to conclude with the wrong address of the

entry point. More sophisticated unpackers adopt incremental unpacking where the

unpacker decrypts a few payload instructions and executes them, then decrypts some

more and executes them, and so on. In such a scenario, detecting the first execution

exception is not enough because only part of the original program has been unpacked.

MutantX develops the Last Modification First Execution (LMFE) heuristic as detailed

below.

Our basic idea is to keep track of time when the last write exception and a sub-

sequent execution exception occur on each memory page, so MutantX can identify

the unpacker’s attempts to overwrite to the same memory page multiple times, in

which case the previous modification and execution on the page are likely to be spu-

rious, trying to fool the unpacking tools. More specifically, for each memory page,

65

MutantX keeps a record of time when it was last modified (i.e., a write exception

occurred on the page), denoted as LAST WRITTEN ; the time when the last exe-

cute exception occurred, denoted as LAST EXEC; and the address ADDR EXEC

where the exception had occurred. At any point of program execution, there are three

types of memory page as follows.

Type I: memory pages that have valid LAST WRITTEN and LAST EXEC,

i.e., pages that are both modified and executed.

Type II: memory pages that have valid LAST WRITTEN but not LAST EXEC,

i.e., pages that are modified but not executed. They could either be data or code

section pages that have not yet been executed.

Type III: memory pages that have neither valid LAST WRITTEN nor valid

LAST EXEC. These could be initialized data-section pages or unpacker-code pages.

Essentially, type-I memory pages are those that hold the unpacked instructions

and thus contain the original entry point of the unpacked program. When dumping

the process memory, MutantX uses the following algorithm to pinpoint the correct

OEP. Let P (i), i = 1..n represent all type-I memory pages of the packed program

and LAST WRITTEN(i), LAST EXEC(i) and ADDR EXEC(i) represent the

timestamps of the last write exception, last execution exception and address where

the exception occurs for page P (i), respectively. Then, the original entry point is

ADDR EXEC(k) in the memory page P (k) where

k = arg min
k

(LAST EXEC(k) > max(LAST WRITTEN(i)) (3.1)

where i = 1..n. In other words, P (k) is the first memory page that is executed

after all type-I memory pages have been written. Below we show that MutantX is

able to find the OEP even when the packers try to fool the MutantX using spurious

write-and-execute sequences or mutli-layer packing.

Proposition 1. For k satisfying Eq. (3.1), ADDR EXEC(k) is the correct OEP of the

66

original program if the program is packed with simple packers or packers that write

random instructions into memory, execute them and jump back to the unpacker code

to complete the real unpacking.

Proof. Let us first look at a simple packer like UPX that restores the entire pro-

gram into memory before transferring control to it. Let P (j), j = 1..m denote

memory pages where the unpacker writes to the original program. Without loss

of generality, we can assume that the contents are written sequentially from P (1)

to P (k), meaning that LAST WRITTEN(1) < LAST WRITTEN(2) < . . . <

LAST WRITTEN(m). When the packer starts executing the restored program

by jumping to the OEP after it finishes unpacking, execution exceptions will first

occur on the memory page P (k) that contains the OEP, i.e., LAST EXEC(k) >

LAST WRITTEN(m) and LAST EXEC(k) < LAST EXEC(j)∀j 6= k. As a

result, ADDR EXEC(k) is the correct OEP.

Second, assume a packer has the following spurious unpacking sequence that writes

arbitrary instructions into some memory page, executes them and, at the end of

execution, returns to the unpacker code. Such a routine may be called multiple

times during the whole unpacking process. As a result, an unpacking tool will fail

if it assumes the end-of-unpacking at the first (or first few) execution exception.

MutantX is resilient to this type of evasion by enforcing the invariant that the exe-

cution exception on the OEP must succeed all the write exceptions. For example,

when the spurious unpacking routing touches memory page P (s), MutantX records

LAST EXEC(s) and marks P (s) as executable but non-writable. Then, the un-

packer resumes the normal unpacking and writes the original program to mem-

ory page P (t) (t could be any memory page including s). This creates a new

write exception on P (t) at timestamp LAST WRITTEN(t). Note that because

LAST EXEC(s) < LAST WRITTEN(t), MutantXdetermines s to not contain the

OEP. In contrast, after the packer finishes unpacking and transfers control to the real

67

OEP, the execution exception satisfies Eq. (3.1). By keeping ADDR EXEC up-to-

date and pointing to a valid instruction, MutantX is able to recognize the real OEP

accurately. Same arguments hold for multi-layer packing because the write exceptions

of code pages will always precede the executable exceptions caused by jumping to the

OEP.

After pinpointing the real OEP, MutantX reconstructs the PE structure of the

memory images by setting up a proper PE header, ensuring a correct starting point for

disassemblers. Algorithm 2 summarizes the MutantX’s generic unpacking algorithm.

3.5 Feature Extraction

Figure 3.3: x86 instruction format

Given unpacked malware binaries, MutantX uses a custom-developed disassembler

to break them down into a sequence of machine instructions that are used for fea-

ture extraction. The key step taken by MutantX is the encoding of machine code

instructions suitable for the comparison of similarity between malware samples. The

challenge in computing similarities is how to handle variations in the syntax of in-

structions. Malware often undergo changes for various reasons, such as mutation,

polymorphism, and obfuscation. As a result, ensuring exactness in comparing instruc-

tions will not tolerate any variation in the syntax. At the other extreme, correctness

68

is compromised if all forms of variation are tolerated. MutantX strikes a balance be-

tween these two extremes by exploiting the x86 instruction format (Fig. 3.3) and uses

the opcode as a succinct representation of the instruction semantics.

Opcode Length Opcode Binary Assembly Code
1 byte 83 83 F0 4F XOR EAX, 4Fh

83 83 C0 4F ADD EAX, 4Fh
BB B8 4F 00 00 00 MOV ECX, 4Fh

2 bytes 0F 22 0F 22 C3 MOV CR0, ECX
0F 00 0F 00 C0 SLDT AX
0F 00 0F 00 D0 LLDT AX

3 bytes 0F 38 1D 0F 38 1D D8 pabsw mm3, mm3

Table 3.1: Opcodes of varying lengths

Using opcodes—instead of other features such as API call sequences, control flow

graphs or binary sequences—offers several benefits. First, opcode generalizes well

to represent variants of a malware family. Malware samples in the same family are

observed to have been derived from the same code base and thus share similarities in

their instructions. However, due to relinking, rebinding and rebasing, the operands

of instructions tend to change among the variants. As a result, using opcodes and

ignoring the operands (i) make MutantX more resilient to low-level mutations while

providing a meaningful characterization of semantics and (ii) reflect the functional-

ity of the malware programs. Second, compared to the previous approaches that

use mnemonic sequences (e.g., mov, push), the opcode sequence is more accurate in

representing features. Mnemonics sometimes overly generalize the underlying CPU

operations, causing many different instructions (or instructions with distinct seman-

tics) to appear similar. To illustrate this, consider all the instructions in Table 3.2.

Although all of them have the same mnemonic (i.e., mov), the underlying semantic

is drastically different. For instance, moving a value to a control register often indi-

cates a critical OS operation, such as interrupt control, switching addressing mode,

paging control, etc., which intuitively should not be treated same as moving a value

69

between one register and another. Ideally, moving from memory to a register (mem-

ory load operation) should be considered as a distinct operation from that of moving

from a register to memory (memory store operation). Unfortunately, using mnemon-

ics would cause all these distinct instructions to be represented with a single feature

(i.e., mov), which may lead to an accidental similarity between feature re-orientations

and then to false positives. On the other hand, features based on opcode as used in

MutnatX provide a distinct representation for each of these instructions, providing

better distinguishability and hence better accuracy in malware clustering.

Opcode Instruction Description

89 MOV r/m32, r32 Move from reg to mem/reg

8B MOV r32, r/m32 Move from mem/reg to reg

B8 MOV r32, imm32 Move immediate val to reg

0F 20 MOV r32, CR0-CR4 Move from control reg to reg

0F 22 MOV CR0-CR4,r32 Move from reg to control reg

0F 21 MOV r32, DR0-DR7 Move from debug reg to reg

0F 23 MOV DR0-DR7,r32 Move from reg to debug reg

Table 3.2: Opcodes provide fine-grained representations of instruction semantics (reg:
register, mem: memory)

Unfortunately, using opcodes to represent features is not as easy as they may

appear. Since x86 architecture is a complex instruction set computer (CISC), the

opcodes on x86 can be 1 byte, 2 bytes (prefixed by 0x0F) or 3 bytes (prefixed by

0x0F38 or 0x0F3A) of length as shown in Table 3.1. Moreover, some 1- and 2-byte

opcodes belong to an “extension group” or “opcode group” where 3rd, 4th and 5th

bits of ModR/M work like a 3-bit “sub opcode” (Fig. 3.3). For example, “83 F0

4F” is disassembled to “XOR EAX, 4Fh” while “83 C0 4F” is “ADD EAX, 4Fh”,

even though their primary opcodes are both 83 (note that their sub opcode are 110

and 000, respectively). To handle these irregular formats of instruction opcodes and

facilitate feature extraction, MutantX encodes each x86 opcode into a standardized

intermediate format (IF) where an encoded opcode is 2 bytes long. The encoding

method is summarized in Algorithm 3. Its basic idea is to manipulate the 1-byte

70

prefix in front of the primary opcode byte in the way that guarantees no collision

between encoded opcodes, because different types of opcode in the x86 instruction

set occupy disjoint encoding spaces in the standardized opcode set. Specifically, the

encoding of 1-, 2-, and 3-byte opcodes ranges from 0x0000 to 0x07FF, 0x0F00 to

0x16FF, and 0x2500 to 0x26FF, respectively. The encoding scheme can also be easily

extended to accommodate any new machine language instruction that may be added

later.

With this encoding scheme, a program can be represented as a sequence of encoded

opcodes (Fig. 3.4). We then use the standard N -gram analysis to characterize the

content of a malware program, i.e., moving a fixed-length window over the sequence

and consider a subsequence of length N at each position. The resulting N -gram of

opcodes reflects short instruction patterns and thus implicitly captures the underlying

program semantics. To construct a feature vector from the opcode N -grams, we

consider the set S of all possible N -grams, defined as S = {(o1, o2, . . . , oN)|oi ∈

O, 1 ≤ i ≤ N} where O is the set of all encoded opcodes. Then, a program can

be converted to a feature vector V in an |S|-dimensional vector space (|S| = |O|N)

where each dimension number of occurrence of one particular opcode N -gram. This

way, the similarity between two programs can be calculated geometrically in the

vector space, which ultimately enables efficient analysis and clustering of malware

samples. In MutantX, the similarity between malware samples is characterized using

the Euclidean distance between feature vectors in the vector space. That is, given

two malware samples m and n, the distance between them is defined as:

d(m, n) = ‖Vm − Vn‖ =

√

∑

i=1

|S|(Vm(i)− Vn(i))2

. Compared to the other approaches that compute the similarity (e.g., locality-based

hashing), geometric assessment of similarity between malware in the vector space

71

Algorithm 3 X86 opcode encoding method
1: Input: x86 instruction I
2: Output: 2-byte encoded opcode (C1, C2)
3:

4: // list1: all 1-byte opcodes that belong to an extension group
5: list1 = [0x80, 0x81, 0x82, 0x83, 0xC0, 0xC1, 0xD0, 0xD1, 0xD2, 0xD3, 0xF6, 0xF7,

0xFE, 0xFF]
6:

7: // list2: all 2-byte opcodes that belong to an extension group
8: list2 = [0x0F00, 0x0F01, 0x0FC7, 0x0F71, 0x0F72, 0x0F73]
9:

10: Po ← opcode of I
11: Subo ← sub opcode of I // 3rd, 4th and 5th bits of ModR/M
12:

13: if length(Po) = 1 then

14: // 1-byte opcode
15: if Po ∈ list1 then

16: C1← Subo; C2← Po

17: else

18: C1← 0x00; C2← Po

19: end if

20: end if

21:

22: if length(Po) = 2 then

23: // 2-byte opcode
24: if Po ∈ list2 then

25: C1← 0x0F + Subo; C2← Po

26: else

27: C1← 0x0F ; C2← Po

28: end if

29: end if

30:

31: if length(Po) = 3 then

32: // 3-byte opcode
33: if Po[2] = 38 then

34: C1← 0x25; C2← Po

35: else

36: C1← 0x26; C2← Po

37: end if

38: end if

39: return (C1, C2)

72

provides the benefit of explicit feature representation [88] where the importance or

contribution of each N -gram in clustering similar malware can be traced back to its

original code patterns. For N -grams that potentially correspond to inherent char-

acteristics of a malware family, e.g., those that frequently appear within a family

but rarely occur in others, their original code segments can be traced back and used

signatures to detect malware variants.

Figure 3.4: Encoding a function into a standardized format

3.6 Clustering Algorithm

A malware cluster is a collection of malware samples that share some common

traits but differ from those of other clusters. Considering the enormous number

of malware in the wild and their exponentially growing speed, a reasonable goal of

MutantX is to process hundreds of thousands or even a million malware files suf-

ficiently fast. Unfortunately, classic clustering algorithms such as hierarchical and

partitioning-based clustering, e.g., K-Means or K-Medoids—although they have been

successfully applied to cluster malware behavior [10] and create phylogeny trees [53]—

incur a the time complexity at least quadratic in the number of samples that in prac-

tice does not scale to the MutantX’s target. For efficiency, MutantX utilizes (1) a

hash kernel that compresses the high dimensional feature vector into a low dimen-

sional space, and (2) a prototype-based clustering algorithm that has close-to-linear

runtime complexity.

73

3.6.1 Hashing Kernel

Kernel methods [92] are powerful tools used in machine learning and pattern

recognition to allow operation in the high-dimensional feature space without ever

having to compute the coordinates of the data in the space. This is particularly useful

when the input data has a non-linear decision boundary but can be linearly separated

in a high dimensional feature space. In general, given input data x1, . . . , xn ∈ X for

some input domain X , the kernel methods compare two input data as:

k(xi, xj) = 〈φ(xi), φ(xj)〉

where φ is the mapping function from X to some feature space.

In MutantX, however, we have encountered the opposite problem: the original

space has a very high dimension and the training and testing data are prohibitively

large in size and in dimension. For this scenario, several researchers have recently

proposed a hashing-trick which hashes the high dimensional input vector x ∈ R
n into

a lower dimensional feature space R
m with mapping function φ : X → R

m. Since

m≪ n, the hashing trick reduces a feature vector to a more compact representation,

allowing the clustering algorithm to handle a large volume of data and save both

computational time and memory requirements. Previous research has shown that the

hash kernel approximately preserves the inner product and is generally applicable [55],

because the penalty incurred from using a hash for reducing dimensionality only grows

logarithmically with the number of objects and classes[93].

To use the hashing kernel, instead of assigning each N -gram a unique index,

MutantX applies a uniform hash function h : {N-gram} → [1..m] that hashes N -gram

directly into a position in the feature vector of length m. In case of a collision where

two or more N -grams map to the same position, the sum of their counts is used as

the value in the new vector. More formally, for malware M and M ′, let v and v′

74

represent their original feature vector extracted from the encoded opcode sequences

and ξ denote the mapping from the N -gram (o1, o2, . . . , oN) ∈ S to the index in v.

We define the hash feature map φ as

φi(v) =
∑

l:h(l)=i,l∈S

v(ξ(l))

and the distance between M and M ′ as

dφ(M, M ′) = ‖v − v′‖φ = ‖φ(v), φ(v′)‖.

The length of the new (low dimensional) feature vector can be selected according

to the size of the available memory space. Choosing a smaller m leads to a smaller

memory footprint and fast vector comparison. However, decreasing m reduces the

number of bins in which the hash function can place the different N -gram and conse-

quently increases the collision possibility. In other words, over-compression of feature

vectors will negatively impact the clustering accuracy.

3.6.2 Prototype-Based Clustering

The main bottleneck in clustering is comparison ofg malware samples. Classic

clustering algorithms are typically super-linear in the size of the input data and thus

do not scale well for a large number of samples. For example, the worst-case running

time for two most widely-used clustering algorithms k-means and agglomerative hi-

erarchical clustering are O(nkd) [6] and O(n2logn) [71], resulting in the computation

time that is prohibitively large for the number of malware samples we have to deal

with. To address this scalability problem, MutantX adopts the prototype-based linear-

time clustering algorithm originally designed in [88] for clustering dynamic behavior

of malware programs.

Prototype-based algorithms belong to the type of unstructured and model-free

75

methods for clustering and pattern matching. Despite their simplicity, they are em-

pirically shown to be very effective and often one of the best performers in real data

[43]. Prototype-based clustering utilizes a set of prototypes—data points that are

typical for a group of homogeneous data samples—to organize input data. Each pro-

totype is assigned a class label and other data points are associated with their closest

prototype in the feature space. By performing most computation on a relatively small

set of prototypes, the algorithm avoids expensive pair-wise comparisons between orig-

inal data points, and thus improves the clustering speed significantly. Specifically, the

algorithm used in [88] consists of two steps: prototype extraction and clustering using

prototypes.

Prototype extraction. Since clustering algorithms essentially rely on a set of pro-

totypes to organize the original input data, the effectiveness of clustering hinges on

the choice of the prototypes. Well-positioned prototypes can accurately capture the

distribution of input data types and create accurate class boundaries in the feature

space. Unfortunately, determining the optimal number and positions of prototypes

has been shown to be NP-hard. For scalability consideration, in [88], an approximate

algorithm by Gonzàlez [39] was used to iteratively select prototypes from the input

data points vi, i = 1..n. The algorithm maintains a data structure d[i] that stores

the distance from all the data points vi to their nearest prototype. At each iteration,

the data point vk, 1 ≤ k ≤ n that has the biggest d[k], i.e. the shortest distance to its

closest prototype, is selected as the next prototype. With this new prototype, the al-

gorithm updates d[j] for all vj whose distance to the new prototype vk is smaller than

the original d[j] (d[j] = ‖vj , vk‖ if d[j] > ‖vj, vk‖∀j ∈ [1..n]). This selection process

is repeated until the distance from all the data points to their nearest prototype is

smaller than a predefined threshold Pmax, i.e., max(d[j]) ≤ Pmax. In other words, all

the data points are located within a certain radius from their closest prototypes. The

run-time complexity of this algorithm is O(kn) where k is the number of prototypes

76

selected. Since k only depends on the distribution of the data (in this case, k is

proportional to the number of similar malware groups or families), with a reasonable

choice of Pmax the algorithm is linear in the number of input data n.

Clustering with prototypes. Instead of working on the huge number of original data

points, the algorithm performs standard agglomerative hierarchical clustering on the

set of prototypes selected in the previous step. As each prototype can be viewed as a

reasonably good representation of data points in its close proximity (within a radius

of Pmax), the algorithm avoids expensive pairwise distance computation between the

original data points without too much loss in the overall accuracy. Specifically, the

algorithm starts with individual prototypes as singleton clusters, successively merges

two closest clusters, and terminates when the distance between the closest clusters is

larger than a predefined distance threshold Mind. Then, prototypes within the same

cluster are assigned the same label and subsequently propagate the label to their

associated data points. The run-time complexity of hierarchial clustering step and

propagation step are O(k2log k) and O(n), respectively. Compared to the O(n2log n)

complexity of applying an exact hierarchical clustering algorithm on the original data

points, this algorithm achieves a significant speed-up, with a factor of at least (n/k)2.

3.7 Experimental Evaluation

In this section, we evaluate the efficiency and accuracy of MutantX in clustering

malware samples. We have conducted experiments on two data sets: (1) a reference

data set containing 4821 malware files whose family labels are generated by security

experts and thus more reliable; and (2) a large malware data set collected from an

online malware archive [110] which comprises 132,234 malware samples with poten-

tially unreliable labels derived from AV scanners. The reference data set is collected

and analyzed by Symantec malware analysts in April 2009. It includes malware sam-

ples from 20 different families and their detailed distribution is given in Table 3.3.

77

Considering its reliable labeling, the reference set is used to evaluate and fine-tune

the empirical parameters for the MutantX’s clustering engine while the large malware

set is used to assess the scalability of MutantX.

Family # Family # Family #

Pilleuz 500 Bredolab 301 Tidserv 59
Koobface 496 Vundo 249 Waledac 34
Silly 489 Almanahe 241 Ackantta 32
Fakeav 489 Sasfis 199 Mebroot 26
Zbot 459 Graybird 166 Hotbar 21
Banker 449 Gammima 126 Qakbot 17
Virut 361 Mabezat 107

Table 3.3: Malware families of the reference data set

3.7.1 Effectiveness of Unpacking Engine

Since the accuracy of any static malware analysis system depends on its capability

of inspecting the original binary codes, unpacking is an important prerequisite for

MutantX. To understand and confirm the popularity of malware writers’ use of packers,

we scanned the malware samples in the reference data set with PEiD [51], a popular

packer detection tool that contains a large packer signature database, to detect packed

samples. Our results show that about 30% (1470) of 4821 samples are packed with

some type of packer. This percentage is smaller than the previously-reported number

in [72]. A possible reason for this difference is that the latest version of PEiD (the

one used in our experiment) is built in October 2008 while most of malware samples

in the reference set are collected in April 2009. Since 10–15 new packers are created

every month [72], many samples are likely to have been packed with packers that are

unknown to PEiD. This also indicates the need and the benefit of generic unpacking

techniques used in MutantX that can handle unknown or customized packers as well

as multi-layered packers.

To evaluate the effectiveness of MutantX’s unpacking, we select an unpacked mal-

78

ware sample (Deborm.ab) and packed it with 8 different packers. We then unpack

all the packed binaries with MutantX and compare them with the original version.

Ideally, the unpacked binary should be byte-to-byte identical to the original file.

However, this is neither possible—MutantX does not reconstruct the import table,

and the unpacker routine will also be dumped from the memory—nor necessary for

the purpose of malware clustering. As a result, we compared the unpacked binaries

with the original using two metrics, (i) the difference in the instruction count (IC)

and (ii) the distance between N -gram feature vectors (NG) to assess the unpacking

effectiveness, as they are directly related to the clustering accuracy. These compari-

son results are summarized in Table 3.4. For most packers, the MutantX’s unpacking

engine successfully recovered their original binaries with only a 1–6% increase of ICs

which is due to the inclusion of unpacker routines in the dumped memory. Besides,

the feature vectors of unpacked binaries are very similar to that of the original binary

with most distance measurements below 0.1, where distance 0 (1) means identical

(completely different). However, MutantX also failed to unpack certain samples. In

particular, we found that the memory dump of an Armadillo-packed malware sample

still contains a packed version of the binary including unpacking code and encrypted

payloads. A further investigation showed that Armadillo works by unpacking an in-

termediate executable on disk and creating another process to run this executable

[72]. Therefore, dumping memory of an Armadillo-packed file does not capture the

unpacked instructions. While running MutantX on a large data set, we have also ob-

served other causes of unsuccessful unpacking, such as malware samples that do not

run in a virtual machine or the time required for unpacking is longer than the thresh-

old used in MutantX for the purpose of scalability. Despite these rare limitations,

the generic unpacking technique used in MutantX is found very effective and able to

handle many popular packers without requiring any specialized unpacking algorithm.

79

Packer %diff in IC dist of NG

ASprotect 6.70% 0.133

EXECryptor 3.20% 0.176

EXEStealth 0.88% 0.071

NSPack 0.87% 0.069

PEcompact 0.88% 0.068

UPX 0.88% 0.068

VMprotect 2.50% 0.100

Armadillo – –

Table 3.4: Unpacking effectiveness (IC: Instruction Count; NG: N -gram)

3.7.2 Malware Clustering Accuracy

We first evaluate and calibrate MutantX against the reference data set. The clus-

tering component of MutantX is implemented based on the malheur package [88] that

implements a prototype-based algorithm for clustering dynamic behavior. We modi-

fied malheur such that it takes as input disassembled instructions of a set of malware

samples, converts them to a feature vector format (after applying the hash kernel),

and runs a prototype-based clustering algorithm on the feature vectors. The output is

a set of clusters C = {C1, C2, . . . , Cc}. All of our evaluations were done on a Ubuntu

10.4 machine with the 2.6.35 linux kernel (Core i7 3.0G CPU and 12GB memory).

0.2
0.4

0.6
0.8

0.2
0.4 0.6 0.8

1

70

75

80

85

90

Min
d

Clustering Precision

P
max

P
re

ci
si

on

0

0.5

1 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

Min
d

Clustering Recall

P
max

R
ec

al
l

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1

0

10

20

30

40

P
max

Running Time of Clutering

Min
d

S
ec

on
ds

Figure 3.5: Precision, recall and running time of mutantX’s clustering

We use precision and recall as the main metrics to assess the accuracy of Mut-

natX’s clustering. Suppose that with respect to the original labels (i.e., family names),

n input malware samples can be grouped into a set of clusters O = {O1, O2, . . . , Oo}.

Then, for a set C of clusters produced by MutantX’s clustering, precision P mea-

sures how well the individual clusters agree with the original malware classes (i.e.,

80

the exactness of clusters), and recall R measures how much the malware classes are

scattered across the clusters (i.e., the completeness of each cluster). Formally, the

precision P is defined as:

P =
1

n

∑

i=1

cmax(|Ci ∩O1|, |Ci ∩ O2|, . . . , |Ci ∩Oo|)

, and the recall R is defined as:

R =
1

n

∑

j=1

omax(|Oj ∩ C1|, |Oj ∩ C2|, . . . , |Oi ∩ Cc|)

. The precision will be 1 if all the samples in every cluster Ci are from the same

family and the recall value will be 1 if all malware samples from the same family fall

into a single cluster (but not necessarily the only family in this cluster). Figure 3.5

shows the precision and recall of MutantX’s clustering with varying thresholds Pmax

and Mind. The number of N -grams used in the experiment is 4 and the number of

hash bits is 12 (i.e., hash kernel maps the original features into 212 hash bins).

From the figure, we observe that MutantX is able to cluster the samples with the

precision ranging from 0.72% to 0.89 (average=0.80). The precision number is smaller

than those reported in previous approaches using dynamic behavior, e.g., 0.996 in [88]

and 0.984 in [13]. While this difference may be due to different malware sets (and

possibly incorrect labeling) used in our experiments, we conjecture that the reason for

the higher accuracy of dynamic behavior approaches is more likely due to its resilience

to low-level modifications such as packing and obfuscation, with the cost of longer

running time and limited coverage. Therefore, the goal of MutantX is to provide

an alternative way of categorizing malware that is complementary to the behavior-

based analysis with better scalability while maintaining reasonably good accuracy.

Indeed, Figure 3.5 shows that it takes only less than 30 seconds to complete the

clustering for the entire reference dataset. In addition, we observe that the recall of

81

MutantX is around 0.3 and 0.4, which seems quite low. However, this low value of

recall is expected, because we observe that there often exists a lot of diversity across

malware variants. For instance some variant in a family can be several times larger

in size than other variants in the same family. Possible reasons includes mislabeled

samples, unidentified packers or heavily obfuscated binaries. Because of the highly

diverse variants, MutantX tends to break the original family into several sub-families,

resulting in a low recall value. For instance, MutantX creates more than 50 clusters

for the reference dataset which contains 20 families according to the labels. Although

less ideal, the breakdown into small subfamily is acceptable in practice, because the

small families can be still useful in predicting the unknown sample’s labels. Another

observation from these results is that Pmax (the threshold for distances from all data

points to their nearest prototypes) has a greater influence on the clustering time

since a smaller Pmax value forces the algorithm to find more prototypes to cover all

the data points, thus requiring a larger computation time. On the other hand, Mind

has a major impact on the clustering precision, i.e., increasing Mind reduces the

precision. The reason for this is that a smaller inter-cluster distance threshold will

stop the prototype merging process earlier which will, in turn, reduce the probability

of combining unrelated prototypes into a larger cluster. However, the price for this is

the overfitting of clustering, i.e., the algorithm tends to create several small clusters

that are less useful in determining the labels for unknown malware samples.

3.7.3 Validity of the Hashing Trick

We now evaluate the validity of the hash kernel in terms of its impact on the clus-

tering speed and accuracy. A major concern in using the hashing trick in malware

clusering is the possible loss of information due to the compression of high dimen-

sional features into a lower dimensional space. Possible collisions between features

may limit their overall expressiveness and may negatively impact the clustering. To

82

evaluate the efficacy of hashing trick in the clustering, we apply different hash sizes

(i.e., the number of hash bins) on the original feature vector and study the resulting

effect on the clustering accuracy. The hash function used in MutantX is MurmurHash

2.0 [4] which is a simple hash implementation with uniform value distribution, high

throughput, and good colistin resistance. In order to gain a better understanding of

the hashing trick performance, we also ran the clustering algorithm on the original

feature vector without any compression, which serves as the baseline and best-possible

case for assessing the effect of the hashing trick.

(a) (b) (c)

Figure 3.6: Precision, clustering time, and peak memory requirements with the num-
ber of hash bins ranging from 28 to 216, and without using the hashing
trick .

Figure 3.6 compares the effects of hashing trick with different hash sizes (the

number of hash bins ranging from 28 to 216 and no hash) using three metrics—

precision, clustering time and peak memory requirements. In Figure 3.6, different bars

represent the results generated by using different parameter combinations all of which

exhibit a similar trend when the hash size changes. From Figure 3.6, we find that as

the hash size increases, the precision also improves because the collision probability

decreases as there are more hash bins to hold the features. In fact, when the hash

size is large enough, the probability of collision becomes negligible and the hashed

features perform the same as the original features. For instance, in Figure 3.6, when

more than 212 hash bins are used, the clustering achieves almost the same precision

(0.864 for 212 hash bins) as the original features P = 0.868). In contrast, as the hash

83

size decreases, the impact of collision starts to surface. In particular, as the number

of hash bins reduces to 28 = 256, the precision decreases significantly and drops to

below 0.5 for some parameter combinations. This is due probably to the collision of

many critical features (e.g., features indicative of different families are now mapped

to the same hash bin) that gives out conflicting signals and lowers the clustering

precision. In this regard, a larger hash size is preferable, which adversely affects the

clustering efficiency as shown in Figures 3.6 (b) and (c). These figures show that a

small hash size is very effective in reducing the running time and memory footprints

of the clustering algorithm, because each feature vector is smaller, thus requiring less

memory for storage and less CPU cycles for computing the distance. For instance, as

the hash size decreases from 16 bits to 8 bits, the required running time drops from

almost 2 minutes to less than 10 seconds and the memory requirement decreases from

800 Mbytes to less than 100 Mbytes, at the cost of precision. As a result, MutantX has

to make a tradeoff between accuracy and efficiency. In general, a 12-bit hash function

is found to be a good compromise, reducing the time and memory requirements by

over 80% while still providing good clustering accuracy. So, unless specified otherwise,

all the experiments are performed with a 12-bit hash function. Figure 3.6 (c) also

implies that as the number of malware samples increases, the hashing trick becomes

critical. Without it, the memory requirement could become prohibitively high and

very quickly (without hashing, clustering less than 5000 samples already requires

more than 1.2 Gbytes of memory).

3.7.4 Impact of N-gram

Next, we assess the impact of N (of N -gram) on the clustering performance. In-

tuitively, features based on a larger N is more specific than those represented by a

smaller N , because more instructions can be represented by each gram, providing

better distinguishability between different samples. However, this comes at the cost

84

of exponential increase in the number of dimensions of the resulting feature vectors,

because if there are m different grams, an N -gram feature vector will have mN dimen-

sions. Therefore, as N increases, the required storage and computation time could

become very large. For instance, all 3-gram feature vectors (without hashing) for the

reference malware set take up 289 Mbyte space and the number rises to 1.1 Gbytes

when N = 6. Therefore, N has commonly been chosen to be small (2 or 3, and

maximum 5). Fortunately, using the hashing trick enables us to compress the feature

vectors and evaluate the case of using a large N . Our results are summarized in Fig-

ure 3.7 where 3-, 4-, 5-, 6-gram feature vectors are extracted from the reference data

set, hashed by the same 12-bit hash function and clustered to assess their impact on

the precision of clustering.

0.3 0.4 0.5 0.6 0.7
0.7

0.75

0.8

0.85

0.9

P
max

P
re

ci
si

on

3 gram
4 gram
5 gram
6 gram

Figure 3.7: Precision of clustering with different N values .

From Figure 3.7, one can observe that use of a larger N value indeed improves the

precision, e.g., 4- and 5-grams achieve better precision than 3-gram since larger grams

can better capture the underlying semantics of the program and provide better distin-

guishability. However, it may not be apparent from the figure why 6-gram performs

worst among them. One possible reason for this is that the number of features in the

85

6-gram feature vector (i.e., m6) is too large for the 12-bit hash function to handle.

A large number of collisions between irrelevant features occur when hashed into a

lower dimensional feature space, thus reducing the overall precision of clustering. In

MutantX, we have chosen 4-gram, because even though 5-gram seems to provide bet-

ter precision, the improvement is not large enough to warrant the additional storage

and computation overheads.

3.7.5 Scalability of MutantX

Finally, we evaluate the scalability and accuracy of MutantX on a large malware

data set with over 130,000 samples. According to [110], the labels are generated by

applying Kaspersky AV software v5.5.18/Linux. We ran MutantX on the entire set

of malware files with different combinations of parameters and plotted the results in

Figure 3.8. Figure 3.8 (b) shows the amount of time for clustering the entire data

set and the value Pmax is shown to have a more significant impact on the running

time. For example, when Pmax is set to 0.5, the clustering takes less than 1 hour

which is almost half of the time when Pmax is set to 0.2. As we explained before,

Pmax determines the number of prototypes extracted from the input data which, in

turn, determines the total number of distance computations required for clustering.

However, as shown in Figure 3.8 (a), increasing Pmax degrades the clustering precision.

In certain cases (e.g., Mind = 0.2), increasing Pmax from 0.2 to 0.5 reduces the

precision by almost 10%. This is not surprising because a large Pmax allows each

prototype to cover a large portion of the space, thus risking the possibility of including

samples from irrelevant families. In general, with a reasonable setting (e.g., Mind =

0.5 and Pmax = 0.4), MutantX is able to complete the clustering in less than 1.5 hours

with the precision close to 0.82.1 The peak memory usage is around 3.6 Gbytes. These

results indicate that MutantX is very efficient in handling a large number of samples

1The recall for the large data set is around 0.25 because of breaking the samples from large
malware families into relatively small groups.

86

and thus has the potential to keep up with the huge influx of malware variants received

nowadays.

(a) (b)

Figure 3.8: Precision, recall and running time of MutantX’s clustering for large num-
ber of malware programs

3.8 Limitations and Improvements

We now discuss limitations of the current MutantX prototype that could be ex-

ploited by adversaries to degrade its clustering effectiveness. As a static-analysis

approach, MutantX is vulnerable to standard binary/instruction-level obfuscation.

First, run-time packers and protectors still remain one of the biggest obstacles. Even

though MutantX uses a generic unpacking algorithm, it is less effective against ad-

vanced packers, such as Armadillo, Themida and Xtreme-Protector, that employ

very sophisticated protection mechanisms, e.g., driver-level protection, anti-debug,

anti-emulation, etc. Although specialized unpacking tools that have been developed

for these packers can be incorporated into MutantX to combat such packing, their

constant evolution and customization escalate arms race between malware authors

and defenders. Second, MutantX extracts features from disassembled malware code.

Unfortunately, producing correct disassembly is often very challenging due to variable

length instruction sets, mixture of code and data, indirect control flow that can be

87

exploited to confuse a disassembler. We have observed that a non-trivial number of

malware samples obscure their binaries with various anti-disassembly tricks [117], such

as making an infeasible conditional jump to the middle of next instruction (because

most disassemblers statically follow the control flow to discover and disassemble the

next instruction, this technique is very effective in confusing many disassemblers).

Although the current MutantX prototype does not handle this type of obfuscation

for simplicity, there are a variety of techniques [61] that can be used to mitigate

this problem. Third, MutantX relies on the similarity of code instructions to clus-

ter malware samples. It is possible to create syntactically distinct but semantically

similar variants through instruction-level obfuscation, for example, by substituting

equivalent instructions (e.g., changing every “mov r/m1, r/m2” to “push r/m2; pop

r/m1”). One way to address these problems is to incorporate more advanced de-

obfuscation techniques [85, 104] to normalize the malware code and maximize the

similarity between malware variants. Note that dynamic-behavior-based approaches

do not suffer from these limitations, but they come with their own deficiencies—

limited coverage and scalability. Therefore, the goal of MutantX is not to replace the

dynamic-behavior-based approaches. These two types of approaches should rather be

combined to exploit their respective strengths and mitigate their weaknesses. Finally,

MutantX cannot handle file infector or parasitic malware types, such as Sality Virus,

which inject themselves into host executables. This is actually a general limitation

for both static and dynamic behavior-based clustering. Since the size of a virus and

its behavior traces could be relatively small compared to the host executables, unless

the malware variants infect the same executables, a large portion of the code instruc-

tions or dynamic behaviors will appear different because of the distinct nature of host

executables. Such parasitic malware is a matter of our future inquiry.

88

3.9 Conclusion

In this chapter, we have presented the design, implementation and evaluation of

a malware clustering system based on static features, called MutantX, that can accu-

rately and efficiently group malware variants according to the similarity in their code

instructions. MutantX converts each malware program into a compact but effective

representation (i.e., a sequence of encoded opcdoes) and performs prototype-based

clustering on the corresponding N -gram feature vectors. To efficiently handle low-

level mutation and obfuscation commonly employed by malware writers to evade

detection, MutantX incorporates a generic unpacking technique to maximize the ca-

pability of analyzing the malware’s original instructions and encode each instruction

with its opcode to provide an appropriate level of generalization. For the scalability

of clustering, MutantX uses a combination of a hashing kernel that reduces the dimen-

sionality of feature vectors and a close-to-linear time prototype-based clustering, both

of which together focus on a small set of representative samples for fast data organiza-

tion. Equipped with these techniques, MutantX is experimentally shown to be able to

process more than 100,000 malware samples within a few hours. As a static-analysis

approach, MutantX is expected to be very effective and can be combined with any

existing dynamic-behavior-based system to provide the level of accuracy and coverage

required to pace with the current malware sample submission rate.

89

CHAPTER IV

Hancock: Automatic Generation of String

Signatures for Malware Detection

4.1 Introduction

Symantec’s anti-malware response group receives malware samples submitted by

its customers as well as its competitors, analyzes them, and creates signatures that

could be used to identify future instances of them in the field. The number of unique

malware samples that Symantec receives has grown exponentially in the recent years,

because malware programs are increasingly more customized, targeted, and inten-

tionally restricted in terms of distribution scope. For example, the total number of

distinct malware samples that Symantec observes exceeds 1 million, which is more

than the combined sum of those of the previous years.

Although less proactive than desired, signature-based malware scanning is still

the dominant approach to identifying malware samples in the wild because of its

extremely low false positive rate, i.e., the probability of mistaking a goodware program

for a malware program is very low. For example, the false positive rate requirement

for Symantec’s anti-malware signatures is below 0.1%. The majority of signatures

used in existing signature-based malware scanners are hash signatures, each of which

is the results of taking a hash function of a malware binary. Although hash signatures

90

have a low false positive rate, the number of malware samples covered by each hash

signature is also low, typically one signature per malware sample. As a result, the

total size of the hash signatures required also grows with the exponential growth in

the number of unique malware samples. This creates a signature distribution problem

for Symantec: How to distribute these hash-based malware signatures to hundreds of

millions of users across the world several dozen times per day in a scalable way?

One possible solution to the signature explosion problem is to replace hash signa-

tures with string signatures, each of which corresponds to a contiguous byte sequence

appearing in a malware binary. Traditionally, string signatures are created manually

because it is difficult to automatically determine which byte sequence in a malware

binary is less false positive (FP)-prone, i.e., unlikely to appear in any goodware pro-

gram in the world. Even for the manually created string signatures, it is generally

straightforward for malware authors to evade them, because they typically correspond

to easy-to-modify data strings in malware binaries, for example, names of malware

authors, special pop-up messages, etc. Hancock is an automatic string signature

generation system developed in Symantec Research Labs that aims to automate the

process of creating high-quality string signatures that simultaneously minimizes the

false positive rate and maximizes the malware coverage. That is, the probability that

a Hancock-generated string signature appears in any goodware program should be

very very low, and at the same time each Hancock-generated string signature can be

used to identify as many malware programs as possible.

Given a set of malware samples, Hancock is designed to create a minimal set of

N -byte sequences each of which has a sufficiently low false positive rate, and that

collectively cover as large a portion of the malware set as possible. Based on previous

empirical studies, Hancock sets N to 48. Hancock examines every 48-byte sequence

in the input malware set, and filters out those byte sequences whose estimated oc-

currence probability in goodware programs according to a pre-computed goodware

91

model is above a certain threshold, that are considered a part of library functions, or

that are not sufficiently interesting or unique based on a set of heuristic rules that

encode malware analysts’ selection criteria. Among those signature candidates that

pass the initial filtering step, Hancock further applies a set of selection rules based on

the diversity principle: If the set of malware samples containing a signature candidate

are more similar to one another, the less FP-prone is the signature candidate. Finally,

Hancock is extended to generate string signatures that consist of multiple disjoint byte

sequences rather than only one contiguous byte sequence. Although multi-component

string signatures are more effective than single-component signatures, they also incur

higher run-time performance overhead because individual components are more likely

to match goodware programs. In the following sections, we will describe the signa-

ture filter algorithms, the signature selection algorithms, and the multi-component

generalization used in Hancock.

4.2 Related Work

Modern anti-virus software typically employ a variety of methods to detect mal-

ware programs, such as signature-based scanning [23], heuristic-based detection [5]

and behavioral detection [40]. Although less proactive, signature-based malware scan-

ning is still the most prevalent approach to identify malware because of its efficiency

and low false positive rate. Traditionally, the malware signatures are created manu-

ally, which is both slow and error-prone. As a result, efficient generation of malware

signatures has become one major challenge for Anti-virus companies to handle the

significantly increasing number of new malware threats. To solve this problem, several

automatic signature generation approaches have been proposed.

Most previous work focused on creating signatures that are used by Network In-

trusion Detection Systems (NIDS) to detect network worms. Singh et al. proposed

EarlyBird [94], which used packet content prevalence and address dispersion to au-

92

tomatically generate worm signatures from the invariant portions of worm payloads.

Autograph [2] exploited a similar idea to create worm signatures by dividing each sus-

picious network flow into blocks terminated by some breakmark and then analyzing

the prevalence of each content block. The suspicious flows are selected by a port-

scanning flow classifier to reduce false positives. Kreibich and Crowcroft developed

Honeycomb [59], a system that used honeypots to gather inherently suspicious traffic

and generates signatures by applying the longest common substring (LCS) algorithm

to search for similarities in the packet payloads. One potential drawback of signa-

tures generated from previous approaches is that they are all continuous strings and

may fail to match polymorphic worm payloads. Polygraph [76], instead, searched for

invariant contents in the network flows and created signatures consisting of multiple

disjoint content substrings. Polygraph also utilized a naive Bayes classifier to allow

the probabilistic matching and classification, and thus provided better proactive de-

tection capabilities. Li et al proposed Hasma [65], a system that used a model-based

algorithm to analyze the invariant contents of polymorphic worms and analytically

prove the attack-resilience of generated signatures. PDAS (Position-Aware Distri-

bution Signatures) [98] took advantage of a statistical anomaly-based approach to

improve the resilience of signatures to polymorphic malware variants. Another com-

mon method for detecting polymorphic malware is to incorporate semantics-awareness

into signatures. For example, Christodorescu et al. proposed static semantics-aware

malware detection in [73]. They applied a matching algorithm on the disassembled bi-

naries to find the instruction sequences that match the manually generated templates

of malicious behaviors, e.g., decryption loop. Yegneswaran et.al developed Nemean

[119], a framework for automatic generation of intrusion signatures from honeynet

packet traces. Nemean applied clustering techniques on connections and sessions to

create protocol-semantic-aware signatures, thereby reducing the possibility of false

alarms.

93

Another loosely related area is the automatic generation of attack signatures, vul-

nerability signatures and software patches. TaintCheck [77] and Vigilante [25] applied

taint analysis to track the propagation of network inputs to data used in attacks, e.g.,

jump addresses, format strings and system call arguments, which are used to create

signatures for the attacks. Other heuristic-based approaches [66, 67, 112, 114] have

also been proposed to exploit properties of specific exploits (e.g., buffer overflow)

and create attack signatures. Generalizing from these approaches, Brumley et al.

proposed a systematic method [19] that used a formal model to reason about vul-

nerability signatures and quantify the signature qualities. An alternative approach

to preventing malware from exploiting vulnerabilities is to apply data patches (e.g.

Shield vulnerability signatures [111]) in the firewalls to filter malicious traffic. To

automatically generate data patches, Cui et al. proposed ShieldGen [26], which lever-

aged the knowledge of data format of malicious attacks to generate potential attack

instances and then created signatures from the instances that successfully exploit the

vulnerabilities.

Hancock differs from previous work by focusing on automatically generating high-

quality string signatures with extremely low false positives. Our research was based

loosely on the virus signature extraction work [54] by Kephart and Arnold, which

was commercially used by IBM. In their work, the researchers used a 5-gram Markov

chain model of good software to estimate the probability that a given byte sequence

would show up in good software. They tested published, hand-generated signatures

and found that it was quite easy to set a model probability threshold with a zero false

positive rate and a modest false negative rate (the fraction of rejected signatures that

would not be found in goodware) of 48%.

Symantec acquired this technology from IBM in the mid-90s and found that it

led to many false positives. The Symantec engineers believed that it worked well for

IBM because IBM’s anti-virus technology was used mainly in corporate environments,

94

making it much easier for IBM to collect a representative set of goodware. By contrast,

signatures generated by Hancock are mainly for home users who use a much broader

set of goodware. The model’s training set cannot possibly contain, or even represent,

all of this goodware. This poses a significant challenge for Hancock in avoiding FP-

prone signatures.

4.3 Signature Candidate Selection

4.3.1 Goodware Modeling

The first line of defense in Hancock is a Markov chain-based model that is trained

on a large goodware set and is designed to estimate the probability of a given byte

sequence appearing in goodware. If the probability of a candidate signature appearing

in some goodware program is higher than a threshold, Hancock rejects it. Compared

with standard Markov models, Hancock’s goodware model has two important features:

• Scalable to very large goodware set Symantec regularly tests its anti-virus

signatures against several terabytes of goodware programs. A standard Markov

model uses O(N) space [90], where N is the number of bytes in the training

set. Hancock’s goodware model focuses only on high-information-density byte

sequences so as to scale to very large goodware training sets.

• Focusing on rare byte sequences For a candidate signature not to cause

a false positive, its probability of appearing in goodware must be very, very

low. Therefore, the primary goal of Hancock’s model is to distinguish between

low-probability byte sequences and rare byte sequences.

4.3.1.1 Basic Algorithm

The model used in Hancock is a fixed-order 5-gram Markov chain model, which

estimates the probability of the fifth byte conditioned on the occurrence of the preced-

95

ing four bytes. Training consists of counting instances of 5-grams – 5-byte sequences

– as well as 4-grams, 3-grams, etc. The model calculates the probability of a 48-byte

sequence by multiplying estimated probabilities of each of the 48 bytes. A single

byte’s probability is the probability of that byte following the four preceding bytes.

For example, the probability that “e” follows “abcd” is

p(e|abcd) =
count(abcde)

count(abcd)
∗ (1− ǫ(count(abcd))) + p(e|bcd) ∗ ǫ(count(abcd))

In this equation, count(s) is the number of occurrences of the byte sequence s

in the training set. ǫ(count(s)) is the escape mass of s, which limits overtraining.

Escape mass decreases with count. Empirically, we found that a good escape mass

for our model is ǫ(c) =
√

32√
32+

√
c
.

4.3.1.2 Model Pruning

The memory required for a vanilla fixed-order 5-gram model is significantly greater

than the size of the original training set. Hancock reduces the memory requirement

of the model by incorporating an algorithm that prunes away less useful grams in the

model. The algorithm looks at the relative information gain of a gram and eliminates

it if its information gain is too low. This allows Hancock to keep the most valuable

grams given a fixed memory constraint.

Consider a model’s grams viewed as nodes in a tree. The algorithm moves consid-

ers every node X, corresponding to byte sequence s, whose children (corresponding

to sσ for some byte σ) are all leaves. Let s′ be s with its first byte removed. For

example, if s is “abcd”, s′ is “bcd”. For each child of X, σ, the algorithm compares

p(σ|s) to p(σ|s′). In this example, the algorithm compares p(a|abcd) to p(a|bcd),

p(b|abcd) to p(b|bcd), etc. If the difference between p(σ|s) and p(σ|s′) is smaller

than a threshold, that means that X is does not add that much value to σ and the

96

node σ can be pruned away without compromising the model’s accuracy.

To focus on low-probability sequences, Hancock uses the difference between the

logs of these two probabilities, rather than that between their raw probability values.

Given a space budget, Hancock keeps adjusting the threshold until it hits the space

target.

4.3.1.3 Model Merging

Creating a pruned model requires a large amount of intermediate memory, before

the pruning step. Thus, the amount of available memory limits the size of the model

that can be created. To get around this limit, Hancock creates several smaller models

on subsets of the training data, prunes them, and then merges them.

Merging a model M1 with an existing model M2 is mostly a matter of adding up

their gram counts. The challenge is in dealing with grams pruned from M1 that exist

in M2 (and vice versa). The merging algorithm must recreate these gram counts

in M1. Let sσ be such a gram and let s′ be s with its first byte removed. The

algorithm estimates the count for sσ as count(s) ∗ p(σ|s′). Once these pruned grams

are reconstituted, the algorithm simply adds the two models’ gram counts.

4.3.1.4 Experimental Results

We created an occurrence probability model from a 1-GByte training goodware set

and computed the probability of a large number of 24-byte test sequences, extracted

from malware files. We checked each test byte sequence against a goodware database,

which is a superset of the training set, to determine if it is a true positive (a good

signature) or a false positive (which occurs in goodware). In Figure 4.1, each point

in the FP and TP curves represents the fraction (Y axis value) of test byte sequences

whose model probability is below the X axis value.

As expected, TP signatures have much lower probabilities, on average, than FP

97

Figure 4.1: The fractions of false positive and true positive test sequences with oc-
currence probabilities below the X axis value

signatures. A small number of FP signatures have very low probabilities – below

10−60. Around probability 10−40, however, the model does provide excellent dis-

crimination power, rejecting 99% of FP signatures and accepting almost half of TP

signatures.

To evaluate the effectiveness of Hancock’s information gain-based pruning algo-

rithm, we used two sets of models: non-pruned and pruned. The former were trained

on 50 to 100 Mbytes of goodware. The latter were trained on 100 Mbytes of goodware

and pruned to various sizes. For each model, we then computed its TP rate at the

probability threshold that yields a 2% FP rate. Figure 4.2 shows these TP rates of

goodware models versus the model’s size in memory. In this case, pruning can roughly

halve the goodware model size while offering the same TP rate as the pruned model

derived from the same training set.

98

Figure 4.2: TP rate comparison between pruned models and non-pruned models when
the training set varies from 50 Mbytes to 100 Mbytes

4.3.2 Library Function Recognition

A library is a collection of standard functions that implement common operations,

such as file IO, string manipulation and graphics. Modern malware authors use

library functions extensively to simplify development, just like goodware authors. By

construction, variants of a malware family are likely to share some library functions.

Because these library functions also have a high probability of appearing in goodware,

Hancock needs to remove them from consideration when generating string signatures.

Toward this goal, we developed a set of library function recognition techniques to

determine whether a function in a malware file is likely to be a library function or

not.

A popular library identification technique is IDA Pro’s Fast Library Identification

and Recognition Technology (FLIRT) [48], which uses byte pattern matching (similar

to string signature scanning) algorithms to quickly determine whether a disassembled

function matches any of the signatures known to IDA Pro.1 Although FLIRT is very

1IDA Pro ships with a database of signatures for about 120 libraries associated with common

99

accurate in pinpointing common library functions, it still needs some improvement

to suit Hancock’s needs. First, FLIRT is designed to never falsely identify a library.

To achieve this, FLIRT first tries to identify the compiler type (e.g., Visual C++

7.0, 8.0, Borland C++, Delphi, etc.) of a disassembled program and applies only

signatures for that compiler. For example, vcseh signatures (Structured Exception

Handling library signatures) will only be applied to binary files that appear to have

been compiled with Visual C++ 7 or 8. This conservative approach can lead to false

negatives (a library function not identified) because of failure in correctly detecting

the compiler type and/or lack of signatures for libraries. In addition, because FLIRT

uses a rigorous pattern matching algorithm to search for signatures, small variation

in libraries, e.g., minor changes in the source code, different settings in compiler

optimization options or use of different compiler versions to build the library, could

prevent FLIRT from recognizing all library functions in a disassembled program.

In contrast to FLIRT’s conservative approach, Hancock’s primary goal is to elim-

inate false positive signatures. It takes a more aggressive stance by being willing

to mistake non-library functions for library functions. Such misidentification is ac-

ceptable because it prevents any byte sequence that is potentially associated with a

library function from being used as a malware signature. We exploited this additional

latitude with the following three heuristics:

Universal FLIRT Heuristic This heuristic generalizes IDA Pro’s FLIRT tech-

nique by matching a given function against all FLIRT signatures, regardless of whether

they are associated with the compiler used to compile the function. This generaliza-

tion is useful because malware authors often post-process their malware programs to

hide or obfuscate compiler information in an attempt to deter any reverse engineer-

ing efforts. Moreover, any string signatures extracted from a function in a program

compiled by a compiler C1 that looks like a library function in another compiler C2

compilers. Each signature corresponds to a binary pattern in a library function.

100

are likely to cause false positives against programs compiled by C2, and thus should

be rejected.

Library Function Reference Heuristic This heuristic identifies a library func-

tion if the function is statically called, directly or indirectly, by any known library

function. The rationale behind this heuristic is that since a library cannot know in

advance which user program it will be linked to, it is impossible for a library function

to statically call any user-written function, except callback functions, which are im-

plemented through function pointers and the call is dynamically resolved. As a result,

it is safe to mark all children of a library function in its call tree as library functions.

Specifically, the proposed technique disassembles a binary program, builds a function

call graph representation of the program, and marks any function that is called by

a known library function as a library function. This marking process repeats itself

until no new library function can be found.

In general, compilers automatically include into an executable binary certain tem-

plate code, e.g., startup functions, error handling, etc., which IDA Pro also considers

as library functions as well. These template functions and their callees must be ex-

cluded in the above library function marking algorithm. For example, the entry point

function start and mainCRTstartup in Visual C++-compiled binaries are created by

the compiler to perform startup preparation (e.g., execute global constructors, catch

all uncaught exceptions) before invoking the user-defined main function.

Address Space Heuristic This heuristic identifies a library function based on

whether its neighboring functions in the binary file are library functions. When a

library is statically linked into a program, the binary codes of the library usually oc-

cupy a contiguous address space range and sometimes there is padding space between

adjacent functions. Therefore, to detect those internal, non-exported functions in a

library that we cannot prove statically are called by some known library function, we

101

exploit the physical proximity property of functions that belong to the same library.

More specifically, we mark a function as a library functions if:

• It is immediately surrounded or sandwiched by known library functions, and

• The size of the space between it and its neighboring library functions is below a

certain threshold. In Hancock, we set the threshold to be 128 bytes, based on a

statistical analysis of inter-library-function space in binary programs generated

by commercial compilers.

In Hancock, we implement the above library function heuristics as an IDA Pro

plugin. After IDA Pro disassembled a malware program, Hancock first applies the

Universal FLIRT heuristic to maximize the detection capability with FLIRT’s li-

brary signatures. Then the Function Reference and the Address Space heuristics

are repeated until the set of identified library functions converges. Although these

techniques collectively could mistake non-library functions for library functions, in

practice such false positives do not have noticeable impacts on the effectiveness of

Hancock’s overall signature generation capability. However, by eliminating up front

more of the shared library code in binaries, we have found that we can significantly

reduce the number of false positives signatures. In addition, these techniques also im-

prove the signature quality, because it allows Hancock to focus more on their coverage

than on their FP likelihood.

4.3.3 Code Interestingness Check

The code interestingness check is designed to capture the intuitions of Syman-

tec’s malware analysis experts about what makes a good string signature. For the

most part, these metrics identify signatures that are less likely to be false positives.

They can also identify malicious behavior, though avoiding false positives is the main

goal. The code interestingness check assigns a score for each “interesting” instruction

102

pattern appearing in a candidate signature, sums up these scores, and rejects the

candidate signature if its sum is below a threshold, i.e. not interesting enough. The

interesting patterns used in Hancock are:

• Unusual constant values Constants sometimes have hard-coded values that

are important to malware, such as the IP address and port of a command and

control server. More importantly, if a signature has unusual constant values, it

is less likely to be a false positive.

• Unusual address offsets Access to memory that is more than 32 bytes from

the base pointer can indicate access to a large class or structure. If these

structures are unique to a malware family, then accesses to particular offsets

into this structure are less likely to show up in goodware. This pattern is

not uncommon among legitimate Win32 applications. Nonetheless, it has good

discrimination power.

• Local or non-library function calls A local function call itself is not very

distinctive, but the setup for local function calls often is, in terms of how it is

used and how its parameters are prepared. In contrast, setup for system calls

is not as interesting, because they are used in many programs and invoked in a

similar way.

• Math instructions A malware analyst at Symantec noted that malware often

perform strange mathematical operations, to obfuscate and for various other

reasons. Thus, Hancock looks for strange sequences of XORs, ADDs, etc. that

are unlikely to show up in goodware.

103

4.4 Signature Candidate Filtering

Hancock selects candidate signatures using techniques that assess a candidate’s FP

probability based solely on its contents. In this section, we describe a set of filtering

techniques that remove from further consideration those candidate signatures that

are likely to cause a false positive based on the signatures’ use in malware files.

Hancock is designed to generate signatures, each of which is capable of identifying

variants of one or a small number of malware families. Therefore, the set of malware

files covered by a Hancock signature should be similar to one another. Based on this

insight, the general guiding principle behind Hancock’s signature candidate filtering

mechanisms is to estimate how FP-prone a candidate string signature is based on

how diverse the set of malware files covered by the string signature are. The more

diverse these files are, the more likely the signature covering them is to appear in

goodware programs. Hancock measures the diversity of a set of binary files based on

their byte-level and instruction-level representations. The following two subsections

describe these two diversity measurement methods.

4.4.1 Byte-Level Diversity

Given a signature S and the set of files it covers, X, Hancock measures the byte-

level similarity or diversity among the files in X by extracting the byte-level context

surrounding S and computing the similarity among these contexts. More concretely,

Hancock employs the following four types of byte-level signature-containing contexts

for diversity measurement.

Malware Group Ratio/Count Hancock clusters malware files into groups based

on their byte-level histogram representation. It then counts the number of groups

to which the files in X belong. If this number divided by the number of files in X

exceeds a threshold ratio, or if the number exceeds a threshold count, Hancock rejects

104

S. These files cannot be variants of a single malware family, if each malware group

indeed corresponds to a malware family.

Signature Position Deviation Hancock calculates the position of S within each

file in X, and computes the standard deviation of S’s positions in these files. If the

standard deviation exceeds a threshold, Hancock rejects S, because a large positional

deviation suggests that S is included in the files it covers for very different reasons.

Therefore, these files are unlikely to belong to the same malware family. The position

of S in a malware file can be an absolute byte offset, which is with respect to the

beginning of the file, or a relative byte offset, which is with respect to the beginning

of the code section containing S.

Multiple Common Signatures Hancock attempts to find another common signa-

ture that is present in all the files in X and is at least 1 Kbyte away from S. If such

a common signature indeed exists and the distance between this signature and S has

low standard deviation among the files in X, then Hancock accepts S because this

suggests the files in X share a large chunk of code and thus are likely to be variants of

a single malware family. Intuitively, this heuristic measures the similarity among files

in X using additional signatures that are sufficiently far away, and can be generalized

to using the third or fourth signature.

Surrounding Context Count Hancock expands S in each malware file in X by

adding bytes to its beginning and end until the resulting byte sequences become dif-

ferent. For each such distinct byte sequence, Hancock repeats the same expansion

procedure until the expanded byte sequences reach a size limit, or when the total

number of distinct expanded byte sequences exceeds a threshold. If this expansion

procedure terminates because the number of distinct expanded byte sequences exceeds

a threshold, Hancock rejects S, because the fact that there are more than several dis-

105

tinct contexts surrounding S among the files in X suggests that these files do not

belong to the same malware family.

4.4.2 Instruction-Level Diversity

Although byte-level diversity measurement techniques are easy to compute and

quite effective in some cases, they treat bytes in a binary file as numerical values and

do not consider their semantics. Given a signature S and the set of files it covers,

X, instruction-level diversity measurement techniques, on the other hand, measure

the instruction-level similarity or diversity among the files in X by extracting the

instruction-level context surrounding S and computing the similarity among these

contexts. More concretely, Hancock employs the following three different types of

instruction-level signature-containing contexts for diversity measurement.

Enclosing Function Count Hancock extracts the enclosing function of S in each

malware file in X, and counts the number of distinct enclosing functions. If the number

of distinct enclosing functions of S with respect to X is higher than a threshold,

Hancock rejects S, because S appears in too many distinct contexts among the files in

X and therefore is not likely to be an intrinsic part of one or a very small number of

malware families. To determine if two enclosing functions are distinct, Hancock uses

the following three identicalness measures, in decreasing order of strictness:

• The byte sequences of the two enclosing functions are identical.

• The instruction op-code sequences of the two enclosing functions are identi-

cal. Hancock extracts the op-code part of every instruction in a function, and

normalizes variants of the same op-code class into their canonical op-code. For

example, there are about 10 different X86 op-codes for ADD, and Hancock trans-

lates all of them into the same op-code. Because each instruction’s operands

106

are ignored, this measure is resistant to intentional or accidental polymorphic

transformations such as re-locationing, register assignment, etc.

• The instruction op-code sequences of the two enclosing functions are identi-

cal after instruction sequence normalization. Before comparing two op-code

sequences, Hancock performs a set of de-obfuscating normalizations that are

designed to undo simple obfuscating transformations, such as replacing test

esi, esi with or esi, esi, replacing push ebp; mov ebp, esp with push

ebp; push esp; pop ebp, etc.

Enclosing Subgraph Count Hancock extracts a subgraph of the function call graph

of every file in X centered at the call graph node corresponding to S’s enclosing func-

tion, and compares the number of distinct enclosing subgraphs surrounding S. An

enclosing subgraph is N -level if it contains up to N -hop neighbors of S’s enclosing

function in the function call graph. In practice, N is set to either 1 or 2. If the

number of distinct N -level enclosing subgraphs of S with respect to X is higher than

a threshold, Hancock rejects S, because S is not likely to be an intrinsic part of one

or a very small number of malware families. This approach defines the surrounding

context of S based on the set of functions that directly or indirectly call or are called

by S’s enclosing function, and their calling relationships. To abstract the body of

the functions in the enclosing subgraphs, Hancock labels each node as follows: (1) If

a node corresponds to a library function, Hancock uses the library function’s name

as its label. (2) If a node corresponds to a non-library function, Hancock labels it

with the sequence of known API calls in the corresponding function. After labeling

the nodes, Hancock considers two enclosing subgraphs as distinct if the edit distance

between them is above a certain threshold.

Call Graph Cluster Count Hancock extracts the complete function call graph

associated with every file in X, where each call graph node corresponds to either a

107

non-library function or an entry-point library function, and partitions these graphs

into different clusters according to their topological structure. Functions internal to

a library are ignored. Nodes are labeled in the same way as described above. The

assumption here is that the function call graphs of variants of a malware family are

similar to one another, but the function call graphs of different malware families

are distinct from one another. The distance threshold used in graph clustering is

adaptively determined based on the average size of the input graphs. If the number

of clusters obtained this way is higher than a threshold, Hancock rejects S because S

seems to covers too many malware families and is thus likely to be an FP.

In summary, the byte-level counterparts of the enclosing function count, the en-

closing subgraph count and the call graph cluster count are the surrounding context

count, the deviation in signature position, and malware group count, respectively. The

byte-level multiple common signature heuristic is a sampling technique to determine

if the set of malware files covering a signature share a common context surrounding

the signature.

4.5 Multi-Component String Signature Generation

Traditionally, string signatures used in AV scanners consist of a contiguous se-

quence of bytes. We refer to these as single-component signature (SCS). A natural

generalization of SCS is multi-component signatures (MCS), which consist of multiple

byte sequences that are potentially disjoint from one another. For example, we can

use a 48-byte SCS to identify a malware program; for the same amount of storage

space, we can create a two-component MCS with two 24-byte sequences. Obviously,

an N -byte SCS is a special case of a K-component MCS where each component is of

size N
K

. Therefore, given a fixed storage space budget, MCS provides more flexibility

in choosing malware-identifying signatures than SCS, and is thus expected to be more

effective in improving coverage without increasing the false positive rate.

108

In the most general form, the components of a MCS do not need to be of the

same size. However, to limit the search space, in the Hancock project we explore

only those MCSs that have equal-sized components. So the next question is how

many components a MCS should have, given a fixed space budget. Intuitively, each

component should be sufficiently long so that it is unlikely to match a random byte

sequence in binary programs by accident. On the other hand, the larger the number

of components in a MCS, the more effective it is in eliminating false positives. Given

the above considerations and the practical signature size constraint, Hancock chooses

the number of components in each MCS to be between 3 and 5.

Hancock generates the candidate component set using a goodware model and a

goodware set. Unlike SCS, candidate components are drawn from both data and code,

because intuitively, combinations of code component signatures and data component

signatures make perfectly good MCS signatures. When Hancock examines an N
K

-byte

sequence, it finds the longest substring containing this sequence that is common to all

malware files that have the sequence. Hancock takes only one candidate component

from this substring. It eliminates all sequences that occur in the goodware set and

then takes the sequence with the lowest model probability. Unlike SCS, there is no

model probability threshold.

Given a set of qualified component signature candidates, S1, and the set of mal-

ware files that each component signature candidate covers, Hancock uses the following

algorithm to arrive at the final subset of component signature candidates used to form

MCSs, S2:

1. Compute for each component signature candidate in S1 its effective coverage

value, which is a sum of weights associated with each file the component signa-

ture candidate covers. The weight of a covered file is equal to its coverage count,

the number of candidates in S2 already covering it, except when the number of

component signatures in S2 covering that file is larger than or equal to K, in

109

which case the weight is set to zero.

2. Move the component signature candidate with the highest effective coverage

value from S1 to S2, and increment the coverage count of each file the component

signature candidate covers.

3. If there are still malware files that are still uncovered or there exists at least

one component signature in S1 whose effective coverage value is non-zero, go to

Step 1; otherwise exit.

The above algorithm is a modified version of the standard greedy algorithm for

the set covering problem. The only difference is that it gauges the value of each

component signature candidate using its effective coverage value, which takes into

account the fact that at least K component signatures in S2 must match a malware

file before the file is considered covered. The way weights are assigned to partially

covered files is meant to reflect the intuition that the value of a component signature

candidate to a malware file is higher when it brings the file’s coverage count from

X − 1 to X than that from X − 2 to X − 1, where X is less than or equal to K.

After S2 is determined, Hancock finalizes the K-component MCS for each malware

file considered covered, i.e., whose coverage count is no smaller than K. To do so,

Hancock first checks each component signature in S2 against a goodware database,

and marks it as an FP if it matches some goodware file in the database. Then

Hancock considers all possible K-component MCSs for each malware file and chooses

the one with the smallest number of components that are an FP. If the number of FP

components in the chosen MCS is higher than a threshold, TFP , the MCS is deemed

as unusable and the malware file is considered not covered. Empirically, T is chosen

to be 1 or 2. After each malware file’s MCS is determined, Hancock applies the same

diversity principle to each MCS based on the malware files it covers.

110

Threshold Model Group Position # common Interes- Minimum
setting probability ratio deviation signatures tingness coverage
Loose -90 0.35 4000 1 13 3
Normal -90 0.35 3000 1 14 4
Strict -90 0.35 3000 2 17 4

Table 4.1: Heuristic threshold settings

4.6 Evaluation

4.6.1 Methodology

To evaluate the overall effectiveness of Hancock, we used it to generate 48-byte

string signatures for two sets of malware files, and use the coverage and number of false

positives of these signatures as the performance metrics. The first malware set has

2,363 unpacked files that Symantec gathered in August 2008. The other has 46,288

unpacked files gathered in 2007-2008. The goodware model used in initial signature

candidate filtering is derived from a 31-Gbyte goodware training set. In addition,

we used another 1.8-Gbyte goodware set to filter out FP-prone signature candidates.

To determine which signatures are FPs, we tested each generated signature against

a 213-Gbyte goodware set. The machine used to perform these experiments has four

quad-core 1.98-GHz AMD Opteron processors and 128 Gbytes of RAM.

4.6.2 Single-Component Signatures

Because almost every signature candidate selection and filtering technique in

Hancock comes with an empirical threshold parameter, it is impossible to present

results corresponding to all possible combinations of these parameters. Instead, we

present results corresponding to three representative settings, which are shown in

Table 4.1 and called Loose, Normal and Strict. The generated signatures cover over-

lapping sets of malware files.

To gain additional assurance that Hancock’s FP rate was low enough, Symantec’s

111

Threshold Cover- # # Good Poor Bad
setting age sig.s FPs sig.s sig.s sig.s
Loose 15.7% 23 0 6 7 1
Normal 14.0% 18 0 6 2 0
Strict 11.7% 11 0 6 0 0

Table 4.2: Results for August 2008 data

malware analysts wanted to see not only zero false positives, but also that the sig-

natures look good – they look like they encode non-generic behavior that is unlikely

to show up in goodware. To that end, we manually ranked signatures on the August

2008 malware set as good, poor, and bad.

These results show not only that Hancock has a low false positive rate, but also

that tighter thresholds can produce signatures that look less generic. Unfortunately,

it can only produce signatures to cover a small fraction of the specified malware.

Several factors limit Hancock’s coverage:

• Hancock’s packer detection might be insufficient. PEiD recognizes many pack-

ers, but by no means all of them. Entropy detection can also be fooled: some

packers do not compress the original file’s data, but only obfuscate it. Diversity-

based heuristics will probably reject most candidate signatures extracted from

packed files. (Automatically generating signatures for packed files would be

bad, anyway, since they would be signatures on packer code.)

• Hancock works best when the malware set has many malware families and many

files in each malware family. It needs many families so that diversity-based

heuristics can identify generic or rare library code that shows up in several

malware families. It needs many files in each family so that diversity-based

heuristics can identify which candidate signatures really are characteristic of a

malware family. If the malware sets have many malware families with only a

few files each, this would lower Hancock’s coverage.

112

Threshold Coverage # #
setting sig.s FPs
Loose 14.1% 1650 7
Normal 11.7% 767 2
Normal, pos. 11.3% 715 0
deviation 1000
Strict 4.4% 206 0

Table 4.3: Results for 2007-8 data

• Malware polymorphism hampers Hancock’s effectiveness. If only some code is

polymorphic, Hancock can still identify high coverage signatures in the remain-

ing code. If the polymorphic code has a relatively small number of variations,

Hancock can still identify several signatures with moderate coverage that cover

most files in the malware family. If all code is polymorphic, with a high degree

of variation, Hancock will cover very few of the files.

• Finally, the extremely stringent false positive requirement means setting heuris-

tics to very conservative thresholds. Although the heuristics have good discrim-

ination power, they each still eliminate many good signatures. For example,

the group count heuristic clusters malware into families based on a single-byte

histogram. This splits most malware families into several groups, with large

malware families producing a large number of groups. An ideal signature for

this family will occur in all of those groups. Thus, for the sake of overall dis-

crimination power, the group count heuristic will reject all such ideal signatures.

4.6.2.1 Sensitivity Study

A heuristic’s discrimination power is a measure of its effectiveness. A heuristic has

good discrimination power if the fraction of false positive signatures that it eliminates

is higher than the fraction of true positive signatures it eliminates. These results

depend strongly on which other heuristics are in use. We tested heuristics in two

scenarios: we measured their raw discrimination power when other heuristics were

113

disabled; and we measured their marginal discrimination power when other heuristics

were enabled with conservative thresholds.

First, using the August 2008 malware set, we tested the raw discrimination power

of each heuristic. Table 4.4 shows the baseline setting, more conservative setting, and

discrimination power for each heuristic. The library heuristics (Universal FLIRT,

library function reference, and address space) are enabled for the baseline test and

disabled to test their own discrimination powers. Using all baseline settings, the run

covered 551 malware files with 220 signatures and 84 false positives. Discrimination

power is calculated as

log FPsi

FPsf

log Coveragei

Coveragef

Table 4.4 shows most of these heuristics to be quite effective. Position deviation

and group ratio have excellent discrimination power (DP); the former lowers cover-

age very little and the latter eliminates almost all false positives. Model probability

and code interestingness showed less discrimination power because their baseline set-

tings were already somewhat conservative. Had we disabled these heuristics entirely,

the baseline results would have been so overwhelmed with false positives as to be

meaningless. All four of these heuristics are very effective.

Increasing the minimum number of malware files a signature must cover eliminates

many marginal signatures. The main reason is that, for lower coverage numbers, there

are so many more candidate signatures that some bad ones will get through. Raising

the minimum coverage can have a bigger impact in combination with diversity-based

heuristics, because those heuristics work better with more files to analyze.

Requiring two common signatures eliminated more good signatures than false

positive signatures. It actually made the signatures, on average, worse.

Finally, the library heuristics all work fairly well. They each eliminate half to 70%

of false positives while reducing coverage less than 30%. In the test for each library

114

Heuristic FPs Coverage DP
Max pos. deviation 41.7% 96.6% 25
(from ∞ to 8,000)
Min file coverage 6.0% 83.3% 15
(from 3 to 4)
Group ratio 2.4% 74.0% 12
(from 1.0 to .6)
Model log probability 51.2% 73.7% 2.2
(from -80 to -100)
Code interestingness 58.3% 78.2% 2.2
(from 13 to 15)
Multiple common 91.7% 70.2% 0.2
sig.s (from 1 to 2)
Universal FLIRT 33.1% 71.7% 3.3
Library function 46.4% 75.7% 2.8
reference
Address space 30.4% 70.8% 3.5

Table 4.4: Raw Discrimination Power

heuristic, the other two library heuristics as well as basic FLIRT functionality were

still enabled. This shows that none of these library heuristics are redundant and that

these heuristics go significantly beyond what FLIRT can do.

4.6.2.2 Marginal Contribution of Each Technique

Then we tested the effectiveness of each heuristic when other heuristics were set

to the Strict thresholds from table 4.1. We tested the tunable heuristics with the

2007-8 malware set with Strict baseline threshold settings from table 4.1. Testing

library heuristics was more computationally intensive (requiring that we reprocess

the malware set), so we tested them on August 2008 data with baseline Loose thresh-

old settings. Since both sets of baseline settings yield zero FPs, we decreased each

heuristic’s threshold (or disabled it) to see how many FPs its conservative setting

eliminated and how much it reduced malware coverage. Table 4.5 shows the base-

line and more liberal settings for each heuristic. Using all baseline settings, the run

115

Heuristic FPs Coverage
Max pos. deviation 10 121%
(from 3,000 to ∞)
Min file coverage 2 126%
(from 4 to 3)
Group ratio 16 162%
(from 0.35 to 1)
Model log probability 1 123%
(from -90 to -80)
Code interestingness 2 226%
(from 17 to 13)
Multiple common 0 189%
sig.s (from 2 to 1)
Universal FLIRT 3 106%
Library function 4 108%
reference
Address space 3 109%

Table 4.5: Marginal Discrimination Power

covered 1194 malware files with 206 signatures and 0 false positives.

Table 4.5 shows that almost all of these heuristics are necessary to reduce the

FP rate to zero. Among the tunable heuristics, position deviation performs the best,

eliminating the second most FPs with the lowest impact on coverage. The group ratio

also performs well. Requiring a second common signature does not seem to help at

all. The library heuristics perform very well, barely impacting coverage at all. Other

heuristics show significantly decreased marginal discrimination power, which captures

an important point: if two heuristics eliminate the same FPs, they will show good

raw discrimination power, but poor marginal discrimination power.

4.6.3 Single-Component Signature Generation Time

The most time-consuming step in Hancock’s string signature generation process

is goodware model generation, which, for the model used in the above experiments,

took approximately one week and used up all 128 Gbytes of available memory in the

116

process of its creation. Fortunately, this step only needs to be done once. Because the

resulting model is much smaller than the available memory in the testbed machine,

using the model to estimate a signature candidate’s occurrence probability does not

require any disk I/O.

The three high-level steps in Hancock at run time are malware pre-processing

(including unpacking and disassembly), picking candidate signatures, and applying

diversity-based heuristics to arrive at the best ones. Among them, malware pre-

processing is the most expensive step, but is also quite amenable to parallelization.

The two main operations in malware pre-processing are recursively unpacking mal-

ware files and disassembling both packed and unpacked files using IDA Pro. Both use

little memory, so we parallelized them to use 15 of the 16 cores. For the 2007-2008

data set, because of the huge number of packed malware files and the decreasing

marginal return of analyzing them, Hancock disassembled only 5,506 packed files.

Pre-processing took 71 hours.

Picking candidate signatures took 145 minutes and 37.4 GB of RAM. 15 minutes

and 34.3 GB of RAM went to loading the goodware model. The remainder was for

scanning malware files and picking and storing candidate signatures in memory and

then on disk.

Generating the final signature set took 420 minutes and 6.07 GB of RAM. Most

of this time is spent on running IDA Pro against the byte sequences surrounding the

final signatures to output their assembly representation. Without this step, the final

signature generation step should have taken only a few minutes.

4.6.4 Multi-Component Signatures

We tested MCS signatures with 2 to 6 components, with each part being 16 bytes

long. We used a 3.0 GB goodware set to select component candidates and tested

117

number of Permitted Coverage # Signatures # FPs
components component FPs

2 1 28.9% 76 7
2 0 23.3% 52 2
3 1 26.9% 62 1
3 0 24.2% 44 0
4 1 26.2% 54 0
4 0 18.1% 43 0
5 1 26.2% 54 0
5 0 17.9% 43 0
6 1 25.9% 51 0
6 0 17.6% 41 0

Table 4.6: Multi-Component Signature results

for false positives with a 34.9 GB set of separate goodware.2 Table 4.6 shows the

coverage and false positive rates when 0 or 1 components could be found in the

smaller goodware set.

We first observe that permitting a single component of an MCS to be an FP in

our small goodware set consistently results in higher coverage. However, from 2- and

3-component signatures, we also see that allowing a single component FP results in

more entire MCS FPs, where all signature components occur in a single goodware

file.

We can trade off coverage and FP rate by varying the number of signatures com-

ponents and permitted component FPs. Three to five part signatures with 0 or 1

allowed FPs seems to provide the best tradeoff between coverage and FPs.

Since we applied so few heuristics to get these results, beyond requiring the ex-

istence of the multiple, disjoint signature components which make up the signature,

it is perhaps surprising that we have so few MCS FPs. We explain this by observing

that although we do not limit MCS components to code bytes, we do apply all the

library code reducing heuristics through IDA disassembly described in Section 4.3.2.

Also, the way in which signature components are selected from contiguous runs

2This final goodware set was smaller than in SCS tests because of the difficulty of identifying
shorter, 16-byte sequences.

118

of identical bytes may reduce the likelihood of FPs. If a long, identical byte sequence

exists in a set of files, the 16 byte signature component with lowest probability will

be selected. Moreover, no other signature component will be selected from the same

run of identical bytes. Thus, if malware shares an identical uncommon library (which

we fail to identify as a library) linked in contiguously in the executable, at most one

signature component will be extracted from this sequence of identical bytes. The

other components must come from some other shared code or data.

Finding candidate signatures took 1,278 minutes and 117 GB of RAM. Picking

the final signature sets took between 5 and 17 minutes and used 9.0 GB of RAM.

4.6.5 Comparison of Multi-Component Signatures with Single Compo-

nent Signatures

Comparing our best coverage with no FPs for MCS to single-component signatures

using our best combination of heuristics, we see that we get approximately double

the coverage with MCS signatures. Moreover, unlike single signatures, we used few

heuristics to get these results, beyond requiring the existence of the multiple signature

components which make up the signature. Future work could include applying the

heuristics developed for single component signatures to MCS, with the understanding

that some heuristics (like the interestingness heuristic) will be difficult to apply on a

sequence of only 16 bytes.

The MCS with more than 3 parts require more memory to store than the corre-

sponding single component signatures. Depending on the scanning architecture, it

may also be slower to scan for MCS signatures than single component signatures.

The final FP check uses a smaller goodware set than the one used for SCS because

we had to build a more finely indexed data structure to support queries for the shorter,

16-byte sequences. Future work should include re-indexing the larger SCS goodware

set.

119

More manual analysis of single component signatures was performed, and the

heuristics were tightened beyond the point where the run had zero FPs, until the

signatures looked good by manual analysis. A similar, in-depth analysis of MCS was

not performed.

4.7 Conclusion

Given a set of malware files, an ideal string signature generation system should be

able to automatically generate signatures in such a way that the number of signatures

required to cover the malware set is minimal and the probability of these signatures

appearing in goodware programs is also minimal. The main technical challenge of

building such string signature generation systems is how to determine how FP-prone

a byte sequence is without having access to even a sizeable portion of the world’s

goodware set. This false positive problem is particularly challenging because the

goodware set is constantly growing, and is potentially unbounded. In the Hancock

project, we have developed a series of signature selection and filtering techniques

that collectively could remove most if not all FP-prone signature candidates while

maintaining a reasonable coverage of the input malware set. In summary, the Hancock

project has made the following research contributions in the area of malware signature

generation:

• A scalable goodware modeling technique that prunes away unimportant nodes

according to their relative information gain and merges submodels without los-

ing information so as to scale to very large training goodware sets,

• A set of diversity-based signature filtering techniques that eliminate signature

candidates when the set of malware programs they cover exhibit high diversity,

and

• The first known string signature generation system that is capable of creating

120

multi-component string signatures which have been shown to be more effective

than single-component string signatures.

Although Hancock represents the state of the art in string signature generation

technology, there is still room for further improvement. The overall coverage of

Hancock is lower than what we expected when we started the project. How to improve

Hancock’s coverage without increasing the FP rate of its signatures is worth further

research. Although the multi-component signatures that Hancock generates are more

effective than single-component signatures, their actual run-time performance impact

is unclear and requires more thorough investigation. Moreover, there could be other

forms of multi-component signatures that Hancock does not explore and therefore

deserve additional research efforts.

121

CHAPTER V

DUET: Integrating Dynamic and Static Analysis

for Malware Clustering

5.1 Introduction

The growing popularity of automatic malware-creation toolkits, which allow even

marginally skilled attackers to create and customize malware programs, has resulted

in a plethora of malware variants. Clustering, a valuable tool in malware analy-

sis, partitions new malware programs into similar groups (clusters); samples grouped

together are similar, whereas those in different groups are dissimilar. Often, in a

malware analysis, little prior knowledge exists for new malware samples, and hence,

clustering plays a vital role in initially processing new incoming programs. For in-

stance, the automatic, efficient clustering of malware samples into groups will allow

analysts to prioritize, allocating precious human resources for more important, dis-

tinct malware programs. Second, it will enable automatic labeling of new incoming

samples based on their association with existing clusters. Finally, clustering makes it

easier to generalize previous signatures, remedy procedures and mitigation techniques

for new variants.

There are many clustering techniques one can use to analyze malware samples.

Different clustering algorithms or parameter settings are likely to generate distinct,

122

or even conflicting, clustering results. Even multiple runs of the same algorithm,

with identical parameter settings, may produce different results due to the random

initialization or stochastic learning process [118]. Choosing “the best” algorithm

or settings therefore represents a challenging task because different approaches have

their respective advantages and limitations, which often depend on properties such

as data distribution, pre-processing procedures, anti-analysis techniques used by mal-

ware programs, etc. Moreover, it is not uncommon for different clustering algorithms

to generate inconsistent, or even contradictory results, when applied to the same

dataset, a phenomenon originating from their individual biases and strengths to-

wards particular sets of data. Since no single algorithm performs optimally across

all various data sets, a broad range of clustering algorithms have been proposed to

tackle the malware clustering problem [10, 13, 64, 81, 86, 88, 113], each of which has

its own merits and demerits. As discussed in Chapter III, there are two fundamental

approaches to malware clustering, i.e., based on static features or dynamic behavior.

The static approach is efficient and capable of covering all code paths, including parts

of the programs that are usually not executed. However, its performance suffers from

low-level mutation techniques, such as packing and obfuscation. In contrast, dynamic

analysis encounters the exact opposite situation. While it achieves great resilience

to low-level obfuscation making it potentially well-suited for generalizing unknown

malware variants, it often performs poorly when handling trigger-based malware pro-

grams. Consequently, malware samples that can be effectively analyzed by these

two approaches are usually different, making it challenging to choose a single, opti-

mal clustering algorithm. By combining these two approaches, we can exploit their

respective strengths while diminishing their weaknesses.

In this chapter, instead of focusing on the development of a single clustering

algorithm that only works for a narrow range of datasets, we design a unified clus-

tering framework, effectively combining results from different clustering algorithms

123

based on the concept of cluster ensemble. More specifically, given a set of clusterings

C1, C2, ..., Cm, cluster ensemble attempts to derive a single clustering C that, according

to certain criteria, is in as much agreement as possible with the original m cluster-

ings. Cluster aggregation overcomes multiple shortcomings of any single clustering

algorithm, which cannot possibly cover all malware samples alone, often resulting in

better quality clustering with greater coverage. For instance, the dynamic approach

cannot handle malware that denies execution if run in a virtual environments, such

coverage gaps can often be resolved by utilizing the complementary static approach.

In addition, cluster ensemble exploits the consensus among different clustering algo-

rithms to derive new clusters, reinforcing the grouping’s confidence level and improv-

ing the clustering quality. One caveat worth consideration is the conflicting results

generated by different clustering algorithms. For example, dynamic approaches may

mistakenly cluster together all malware programs capable of detecting virtual envi-

ronments and halting its execution, as they all invoke a smaller number of similar

API calls. In contrast, static clustering can probably separate such malware into

distinct groups based on other features. While static clustering may err by grouping

together programs packed with the same customized packers, these samples are likely

to be handled properly and separated by dynamic clustering. However, if static and

dynamic approaches carry equal weights when reconciling their results, the ensemble

algorithm can, at best, make random choices. In this chapter, we address this problem

through Clustering Quality Measurement, which measures how strong or conclusive

the data points are within each group based on criteria such as scatter, density and

the number of data points in a cluster. By assigning each cluster a quality score,

high-quality clusters carry more weight when reconciling the conflicting results, thus

improving the clustering algorithm.

In this chapter, we investigate and compare the effectiveness of various cluster-

ensemble methods, including hyper-graph partitioning [95], agglomerative algorithm

124

[38], etc. The rest of this chapter is organized as follows. Section 5.2 gives a brief

overview of DUET. Section 5.3 presents the malware trace collection system and the

clustering algorithm. Sections 5.4 and 5.5 detail the proposed cluster ensemble algo-

rithms. Section 5.6 presents the comprehensive evaluation of the DUET system, and

Section 5.8 concludes the chapter.

5.2 System Overview

Figure 5.1: An overview of DUET

Here we briefly describe the system architecture of DUET, which is illustrated in

Figure 5.1. Given a set of malware programs, DUET first uses two different feature

extractors to derive (1) instruction-based features, i.e., opcode sequences, and (2)

dynamic behavior features, i.e., system call traces. These features are then trans-

formed into a vector for the purpose of clustering. Second, base clustering results are

generated by applying (different) clustering algorithms with different parameters on

the dataset. To improve scalability, the same prototype-based clustering algorithm

and hashing tricks as in MutantX (Chapter III) are also used in dynamic behavioral

clustering. Third, a connectivity matrix is constructed for each individual clustering

algorithm to represent the clustering results based on the quality measures. All ma-

trices are combined to form a master matrix, where various ensemble methods can

be applied in order to derive the final results.

125

5.3 Malware Clustering Using Run-time Traces

This section describes the system we developed to perform dynamic analysis on

malicious samples and extract their run-time behavior in terms of system calls. Be-

cause most malware samples target the Windows operating system, we use the Bind-

View’s STrace [16] (the Windows version of Linux STrace utility) to intercept and

record all system calls invoked by the malware program, as well as their detailed

arguments. STrace consists of two components: a device driver, which patches the

kernel’s system call table to collect all call traces, and a user-space application, which

loads and communicates with the driver it to retrieve traces. All the malware sam-

ples are executed in a VMware virtual machine running the Windows XP system.

We make use of VMware VIX [109] API to automate and parallelize the running of

malware programs. Each malware program is monitored for 2 minutes, and the result-

ing system call traces are transferred from the virtual machine to the host machine.

After transferring the collected traces, the virtual machine is reset to the clean-state

snapshot, preventing interference between malware programs.

Figure 5.2: Malware clustering based on dynamic behavior

STrace produces a textual format of system call traces (Figure 5.2) which is diffi-

cult to use for the automatic analysis of malware behavior. To address this difficulty,

126

we employ the idea proposed in [88] and encode each system call with a tuple ‘(cate-

gory, operation)’ shown in Table 5.1, where a category represents a group of system

calls that operate on a similar type of objects (e.g., registry, file systems, DLLs or

processes), and an operation specifies a particular call function. For example, in Ta-

ble 5.1, the tuple ‘(0x03, 0x05)’ indicates that the system call belongs to the “File

System” category and is performing the “DeleteFile” operations. Furthermore, we

assign the same operation value to those system calls that can achieve identical re-

sults, such as OpenProcess and NtOpenProcess, RegOpenKey and RegOpenKeyEx.

For instance, 4 system calls that can be used to create a new process are encoded with

the same tuple, ‘(0x0A, 0x02)’. This canonicalization of function variations enables

a more generalized representation of system call traces and improves the clustering

accuracy.

Because typical malware behavior patterns, such as modifying the registry keys

and file systems, can be reflected in the system call sequences, we apply the standard

n-gram analysis as in MutantX, embedding the encoded system call sequences into a

fixed-length feature vector whose distance represents the similarity between malware

behaviors. However, unlike in MutantX, where the feature vector elements represent

how often a specific n-gram of instructions occurs, dynamic behavioral clustering uses

“binary features” (i.e., 0 or 1) where each feature vector element represents the ab-

sence or presence of a specific n-gram of system calls in the call traces. Using binary

features reduces the influence of external factors, such as the length of traces, the

redundancy of the behavior and the alphabet of the n-gram. In practice, depending

on the monitoring period and system condition, the number of system calls in a call

trace can vary significantly, even for identical malware programs. In addition, when

executed in a loop, certain system calls may be repeated thousands of times, con-

siderably skewing the values in the feature vector. Consequently, this may introduce

an implicit bias and render the comparison of samples with small and large traces

127

Category Operation System Call

File System

0x03 0x01 CreateFile
0x03 0x02 CopyFile
0x03 0x02 CopyFileEx
0x03 0x03 ReadFile
0x03 0x03 ReadFileEx
0x03 0x04 WriteFile
0x03 0x04 WriteFileEx
0x03 0x05 DeleteFile

DLL Handling

0x02 0x01 LoadLibrary
0x02 0x01 LoadLibraryEx
0x02 0x02 GetProcAddress
0x02 0x03 GetModuleHandle
0x02 0x04 GetModuleFileName

Registry Handling

0x09 0x01 RegOpenKey
0x09 0x01 RegOpenKeyEx
0x09 0x02 RegCreateKey
0x09 0x02 RegCreateKeyEx
0x09 0x03 RegEnumKey

Process Handling

0x0A 0x01 OpenProcess
0x0A 0x01 NtOpenProcess
0x0A 0x02 CreateProcess
0x0A 0x02 CreateProcessInternal
0x0A 0x02 CreateProcessAsUserr
0x0A 0x02 NtCreateProcess

Table 5.1: Encoding of sample system calls

128

inaccurate. To compensate for this bias, the value of each component in the feature

vector v(x) is limited to be either 0 (n-gram feature is absent) or 1 (n-gram feature

is present). Additionally, to minimize the impact of inconsistent trace length, the

feature vector is normalized, setting its length equal to 1 (i.e., ||v(x)|| = 1) and en-

suring that the difference between vectors depends only on the presence/absence of

certain behavioral patterns. After feature extraction and vector encoding, the simi-

larity of behavior patterns between different malware programs can be expressed as

geometrical distance d(x, y) in the vector space:

d(x, y) = ||v(x)− v(y)|| =

√

√

√

√

n
∑

i=1

(vi(x)− vi(y))2.

Note that, due to normalization, the values of d range from 0 for identical behavior,

to
√

2 for completely different behavior. Using this distance definition for assessing

behavioral similarity, the standard prototype-based clustering algorithm is applied

to malware samples, creating a particular cluster for input into the cluster ensemble

algorithm.

5.4 Cluster Ensemble

The motivation for using cluster ensemble is to combine the strengths of different

clustering algorithms and to improve the quality and the robustness of clustering

results. Cluster ensemble exploits the diversity of different clustering algorithms,

reconciling their discrepancies on a data set, to produce a result that performs as

well as, if not better than, the results of any single clustering algorithm alone. In

this section, we first demonstrate the limitations of dynamic and static analyses using

real-world malware data, illustrating the potential for further improvement with the

cluster ensemble. Next, we discuss potential cluster-ensemble methods that can be

used to integrate static and dynamic analysis results.

129

5.4.1 Motivating Examples

For certain malware, the respective limitations of dynamic and static approaches

can render them ineffective when used alone, producing few dynamic API traces or

static instruction features. To verify this, we run static and dynamic analyses on

a set of 5,647 real-world malware samples (detailed categorization of these samples

will be presented in Section 5.6) to collect their code instruction and dynamic sys-

tem call traces, extracting n-gram features. Because extraction of n-gram features

requires the collected sequences to have at least n system calls or instructions, we

first measure the number of malware samples that satisfy this constraint and whose

feature vector (from either dynamic API sequences or static instruction sequences)

can be successfully extracted. By applying dynamic and static n-gram analyses, we

gain insight into the capabilities and shortcomings of both approaches, revealing their

complementary nature. Table 5.2 lists the feature extraction results from these ap-

proaches. The table clearly shows that any single approache alone is unable to analyze

all the samples and, in general, fails to extract features from 12–17% of all malware

binaries. For instance, 645 samples do not run in our virtual machine, producing no

system calls; furthermore, around 25 malware programs only make a single system

call, (i.e., TerminateProcess), presumably due to detection of the virtual machine

environment and then immediate termination. On the other hand, IDA fails to ex-

tract any static instructions from 655 binaries due to the underlying obfuscation and

packing techniques. However, a combination of dynamic and static approaches yields

much better results: the percentage of malware samples that can be successfully an-

alyzed improves to 98.72%, and only 72 malware samples are able to evade both

approaches. Although the final coverage depends on the cluster-ensemble algorithm,

this preliminary experiment shows that aggregating different analysis approaches has

the potential to achieve more robust and complete clustering.

130

of successfully percentage # of failed percentage
processed malware malware

Behavior 3 gram 4971 88.03 676 11.97
Behavior 4 gram 4943 87.53 704 12.47
Static 3 gram 4799 84.98 848 15.02
Static 4 gram 4703 83.28 944 16.72

Behavior+Static 5575 98.72 72 1.28

Table 5.2: Number of malware samples whose features can be extracted by static,
dynamic, and both approaches. The total number of malware samples is
5647

5.4.2 Problem Formulation

Consider a set of n malware programs, X = x1, x2, . . . , xn, and a set of T cluster-

ings of X, C = {C1, C2, . . . , CT} . Each clustering, Ct, t = 1, 2, . . . , T , is a partition

of X into k disjoint clusters, i.e., Ct = {Ct
1, C

t
2, . . . , C

t
k} where

⋃k
i=1 Ct

i = X and

Ct
i ∩ Ct

j = φ, ∀i 6= j. Let Lt(x) denote the label of the cluster to which the malware

program, x, belongs, i.e., Lt(x) = j if and only if x ∈ Ct
j . Also, k could be different

for different clusterings. With these T clusterings, the cluster ensemble is defined as

a consensus function Γ [96] that maps a set of clusters to an integrated clustering:

Γ : {Ct|t ∈ {1, 2, . . . , T}} → C

if the relative importance of each individual clustering is not known a priori, a nat-

ural goal of cluster ensemble is to find the final clustering, C, that shares the most

commonality with the constituent clusterings [38].1 To measure the similarity or

dissimilarity between clusterings, we define a connectivity matrix, M(Ct), for each

clustering Ct. The connectivity matrix is an n×n pair-wise similarity matrix defined

for all malware programs and it represents the structural information of a particular

clustering. Since the matrix size is fixed, it provides a method for aligning differ-

1The algorithm can be easily generalized to the case where some clusterings may carry more
weights than others

131

ent clusterings onto the same space even when the number of clusters varies across

different approaches. Specifically, M(Ct) is defined as in [118]:

Mij(Ct) =











1 if sample xi and xj belong to the same cluster in Ct

0 Otherwise

Then, the difference between two clusterings, Ca and Cb, in determining whether

xi and xj are in the same cluster can be expressed as:

di,j(Ca, Cb) = |Mij(Ca)−Mij(Cb)|.

From this, we can define the distance between two clusterings, Ca and Cb, as the

number of malware pairs for which the two clusterings disagree [38]:

d(Ca, Cb) =
n

∑

i,j=1

di,j(Ca, Cb) =
n

∑

i,j=1

|Mij(Ca)−Mij(Cb)| =
n

∑

i,j=1

(Mij(Ca)−Mij(Cb))2.

Cluster ensemble strives to find a consensus clustering, Ĉ, that is closest to all

of the given clusterings, i.e., that minimizes the average distance between Ĉ and

{Ct|t ∈ {1, 2, . . . , T}:

Copt = arg min
Ĉ

T
∑

t=1

d(Ct, Ĉ) (5.1)

= arg min
Ĉ

T
∑

t=1

n
∑

i,j=1

(Mij(Ct)−Mij(Ĉ))2. (5.2)

Since
∑T

t=1 d(Ct, Ĉ) is a convex function, minimizing it makes the optimal connec-

tivity matrix Mopt
i,j (Ĉ) become the average connectivity matrix [118]:

132

Mopt
i,j (Ĉ) =

1

T

T
∑

t=1

Mij(Ct),

where Mopt represents the integrated connectivity relationship between data samples

from different clusterings. When weights are not assigned to the different clusterings,

the values of Mopt
i,j indicate the average number of times that xi and xj are clustered

together; they range between 0 and 1, where 1 means all the clusterings agree that

xi and xj belong to the same cluster, and 0 means none of the clusterings groups xi

and xj together. Given Mopt
i,j , our goal is to derive Copt = {Copt

1 , Copt
2 , . . . , Copt

k } from

Mopt
i,j .

5.4.3 Clustering Based on Ensemble Distance Matrix

Several methods have been proposed to generate a final clustering from the optimal

connectivity matrix Mopt
i,j [38, 95, 118]. Here we employ the following algorithms.

Simple threshold algorithm: A simple strategy to generate the final clustering

is to use a single threshold. For each sample pair (xi, xj), if Mopt
i,j is greater than the

threshold, xi and xj are assigned to the same cluster. If the samples are previously

assigned to different clusters, these clusters are merged. When the threshold is set to

0.5, the algorithm becomes a majority vote, and two samples are clustered into the

same group only if at least half of the input clusterings agree. Finally, all remaining

unclustered samples each form a single-element cluster.

The balls algorithm [38]: The basic idea of this algorithm is to find a set

of samples that are close to each other (within a ball) and far from others. After

finding such a cluster, the constituent samples are removed from the data set, and

the clustering continues with the remaining samples. Because the problem of finding

the globally optimal clusters is NP-complete, a greedy algorithm can be used to

create a bounded approximation to the optimal solution. Viewing the connectivity

matrix, Mopt, as a graph’s adjacency matrix, where each Mopt
i,j represents the edge’s

133

weight connecting xi and xj , the algorithm sorts the samples in decreasing order of

their edges’ total weights. At each step, the algorithm chooses the first unclustered

sample, xu, and finds a set of samples, V = xv1, xv1, . . . , xvk whose connectivity to xu

is greater than the threshold, β. Then, their union V ∪ xu forms a cluster.

The agglomerative algorithm[38]: This is a standard bottom-up clustering

approach. It starts by placing all samples as singleton clusters. Next, it recursively

merges the two clusters with the smallest distance; repeating until the distance be-

tween any pair of existing clusters is larger than a threshold, h. In DUET, we define

the distance between clusters as 1 − ĉ where ĉ is the average connectivity between

every pair of samples from two clusters. If the threshold, h, is set to 1/2, the agglom-

erative algorithm is guaranteed to create clusters where the average connectivity of

any pair of nodes is at least 1/2 (i.e., at least half of the original clusterings are in

agreement).

Hypergraph partition algorithm [95]: Essentially, the cluster ensemble re-

partitions the original dataset based on other clusterings’ indications of strong con-

nections. Therefore, it can also be formulated as a hypergraph partition problem,

where each sample is a vertex in the hypergraph, and the hyperedge between vertices

is weighted based on Mopt. In this case, the goal is to cut the minimum set of edges

such that the remaining subgraphs consist of connected components corresponding

to new clusters. Hypergraph partitioning is a well-studied area and many existing

algorithms can be applied to efficiently find the minimum cut. As suggested in [47],

we choose the hMETIS [63] package because of its good performance and scalability.

134

5.5 Improving Cluster Ensemble with Cluster-Quality Mea-

sure

In effect, standard cluster ensemble approaches weight all clusters equally. For in-

stance, Mij is set to 1 if two data points, xi and xj, are in the same cluster, regardless

of the cluster quality. However, since clustering is essentially unsupervised learning

without prior knowledge of the underlying data distribution, every clustering algo-

rithm implicitly or explicitly assumes some data model and may produce erroneous

or meaningless clusters when these assumptions are not satisfied by the sample data.

In other words, because of their exploratory nature, most clustering algorithms will

create clusters even for data points that have little or no correlation, leading to false

clusters and negatively impacting the final results of the integrated clusters.

To overcome this limitation, we propose to improve the cluster ensemble algo-

rithm by differentiating clusters that have non-random structures from those that are

created artificially by the clustering algorithms, weighting high-quality clusters more

in the final results. This is particularly important when reconciling conflicting clus-

ters because different clustering algorithms(e.g., static feature and dynamic behavior

based approaches), handle different types of malware programs with varying levels of

effectiveness. Ideally, we should give more weight to clusterings that group particular

samples well. For instance, we want to rely more on dynamic analysis when clustering

malware programs that are heavily obfuscated. Unfortunately, such information is

not readily available, so we use cluster-quality measurements as an indirect way to

allow the cluster ensemble method to bias towards high-quality clusters. High-quality

clusters are compact and separated well from other clusters, indicating that the data

points likely share a strong bond. Such clusters should have a greater influence on

the final ensemble results, increasing the probability of preserving the connections

between samples. In contrast, lower-quality clusters, where there is less correlation

135

and more diversity among samples, should hold less sway over the final ensemble,

avoiding potential mis-grouping of unrelated data points.

Hence, our objective is to (1) define quality metrics that evaluate the “goodness” of

clustering by looking at the intra- and inter-cluster correlations between data points

and (2) incorporate the metrics in the ensemble algorithms. More specifically, we

define the following measures of cluster quality:

• Cluster Cohesion (Co), also called compactness or tightness, determines how

closely objects in a cluster are related. Formally, a cluster’s cohesion is defined

as the average link weight of its connectivity graph of the cluster. For a cluster,

Ct
i , created by a specific clustering algorithm, t, cohesion can be calculated

using the proximity function between two input samples:

Co(C
t
i) =

2

|Ct
i | ∗ (|Ct

i | − 1)

∑

x∈Ct
i ;y∈Ct

i ;x<y

proximity(x, y).

The proximity function is usually the distance function (e.g., normalized Eu-

clidean distance) specific to the clustering algorithm. Notice that the according

to this definition, a smaller Co implies a more cohesive cluster.

• Cluster Separation (Cs) measures how well or distinct a cluster is separated

from other clusters. The separation between two clusters, Ct
i and Ct

j , can also

be defined with the proximity function:

Cs(C
t
i , C

t
j) =

1

|Ct
i | ∗ |Ct

j|
∑

x∈Ct
i ;y∈Ct

j

proximity(x, y).

Then, the average separation, C̄s(C
t
i), of the cluster Ct

i from all other clusters

136

can be computed as:

C̄s(C
t
i) =

1

k − 1

k
∑

j=1;j 6=i

∑

x∈Ct
i ;y∈Ct

j

proximity(x, y)

where k is the number of clusters.

Intuitively, high-quality clusters (i.e., those with small cohesion and high sep-

aration), should more likely be in the final ensemble results. DUET exploits such

“goodness” information and incorporates it into the ensemble process. Well-formed

clusters with strong bonds are likely to be preserved in the final results, while clusters

with no natural linkage are discouraged from influencing the ensemble process. To

achieve this goal, we use a weighted boost score β:

β = ωo(1− Co) + ωsCs

where ωo + ωs = 1. Since Co and Cs both lie between 0 and 1, the boost score also

ranges from 0 and 1, with a higher value indicating a better cluster. We use β to

augment the connectivity matrix of each member clustering and increase Mij if xi

and xj are in a well-formed cluster. More specifically, the new boosted connectivity

matrix is computed as:

MB
i,j(Ct) = Mi,j(Ct)× (1 + βt

Lt(i))

and the cluster ensemble algorithm described in Section 5.4 is applied on the boosted

connectivity matrix to derive the final clustering results.

137

5.6 Evaluation

In this section, we conduct a set of experiments using a large number of real-world

malware samples to evaluate the cluster ensemble methods discussed thus far. First,

we present the experimental results of dynamic-behavior-based clustering algorithms

and quantitatively compare them with static-feature-based approaches, confirming

our conjecture that the two techniques cover different sets of malware samples, and

therefore, cluster ensemble has the potential to improve the overall quality of clus-

tering. In the second part of the experiments, we assess the proposed cluster en-

semble algorithms—including single-threshold, balls, agglomerative and hypergraph-

partitioning algorithms—and demonstrate their improvements over the single clus-

tering algorithm in terms of the precision and sample coverage. Finally, we show that

the ensemble results can be further improved by taking into consideration the quality

of each member cluster.

5.6.1 Malware data set

To evaluate DUET, we use the same malware dataset for both static and dynamic

clustering algorithms. The dataset contains 5,647 malware files with known class

labels which were collected and analyzed by Symantec malware analysts. The number

of samples in each family is summarized in Table 5.3. The malware binaries are

executed in the virtual machine, and behavior traces are collected and analyzed by

MutantX to extract feature vectors.

In order to ensure the meaningful representation of malware’s semantics, the clus-

tering algorithm imposes a threshold constraint, discarding the malware programs

with less than 10 n-grams. This is to prevent the use of overly generic features

in malware clustering. Further, when malware has too few extracted n-grams, it

is likely that the extraction process—either disassembling or dynamic monitoring—

encountered certain problems, making it unsafe to include them in clustering. As

138

Family # Family # Family #

Pilleuz 500 Bredolab 362 Mabezat 129
Virut 500 Vundo 334 Qakbot 44
Silly 500 Almanahe 327 Waledac 41
Fakeav 500 Tidserv 242 Ackantta 36
Koobface 496 Sasfis 219 Mebroot 26
Banker 489 Gammima 206 Hotbar 21
Zbot 486 Graybird 189

Table 5.3: Malware families of the reference data set

a result, some malware samples in Table 5.2 cannot be successfully clustered. We

summarize the number of malware programs that pass our ten n-gram constraint for

different clustering algorithms in Table 5.4, expressing the maximum malware cover-

age achievable by each individual clustering. Table 5.4 once more demonstrates the

potential benefits of ensemble methods: the combination of static and behavioral ap-

proaches significantly increases the number of analyzable malware programs, raising

the percentage from less than 80% to almost 97%.

of malware with percentage # of malware with percentage
more than 10 n-grams less than 10 n-grams

Behavior 3 gram 4026 71.29 1621 28.71
Behavior 4 gram 4038 71.51 1609 28.49
static 3 gram 4622 81.85 1025 18.15
static 4 gram 4605 81.55 1042 18.45

behavior+static 5454 96.58 193 3.41

Table 5.4: Number of malware samples with more than 10 n-grams and the total
number of malware samples is 5647

5.6.2 Behavioral clustering results

Next, we present the evaluation results of the proposed behavioral clustering com-

ponent in DUET. The system executes each malware program for 120 seconds, collecting

system call traces and converting them into a feature vector. The prototype-based

clustering algorithm is then applied on the feature vectors and creates a set of clusters

139

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

P
max

Clustering Precision −− Behavioral 3 gram

Min
d

P
re

ci
si

on

0

0.5

1 0
0.5

1

0.5

0.6

0.7

0.8

0.9

P
max

Clustering Precision −− Behavioral 4 gram

Min
d

P
re

ci
si

on

0

0.5

1 0
0.5

1

0.75

0.8

0.85

0.9

0.95

P
max

Clustering Precision−− Static 3 gram

Min
d

P
re

ci
si

on

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

P
max

Clustering Precision −− Static 4 gram

Min
d

P
re

ci
si

on

Figure 5.3: Clustering precision

C = C1, C2, . . . , Cc. The performance of the clustering algorithm is measured using

two metrics: precision and coverage. Precision is used to assess the accuracy of be-

havioral clustering in terms of how well the individual clusters agree with the original

malware classes. More formally, if we assume the malware samples are grouped into a

set of clusters, O = O1, O2, . . .Oo, according to their family labels, then the precision,

P , is defined as:

P =
1

n

∑

i=1

cmax(|Ci ∩ O1|, |Ci ∩O2|, . . . , |Ci ∩ Oo|).

The second metric, coverage, measures the percentage of malware programs that

can be successfully clustered after excluding single-member clusters, which are in-

evitably created for sample outliers. For example, the agglomerative algorithm be-

140

0

0.5

1 0

0.5

10.45

0.5

0.55

0.6

0.65

P
max

Clustering Coverage −− Behavioral 3 gram

Min
d

C
ov

er
ag

e

0

0.5

1 0

0.5

1
0.4

0.5

0.6

0.7

0.8

P
max

Clustering Coverage −− Behavioral 4 gram

Min
d

C
ov

er
ag

e

0

0.5

1 0

0.5

1

0.4

0.5

0.6

0.7

P
max

Clustering Coverage −− −− Static 3 gram

Min
d

C
ov

er
ag

e

0

0.5

1 0

0.5

1

0.4

0.5

0.6

0.7

P
max

Clustering Coverage −− Static 4 gram

Min
d

C
ov

er
ag

e

Figure 5.4: Clustering coverage

gins by making each sample an individual cluster; it then recursively merges nearby

clusters until a certain criterion is reached, leaving outliers in their own, singular

clusters. Since it indicates how well clustering algorithms produce useful clusters, we

also consider coverage an important metric.

We evaluate the performance of DUET’s dynamic analysis component , as we did for

MutantX. We vary three parameters—Pmax, Mind and the number of grams—required

by the prototype-based clustering algorithm and plot the clustering results in Fig-

ures 5.3 and 5.4. For comparison, we also plot static-feature-based clustering results

in the same graph. From these figures, we observe that with proper parameter selec-

tion, all the clustering algorithms are able to cluster malware samples with precision

ranging from 70 to 90%. Additionally, static-feature-based clustering, with precision

approaching 95%, generally outperforms behavior-based clustering. However, none of

141

these systems attains perfect coverage and most of them can only create good clus-

ters for only 50–70% of samples. Examining both figures, we can see that there is a

natural trade-off between precision and coverage; an increase in precision is accom-

panied by a decrease in coverage and vice versa. The reason for this phenomenon is

that in order to achieve a higher precision, clustering algorithms must avoid merging

unrelated malware programs into the same cluster. While this produces high-quality

clusters for some samples, many more remain uncovered in singular clusters. For

example, as Mind and Pmax both decrease toward 0.1, precision is improved; a small

Pmax dictates that each prototype sample includes only extremely close data points

within its range, while a small Mind terminates the merging process early to avoid

combining unrelated classes. Together, this combination ensures that only incredi-

bly similar samples are clustered together, excluding a large portion of samples with

moderate resemblance to each other. Thus, it leads to a rapid drop in coverage from

75 to 45% for the dynamic approach and below 30% for the static approach.

5.6.3 Evaluation of Cluster Ensemble

In this subsection, we present the evaluation results of the effectiveness of mal-

ware clustering using the proposed cluster ensemble methods. The goal is to show

how cluster ensemble can be used to improve the quality and robustness of existing

clustering algorithms. Using the data set described in Section 5.6.1, we evaluate clus-

ter ensemble for two scenarios. In each scenario, cluster ensemble examines 8 input

clustering—two clusterings with different Pmax and Mind values, for each approach

combination of 3-gram/4-gram and static/behavioral. In the first scenario, the best-

case scenario, Pmax and Mind are selected to give each approach combination two

clusterings: one optimized for precision (thus with low coverage) and one optimized

for coverage (thus with low precision). Notice that this scenario represents an ideal,

not a realistic, setting. In practice, we would not be able to determine which values

142

of Pmax and Mind lead to the highest precision or coverage. As a result, the best-case

scenario simply helps us evaluate the optimal performance of cluster ensemble under

ideal conditions and compare it to the best performance achieved by individual clus-

terings. Our second scenario, the random scenario, offers a more realistic evaluation

by randomly choosing Pmax and Mind for the 8 input clusters. Tables 5.6.3 and 5.6

list the parametric values of the individual input clusterings in these two scenarios.

From the tables, we can see that the precision for the best-case scenario’s clusterings

ranges from 0.69 to 0.88, while the random scenario’s range of 0.57 to 0.83 is slightly

lower. The range of coverage is usually 50–68% for behavioral clusterings and 54–74%

for static clusterings, which are about 10% lower than the maximum coverage shown

in Table 5.4. Next, we will show that cluster ensemble is to leverage the different

perspectives of each input clustering to improve malware coverage and precision.

Mind Pmax precision coverage
behavior 3 gram (Best precision) 0.15 0.10 0.87 51.5%
behavior 3 gram (Best coverage) 0.85 0.45 0.69 67.9%
behavior 4 gram (Best precision) 0.10 0.15 0.88 51.1%
behavior 4 gram (Best coverage) 0.40 0.95 0.68 68.1%
static 3 gram (Best precision) 0.65 0.20 0.86 57.4%
static 3 gram (Best coverage) 1.30 0.30 0.70 74.4%
static 4 gram (Best precision) 0.30 0.70 0.85 56.7%
static 4 gram (Best coverage) 1.30 0.75 0.70 71.0%

Table 5.5: Parametric settings for the best scenario

Mind Pmax precision coverage
behavior 3 gram 0.20 0.60 0.71 64.7%
behavior 3 gram 0.30 0.20 0.80 57.9%
behavior 4 gram 0.50 0.20 0.77 62.2%
behavior 4 gram 0.75 0.10 0.71 65.7%
static 3 gram 0.60 0.70 0.83 59.5%
static 3 gram 1.10 1.25 0.57 72.3%
static 4 gram 0.30 1.10 0.74 64.3%
static 4 gram 0.85 1.15 0.69 65.7%

Table 5.6: Parametric settings for the random scenario

143

Cluster ensemble based on a single threshold: The first cluster ensemble ap-

proach we evaluate clusters two samples together if their connectivity in Mopt
i,j is larger

than some threshold ct, (i.e., at least ct percentage of constituent clusterings agree

that the two samples are clustered together). We vary ct between 0 and 1 and plot

the results in Figure 5.5. From the figure, it is apparent that, although this cluster

ensemble achieves a high coverage of 79% (5% higher than the best coverage of any

single clustering algorithm), the resulting precision is below our expectation. For

instance, using a threshold of 0.5 (i.e., majority consensus), this ensemble approach

achieves a precision of only 0.64 and 0.43 for the best case and random scenarios.

Investigation of the resulting clusters reveals that the low precision is due mainly to

the over-merging of unrelated clusters. In a single-threshold cluster ensemble, two

clusters are merged if the connectivity in Mopt
i,j between any pair of member sam-

ples xi and xj is greater than the threshold. As a result, unrelated clusters can be

bridged together by a chain of samples, causing them to be incorrectly clustered and

swelling our largest cluster to over 3,000 samples. To address this problem, we take a

simple approach and avoid merging two clusters if the size of either cluster is larger

than some limit. In our experiment, this limit is set to 200 (around half the size

of the largest family). By imposing this threshold on the cluster size, the ensemble

approach achieves precisions of 0.82 (best-case scenario) and 0.75 (random scenario),

with 78% (best-case scenario) and 82% (random scenario) coverage. These results

demonstrate that the ensemble approach can increase coverage by 10% over that of

any single clustering algorithm, while simultaneously achieving accuracy close to the

best among single clustering algorithms.

Cluster ensemble based on the ball algorithm: The ball algorithm improves

over the single-threshold approach by attempting to find a set of data points that are

close to one another while being and far from others. To search for such a set, the

algorithm starts by sorting all the data points according to the total connectivity of

144

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re

ci
si

on

Best Scenario without Size Limit
Best Scenario with Size Limit
Random Scenario without Size Limit
Random Scenario with Size Limit

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

C
ov

er
ag

e

Best Scenario without Size Limit
Best Scenario with Size Limit
Random Scenario without Size Limit
Random Scenario with Size Limit

Figure 5.5: Precision and coverage of single threshold based cluster ensemble

the edges incident on the data. According to [38], this heuristic works well in practice.

At each step, the algorithm finds the first unclustered data point and the set of data

points that are nearby (i.e., their connectivity is larger than the threshold). These

data points are considered to form a cluster, otherwise, the node forms a singleton

cluster and is rejected by the clustering algorithm. In our experiment, we vary the

threshold value from 0.2 to 0.9 and evaluate the effectiveness of the ball algorithm

using precision and coverage. Figure 5.6 plots the experimental results. From the

figure, we see that cluster ensemble using the ball algorithm performs better than the

single-threshold approach, with precision consistently higher than 0.8 and coverage

close to 80%. Using a threshold of 0.5, the precision for the best-case and random

scenarios are 0.85 and 0.8, respectively — both very close to the maximum value

among individual clusterings. Furthermore, the coverage for these two cases are 0.78

and 0.82, which are 5% and 10% higher than the best coverage for individual cluster-

ings. Also, notice how close the cluster ensemble results are between the random and

best-case scenarios, indicating that the cluster ensemble’s effectiveness is not very

sensitive to the choice of its constituent clusterings. This is a salient property, as it

is not always possible to select the best individual clusterings.

Cluster ensemble based on the agglomerative algorithm The agglomerative

algorithm is a bottom-up approach and recursively merges two nearest clusters until

145

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Threshold

P
re

ci
si

on

Best Scenario
Random Scenario

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Threshold

C
ov

er
ag

e

Best Scenario
Random Scenario

Figure 5.6: Precision and coverage of ball algorithm based cluster ensemble

the distance (defined as one minus connectivity in matrix Mopt) between every pair

of existing clusters are larger than a certain threshold. The methods for determining

the distance between clusters are called the linkage criteria and the commonly used

linkage methods include:

• Complete Linkage: D(C1, C2) = max{d(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

• Single Linkage: D(C1, C2) = min{d(c1, c2) : c1 ∈ C1, c2 ∈ C2}.

• Average Linkage: D(C1, C2) = 1
|C1||C2|

∑

c1∈C1

∑

c2∈C2
d(c1, c2).

The benefit of the agglomerative algorithm is that it starts with the most similar

samples first and always continues with the “best” pair of clusters. It also allows fine-

grained control in halting the merging process, such that all the remaining clusters can

be far enough from each other to ensure a clear separation. In the experiment, we vary

the threshold and collect results using all three different linkage methods as depicted

in Figure 5.7. From the figure we can observe that single linkage is the worst of all

linkage methods in terms of precision, suffering from the same over-merging problem

as the single-threshold approach (i.e., two distant clusters can be bridged by a chain of

samples). Average linkage is slightly better than complete linkage, resulting in 0.84

precision and 81% coverage for the random scenario and 0.87 precision and 77.6%

coverage for the best-case scenario.

146

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance Threshold

P
re

ci
si

on

Best Scenario A
Best Scenario C
Best Scenario S
Random Scenario A
Random Scenario C
Random Scenario S

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

C
ov

er
ag

e

Best Scenario A
Best Scenario C
Best Scenario S
Random Scenario A
Random Scenario C
Random Scenario S

Figure 5.7: Precision and coverage of agglomerative algorithm based cluster ensemble.
A, C, S in the figures represent Average, Complete and Single linkage

Cluster ensemble based on hypergraph partition Finally, we employ a more

sophisticated approach and formulate the cluster ensemble problem as a hypergraph

partition problem, treating the connectivity matrix as a hypergraph and attempting

to find a minimum cut that divides the graph into k unconnected components while

minimizing the total weights of the cut edges. In other words, the algorithm at-

tempts to break the weakest connections between data samples, leaving only strongly

connected data points to form individual clusters. There are many algorithms pro-

posed for hypergraph partitioning. In our experiment, we make use of a hypergraph

partitioning package called HMETIS [63], which exploits a multi-level partitioning

algorithm and was shown to produce high-quality partitions with good scalability.

We tested the HMETIS algorithm with various settings and discovered that cluster

ensemble based on hypergraph partitioning has excellent coverage but suffers from

low precision. The cluster ensemble using the best-case scenario can cover as many

as 91.2% of all malware samples, but it achieves only 0.72 precision; results for the

random scenario are 89.9% coverage with 0.71 precision. This low precision is due to a

standard constraint in the graph partitioning algorithm — attempting to avoid trivial

partitions by making them comparably sized. However, the malware dataset we use

contains unbalanced data clusters, with the largest containing 500 samples and the

147

smallest comprising only 20-30. As the hypergraph partitioning approach balances

the size of resulting components, it creates groups containing samples from multiple

small families, resulting in the lower precision. Another drawback of the hypergraph-

based approach is the prerequisite of specifying the number of clusters (families),

which is typically hard to know a priori. Hence, in practice, the hypergraph-based

approach may not be a good choice for cluster ensemble.

Summary In this section, we evaluated four different cluster ensemble approaches

based on single threshold, balls, agglomerative and hypergraph-partitioning. Overall,

we found that individual clusterings often have to make a tradeoff between precision

and coverage, achieving high precision at the cost of coverage. As a result, even

though some individual clusterings may excel in one aspect (precision or coverage), it

often suffers in the other regard. By contrast, the cluster ensemble is able to leverage

information from multiple clusterings to improve both precision and coverage. Ta-

ble 5.7 summarizes the improvement of cluster ensemble over individual clusterings.

The table shows that, except for hypergraph-based approach, most ensemble algo-

rithms are able to improve precision by 5-10% and coverage by 20-40%, demonstrating

its effectiveness for practical use.

5.6.4 Improving Cluster Ensemble with Cluster-Quality Measure

In this section we will evaluate the performance of cluster ensemble methods

using cluster-quality measures. This experiment uses the quality measures described

in Section 5.5 — i.e., Cluster Cohesion (CO) and Cluster Separation (SE). We first

examine the effectiveness of these metrics in representing a cluster’s quality. Next we

incorporate these cluster-quality measures into each cluster ensemble approach, in an

effort to improve the final clustering results.

148

Best Scenario
Ensemble Approach Precision Average Coverage Average

Improvement Improvement
Single Threshold 0.82 5.38% 78.55% 26.17%
Ball Algorithm 0.85 9.24% 78.38% 25.88%
Agglomerative Algorithm 0.87 11.81% 77.60% 24.63%
Hypergraph Partitioning 0.72 -7.47% 91.20% 46.48%

Avg. Individual Clustering 0.78 N/A 62.26% N/A

Random Scnario
Ensemble Approach Precision Average Coverage Average

Improvement Improvement
Single Threshold 0.75 3.09% 82.54% 28.91%
Ball Algorithm 0.8 9.97% 82.56% 28.94%
Agglomerative Algorithm 0.84 15.46% 81.85% 27.83%
Hypergraph Partitioning 0.71 -2.41% 89.90% 40.40%

Avg. Individual Clustering 0.7275 N/A 64.03% N/A

Table 5.7: Summary of cluster ensemble results and improvements over individual
clusterings

5.6.5 Cluster-Quality Measures

We first examine if cluster cohesion and separation are effective measures of clus-

ter quality. To answer this question, we take four best-coverage cases, one from each

clustering (see Table 5.6.3), and compute cohesion and separation for each constituent

cluster. We separate clean clusters (i.e., those consisting of malware from only one

family) and mixed clusters (i..e., those consisting of malware samples from multiple

families), plotting their cumulative distribution functions (CDFs) in Figure 5.8 and

Figure 5.9. From the plots, we find that the two metrics work fairly well and can

distinguish between clean and mixed clusters with clean clusters often having smaller

cohesion and higher separation than mixed clusters. For instance, in the separation

CDF, the clean-cluster line is below the mixed-cluster line, implying that a larger

percentage of clean clusters have greater separation than the mixed cluster. In par-

ticular, at least 80% of the clean clusters have separation values larger than 0.97,

while this is only true for 50% of mixed clusters. We find that the same argument

149

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Cohesion

C
D

F

Clean Cluster
Mixed Cluster

Figure 5.8: CDF for cluster cohesion

0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cluster Separation

C
D

F

Clean Cluster
Mixed Cluster

Figure 5.9: CDF for cluster separation

also holds for cluster cohesion.

5.6.6 Cluster ensemble results with quality measures

Next, we perform experiments which integrate the cluster-quality measures into

the ensemble algorithms, by augmenting the connectivity matrices according to the

cluster quality (Section 5.5). We apply the same ensemble algorithms (i.e., single-

threshold, ball and agglomerative) on the connectivity matrices synthesized from

the same best-case (Table 5.6.3) and random (Table 5.6) scenarios, comparing the

results to those generated without quality measures. Figure 5.10 (a)-(f) compare the

precision and coverage results of each ensemble algorithm in both scenarios. From

these figures, we observe that ensemble algorithms incorporating quality measures

outperform their original counterpart, often by 5–10% in terms of precision. For

example, in the agglomerative-based cluster ensemble method (Figures 5.10 (c) and

(f)) with a threshold 0.5, quality measures help improve the precision from 0.87 to 0.94

for the best-case scenario and from 0.84 to 0.91 for the random scenario. A similar

trend can also be observed for two other ensemble algorithms; as shown in Figures 5.10

(a)-(c), the ensemble results that incorporate quality measures are always placed at

the top two lines. These first 3 plots clearly demonstrate that the quality measures

150

are useful in producing more accurate clusterings. On the other hand, figures 5.10 (d)-

(f) show that the increase in the precision does not come without cost. We observe

a decrease in the malware coverage after incorporating quality measures. This is

because employing the quality measures weakens connectivity between samples in

low-quality clusters, making them more likely to be excluded from final clusters. For

example, in all the plots, we the coverage is shown to be reduced by 3–30%, with the

biggest drop often occurring when the threshold is around 0.5. A further investigation

reveals that this is due to our selection of member clusterings, (i.e., a half from

dynamic approaches and a half from static approaches). Often, when malware samples

are mis-clustered by a behavioral or static clustering approach, other approaches of

the same type similarly mis-cluster the samples. In our experiments, we use an

equal amount of behavioral and static clusterings as input into ensemble methods.

This combined with a threshold of 0.5 (which corresponds to a majority vote among

clusterings) can result in greater coverage at the expense of precision due to the wrong

consensus of approaches from the same type. Fortunately, by incorporating quality

measures, the reduced connectivity between samples with disagreeing approaches drop

below the threshold, lowering the sample coverage as show in Figure 5.10. However,

the decrease in the coverage is not necessarily bad, as the remaining clusters are

often of better quality, implying higher confidence in the resulting malware groups.

Incorporating more diversified sets of analysis techniques and clustering algorithms

may help mitigate the problem, but we leave this as our future work.

5.7 Related Work

As an overwhelming number of new malware programs created everyday have

already outpaced the existing analysis techniques and made the manual analysis in-

feasible, automatic malware clustering and classification has become a very active

research subject in both the security community and industry. Various approaches

151

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re

ci
si

on

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(a) Ensemble results based on the
single-threshold algorithm

0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Threshold

P
re

ci
si

on

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(b) Ensemble results based on the ball
algorithm

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re

ci
si

on

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(c) Ensemble results based on the
agglomerative algorithm

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

C
ov

er
ag

e

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(d) Ensemble results based on the
single-threshold algorithm

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

C
ov

er
ag

e

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(e) Ensemble results based on the ball
algorithm

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

C
ov

er
ag

e

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

(f) Ensemble results based on the
agglomerative algorithm

Figure 5.10: Cluster ensemble results with cluster-quality measures. In the figure
(B) represents the best case scenario and (R) represents the random
case scenario

152

have been developed and applied in malware clustering. They can naturally be di-

vided into two categories based on the type of malware features they rely on. Static

feature based approaches are among the first few approaches proposed for analysis and

detection of malware programs, due mainly to their ease of implementation and fast

speed of analysis. In static feature based approaches, malware binaries are analyzed

either manually or automatically through tools, such as disassembler or decompiler.

Features like PE headers, raw binary size, import tables [81, 113], code patterns [22],

instruction sequences [53] or binary sequences [50] are extracted and used to train a

wide range of learning algorithms such as naive Bayes, decision trees, SVM, etc. [56]

for malware categorization and detection. Unfortunately, the popularity of static ap-

proaches encouraged malware authors to develop various obfuscation techniques that

thwart the static analysis [68, 84]. Most popular obfuscation methods include pack-

ing, polymorphism, and metamorphism. However, because these low-level obfuscation

only changes the syntax of malware programs but keeps their semantics intact, de-

fenders came up with dynamic analysis technologies that detect malicious codes based

on semantic features. Recently, dynamic malware analysis approaches have received

significant attention, and several commercial and open systems have also been imple-

mented such as CWSandbox [70], Anubis [3], Norman Sandbox [78]. These systems

execute malware programs in the instrumented or virtual environments to monitor

their run-time behavior. Taking advantage of these systems for dynamic feature ex-

traction, researchers have successfully applied a wide range of clustering/classification

algorithms for malware categorization. For instance, Gheorghescu [37] measured the

distance of basic block sequences between existing and unknown samples to simplify

the detection of new malware. Lee and Mody [64] employed a nearest-neighbor ap-

proach to find malware programs with similar behaviors in terms of system events,

such as registry and file system modification. Rieck et al. [86] trained SVM classifier

using the malware’s run-time behavior, such as copy files and create processes, to

153

learn and classify unknown samples. Bailey et al. [10] employed a hierarchical clus-

tering algorithm to group similarly-behaving malware samples based on non-transient

state changes malware caused to the system. More recently, Bayer et al. [13] adopted

locality-sensitive hashing (LSH) and Rieck et al. [88] developed a prototype-based

clustering algorithm to reduce the runtime complexity and enable the behavior-based

clustering algorithm to scale to a large number of malware samples. Unfortunately,

the dynamic analysis is not without its own limitations. Like static approaches, as the

attackers become aware of the prominence of dynamic analysis, they start to develop

countermeasures. For instance, because many of the dynamic analysis approaches rely

on virtual machines to provide a safe environment for running malware programs, an

increasing number of malicious codes are carrying code snippets that detect the ex-

istence of virtual machine monitors [69, 80]. Usually, when malicious codes detect

the VM, they either terminate immediately or shut off malicious functionality [12]

such that the full spectrum of their malicious behavior cannot be observed. Another

inherent limitation of dynamic analysis is that it can only observe a single code path

that is executed during a particular run, which may lead to an incomplete picture of

malware activities. In particular, for botnets and many other trigger-based malware,

without being provided with the exact commands or environmental settings, they

hardly exhibit the real malicious behaviors embedded in their codes. Fortunately,

static approaches do not suffer from this limitation and thus provide a unique ben-

efit of covering all the code paths. Therefore, a systematic approach to integrating

static and dynamic analysis algorithms and combining their respective strengths will

be highly desirable. To achieve this goal, this chapter presented DUET, a system that

utilizes cluster ensemble techniques to efficiently integrate dynamic and static feature

based clusterings.

Cluster ensemble is a process of obtaining a single consensus and better-performing

clustering result from a number of different clusterings [36, 95]. Because different

154

clustering algorithms have different perspectives and assumptions of a given data set,

the cluster ensemble can exploit the strengths from individual clusterings to provide

improved overall partition of the given data in terms of robustness, stability and

confidence. Several approaches have been proposed and successfully used for cluster-

ing combinations. For instance, Strehl and Ghosh [96] considered cluster ensemble

as a knowledge reuse framework for combining different clusterings and proposed

three different consensus functions, i.e., Cluster-based Similarity Partitioning Algo-

rithm (CSPA), Hypergraph Partitioning Algorithm (HGPA) and Meta Clustering

Algorithm (MCLA). Fern and Brodley [31] also modeled the cluster ensemble as a

graph partitioning problem and addressed it using Hybrid Bipartite Graph Formu-

lation (HBGF) algorithm. Hong et al. [46] implemented an approach that combines

relabeling and voting to achieve the best agreement between the labels of partitions.

Topchy et al. [102] proposed to construct a consensus function based on information-

theoretic principles using generalized mutual information (MI) between the empirical

probability distribution of labels in the consensus partitions. Azimi et al. [9] devel-

oped a new ensemble method which creates a new feature space from initial clustering

outputs and used k-means in the new feature space to generate final results. Another

commonly used method in cluster ensemble is to base the consensus function on the

co-association matrix which represents the association or connectivity between each

pair of data samples. For example, Fed [34] and Jain [33] applied fixed threshold

and single linkage hierarchical clustering to the co-association matrix. The validity

of their algorithm is compared with the standard k-means clustering. In summary,

clustering ensembles have emerged as a prominent way to improve robustness, stabil-

ity and accuracy of clustering. In this chapter, we employ simple yet effective cluster

ensemble algorithms, i.e., co-association (connectivity) matrix based approaches, and

demonstrate that they can achieve both higher precision and better coverage of mal-

ware samples than individual clustering algorithms alone. A more complex cluster

155

ensemble algorithm such as mutual information theory can easily be incorporated

into DUET and test its effectiveness.

5.8 Concluding Remarks

In this chapter, we design, develop and evaluate an automatic malware-clustering

system, called DUET, for grouping malware samples into families sharing common

traits in terms of both static-code and dynamic behavior-features. We first build

a dynamic malware-analysis system that automatically executes malware programs

inside a sandboxed virtual environment and collects their runtime system call traces.

We apply a prototype-based clustering algorithm on the collected traces, showing that

the dynamic approach can successfully cluster around 70% of all malware samples

≈ 75% precision. Comparing these results with static-feature based clustering in

MutantX , we confirm that, due to their respective limitations, static and dynamic

approaches cover different sets of malware sample providing a strong motivation to

develop a new system, DUET, that effectively combines their strengths. DUET, using

cluster ensemble methods, integrates multiple clustering results from both dynamic-

and static-based approaches. Evaluating with real-life malware samples, we have

shown that cluster ensemble methods are quite effective in improving the overall

precision and coverage of malware clustering. We assess the performance of ensemble

methods on both best-case scenarios and random scenarios, demonstrating that it can

improve the coverage by 20–50% while achieving nearly the maximum precision of

the individual clustering algorithms. Finally, we further improve the existing cluster

ensemble algorithms by taking advantage of cluster-quality measures. The intuition is

that high-quality clusters (i.e., whose samples are strongly connected to each other)

should more likely be preserved in the final clustering results. Thus, we exploit

cluster cohesion and separation as metrics for measuring cluster quality, adjusting

the weights between samples in the connectivity matrix according to the quality of

156

their clusters. Experiment results show that using cluster quality can further improve

precision by 5–10%, approaching 0.9. However, this improvement comes at the cost

of reducing the cluster coverage, mainly because of the higher standard imposed

on the quality of final clusters. These results demonstrate that cluster ensemble

methods are effective at integrating multiple malware analysis techniques, allowing

DUET to achieve automatic and efficient malware analysis and help ensure timely

defense against emerging malware threats.

157

CHAPTER VI

Conclusions

As malware threats have evolved from a hobby of hackers into powerful arsenals for

cyber-criminals to illegally gain profit, the amount of malware programs has increased

beyond the capabilities of existing analysis techniques. Typically, an AV company

receives more than ten thousand new suspicious samples daily, which is simply too

many for manual analysis. This delays responses to new threats, granting malware

writers a sufficient time window to roll out new malware variations and harm users.

In the light of this observation, the primary goal of this dissertation is to improve the

automation and scalability of malware analysis techniques, with a particular emphasis

on automating portions of the malware-processing workflow traditionally performed

by human experts. This dissertation research makes the following contributions.

In Chapter II, we investigated a novel malware database management system

called SMIT that addresses the challenge of automatically determining if incoming

suspicious samples are indeed malicious. SMIT exploits the insight that most new

samples are simple syntactic variations of existing malware. Thus, one way to ascer-

tain the maliciousness of a sample is to check if it is sufficiently similar to any known

malware program. SMIT can efficiently make such decisions based on the malware’s

function-call graph, a high-level structural representation that is less susceptible to

the low-level obfuscations employed by malware writers to evade detection. Because

158

each malware program is represented as a call graph, searching for similar malware

programs becomes a nearest-neighbor search problem in a graph database. To ad-

dress the scalability issue associated with graph comparison, the dissertation proposed

the Neighbor-Biased Hungarian Algorithm (NBHA), which optimizes a polynomial-

time graph-similarity algorithm by exploiting common sub-structures in malware call

graphs. The results of NBHA closely approximate the inter-graph edit distance while

reducing the computational complexity to O(n3). Furthermore, the dissertation de-

veloped a multi-resolution indexing scheme to solve the scalability issue related to

the graph database search. The indexing scheme uses a computationally economical

feature vector for early pruning and then resorts to a more accurate, but computa-

tionally more expensive, graph similarity function when it needs to pinpoint the most

similar neighbors. The unique combination of these techniques affords SMIT signifi-

cant pruning power and allows it to easily scale to support hundreds of thousands of

malware samples, with the potential to handle millions.

In Chapter III, we proposed a novel malware-clustering framework, called MutantX ,

designed to help malware analysts automatically derive labels for unknown malware

samples. MutantX clusters malware samples according to the similarity of their ma-

chine code instructions and automatically generates labels using their cluster associa-

tion. The underlying intuition is that malware programs sharing significant similarity

are potentially derived from the same code base and are thus likely to come from the

same malware family. By grouping similar samples into clusters, the entire clus-

ter can be labeled accurately by analyzing only a few representative samples from

each cluster. To address the challenge of efficient feature extraction, we developed

an encoding scheme that exploits the IA-32 instruction format, encoding each mal-

ware program into a sequence of uniform opcodes (operation codes). By ignoring

the operands in machine instructions, the encoding scheme effectively captures the

semantics of the instruction while being resilient to low-level mutation resulting from

159

obfuscation or address relocation. Next, an n-gram analysis is applied to the opcode

sequence, constructing a feature vector. To further improve the scalability of the

clustering algorithm and reduce the memory footprint, we exploit a hash trick that

reduces the high-dimensional feature vector into a lower-dimensional feature space.

The similarity between two malware samples can then be computed as the Euclidean

distance between their corresponding feature vectors, which serves as an input into a

prototype-based clustering algorithm determining the proper grouping of malware.

After identifying the malware samples’ family, the next step is to generate AV

signatures that can be deployed to end users, protecting them from newly discovered

malware. In Chapter IV, motivated by the signature-explosion problem current;u

facing AV industries, we studied efficient ways to automatically generate string sig-

natures. A string signature is a contiguous byte sequence meant to match variants

of a malware family, rather than a specific malware program, and can thus reduce

the size of the signature database. Unfortunately, most string signatures used today

are created manually, which is slow and labor-intensive. To address this problem, we

developed Hancock, the first-known automatic system for string-signature generation.

At its foundation, the Hancock system is a set of algorithms that efficiently filter out

potential false-positive signatures. First, we built a Markov chain model, trained on

a large benign-program set, that accurately estimates the occurrence probability of a

candidate signature in benign programs. This model allows Hancock to eliminate the

majority of false-positive signatures without expensive scanning through a benign-

program database. In addition, we observe that many false-positive signatures are

resulted from standard library functions or generic code sequences shared across both

malicious and benign programs. Consequently we devised a set of content-aware se-

lection heuristics and diversity-based filtering techniques that check if a candidate

belongs to a library function or some common code base. Together, these techniques

provide Hancock the strong discrimination power necessary to automatically create

160

high-quality string signatures. We evaluated Hancock on a large real-world malware

programs, showing that it can generate signatures with false-positive rates below

0.1%.

Finally, this dissertation studied the strengths and weaknesses associated with

the two major malware analysis approaches (i.e., static and behavioral), proposing

an effective system to combine them for better results. In Chapter V, we first built a

dynamic malware-monitoring system that executes malware programs in a controlled

virtual environment, collects their runtime API traces, and converts those traces

into feature vectors for processing by existing clustering algorithms. The results

demonstrated that static and dynamic approaches tend to work well for different

types of malware programs, indicating its potential for improving overall clustering

performance by leveraging the strengths of different approaches. To achieve this goal,

we employed cluster ensemble methods, a process of obtaining a single consensus and

better-performing clustering results from a number of different clusterings. Applying

cluster ensemble to several static and dynamic clustering results, we demonstrated its

ability to improves clustering accuracy and successfully group malware programs that

cannot be analyzed by any single approach,increasing coverage by 20–40%. Finally,

we make a further improvement over existing ensemble methods, by incorporating

cluster-quality measures into ensemble algorithms. By preserving strongly connected

samples in high-quality clusters, this new approach increases the cluster precision by

5–10% with enhanced quality of final clusters.

There are a number of areas one can pursue to extend the large-scale malware

analysis in this dissertation as follows.

• Automatic generation of malware behavioral signatures Signature-based

detection is lagging behind the generation of malicious threats, suggesting that

security technologies relying on signatures should be complemented with addi-

tional heuristics, such as behavior-based detection. Behavior-based detection

161

identifies actions performed by malware rather than syntactic signatures. As

a result, it is more resilient to malware polymorphism and obfuscation, and

it has the potential to capture an entire malware family with a single behav-

ioral signature. Unfortunately, identifying distinguishing malicious actions and

transforming them into usable behavioral signatures are a complex process.

Currently, this is primarily done by security experts, requiring significant expe-

rience and time. As a result, an efficient system for analyzing malware run-time

behavior and automatically extracting behavioral signatures will be highly ben-

eficial in combating malware threats. Building such a system entails several

key challenges in the monitoring, formal modeling and extraction of malicious

behaviors as well as in developing efficient filters to minimize false-positive sig-

natures. The work on string signature generation in this thesis can potentially

be extended to address these problems.

• Mobile malware detection and containment Modern mobile devices, equipped

with increased resources and high connectivity, are becoming more intelligent

and functionally complex. However, with these advanced capabilities, mobile

devices are increasingly exposed to malware and malicious attacks, such as sensi-

tive information theft, location privacy risks, etc. For instance, researchers have

recently demonstrated a vulnerability in Android OS that allows rootkits to be

installed, potentially leading to a mobile botnet. In 2010, it is estimated that

over 100,000 Android users were affected by mobile malware, forcing Google to

pull 21 malicious applications from its market [58]. As a result, it will be nec-

essary to develop efficient malware analysis systems for mobile environments,

facilitating the understanding, classification and mitigation of new-generation

mobile malware.

• Monitoring and characterizing malware behaviors in online social net-

162

works and clouds The massive use of online social networks has made them

an increasingly attractive target for malicious activities. In particular, botnets

(e.g., Koobface) have already leveraged the implied trust within social net-

works to increase their likelihood of successful social engineering attacks, such

as spamming and malware propagation. Investigation into the unique features

of malware propagation in these networks will help us gain insight into their

behaviors. For example, learning techniques could be used to derive patterns

from the malicious code posted on social networking sites and such patterns

may serve as signatures to proactively blacklist future malware sites and pro-

tect users. In addition, properties unique to social networks, such as degree

distribution, friend relationships and communication patterns, can be explored

to obtain a deeper understanding of social malware and anticipate the next

phase of their evolution.

163

BIBLIOGRAPHY

164

BIBLIOGRAPHY

[1] Margareta Ackerman and Shai Ben-David. Measures of Clustering Quality:
A Working Set of Axioms for Clustering. In Proceedings of the 22nd Annual
Conference on Neural Information Systems Processing, 2008.

[2] Hyang ah Kim. Autograph: Toward automated, distributed worm signature
detection. In In Proceedings of the 13th Usenix Security Symposium, pages
271–286, 2004.

[3] Anubis. Analyzing unknown binaries. http://anubis.iseclab.org/, 2010.

[4] Austin Appleby. Murmurhash 2.0. http://sites.google.com/site/murmurhash/.

[5] William Arnold and Gerald Tesauro. Automatically generated win32 heuris-
tic virus detection. In In Proceedings of VIRUS BULLETIN CONFERENCE,
2000.

[6] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In
Proceedings of the twenty-second annual symposium on Computational geome-
try, SCG ’06, pages 144–153, New York, NY, USA, 2006. ACM.

[7] ASpack Software. Aspack. http://www.aspack.com/.

[8] ASPack Software. ASProtect. http://www.aspack.com/, 2008.

[9] Javad Azimi, Monireh Abdoos, and Morteza Analoui. A new efficient approach
in clustering ensembles. In Proceedings of the 8th international conference on
Intelligent data engineering and automated learning, IDEAL’07, pages 395–405,
Berlin, Heidelberg, 2007. Springer-Verlag.

[10] Michael Bailey, Jon Andersen, Z. Morley mao, and Farnam Jahanian. Au-
tomated classification and analysis of internet malware. Technical report, In
Proceedings of Recent Advances in Intrusion Detection (RAID07, 2007.

[11] Michael Bailey, Jon Oberheide, Jon Andersen, Zhuoqing Morley Mao, Farnam
Jahanian, and Jose Nazario. Automated classification and analysis of internet
malware. In RAID, pages 178–197, 2007.

165

[12] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel,
Engin Kirda, and Giovanni Vigna. Efficient detection of split personalities in
malware. In NDSS 2010, 17th Annual Network and Distributed System Security
Symposium, February 28th-March 3rd, 2010, San Diego, CA, USA, 02 2010.

[13] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher
Kruegel, and Engin Kirda. Scalable, behavior-based malware clustering. In
Proceedings of the 16th Annual Network and Distributed System Security Sym-
posium (NDSS 2009), 2009.

[14] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauscheck, Christopher
Kruegel, and Engin Kirda. Scalable, Behavior-Based Malware Clustering. In
16th Symposium on Network and Distributed System Security, 2009.

[15] Stefano Berretti, Alberto Del Bimbo, and Enrico Vicario. Efficient matching
and indexing of graph models in content-based retrieval. IEEE Trans. Pattern
Anal. Mach. Intell., 23(10):1089–1105, 2001.

[16] BindView. Strace. http://razor.bindview.com/tools/desc/strace readme.html,
2005.

[17] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing for high-
dimensional metric spaces. In In Proc. ACM SIGMOD International Con-
ference on Management of Data, 1997.

[18] Ismael Briones and Aitor Gomez. Graphs, entropy and grid computing: Au-
tomatic comparison of malware. In Proceedings of the 2004 Virus Bulletin
Conference, 2004.

[19] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha.
Towards automatic generation of vulnerability-based signatures. In SP ’06:
Proceedings of the 2006 IEEE Symposium on Security and Privacy, pages 2–16,
Washington, DC, USA, 2006. IEEE Computer Society.

[20] Ero Carrera and Gergely Erdelyi. Digital genome mapping advanced binary
malware analysis. In Proceedings of the 2004 Virus Bulletin Conference, 2004.

[21] Tzi-cker Chiueh. Content-based image indexing. In VLDB ’94: Proceedings of
the 20th International Conference on Very Large Data Bases, pages 582–593,
1994.

[22] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. In In Proceedings of the 12th USENIX Security Symposium,
pages 169–186, 2003.

[23] Clam AntiVirus. Creating signatures for ClamAV.
www.clamav.net/doc/latest/signatures.pdf, 2007.

166

[24] Peter Coogan. Spyeye bot versus zeus bot.
http://www.symantec.com/connect/blogs/spyeye-bot-versus-zeus-bot, 2010.

[25] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou,
Lintao Zhang, and Paul Barham. Vigilante: end-to-end containment of in-
ternet worms. In SOSP ’05: Proceedings of the twentieth ACM symposium on
Operating systems principles, pages 133–147, New York, NY, USA, 2005. ACM.

[26] Weidong Cui, Marcus Peinado, Helen J. Wang, and Michael E. Locasto. Shield-
gen: Automatic data patch generation for unknown vulnerabilities with in-
formed probing. In SP ’07: Proceedings of the 2007 IEEE Symposium on Secu-
rity and Privacy, pages 252–266, Washington, DC, USA, 2007. IEEE Computer
Society.

[27] Inc. Damballa. 3% to 5% of enterprise assets are
compromised by bot-driven targeted attack malware.
http://www.damballa.com/downloads/press/Failsafe 3 %28PR FINAL 2009-
3-2%29.pdf, 2008.

[28] Shagnik Das, Anand Mistry, Diana Negoescu, Georgina Reed, and Sudhir Ku-
mar Singh. A graph matching problem. Techical report, IPAM Research in
Industrial Projects for Students (RIPS), 2008.

[29] Thomas Dullien, Rolf Rolles, and Ruhr universitaet Bochum. Graph-based
comparison of executable objects. In University of Technology in Florida, 2005.

[30] Nicolas Falliere. Stuxnet introduces the first known rootkit for industrial control
systems. Technical report, Symantec Corporation, 2010.

[31] Xiaoli Z. Fern, Carla E. Brodley, Xiaoli Zhang Fern, and Carla E. Brodley.
Solving cluster ensemble problems by bipartite graph partitioning. In In Pro-
ceedings of the International Conference on Machine Learning, 2004.

[32] Halvar Flake. Structural comparison of executable objects. In In Proceedings of
the IEEE Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA, pages 161–173, 2004.

[33] A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation.
In Proceedings of the 16 th International Conference on Pattern Recognition
(ICPR’02) Volume 4 - Volume 4, ICPR ’02, pages 40276–, Washington, DC,
USA, 2002. IEEE Computer Society.

[34] Ana Fred. Finding consistent clusters in data partitions. In In Proc. 3d Int.
Workshop on Multiple Classifier, pages 309–318. Springer, 2001.

[35] M. R. Garey and D. S. Johnson. Computers and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

167

[36] R. Ghaemi, N. Sulaiman, H. Ibrahim, and N. Mustapha. A Survey: Clus-
tering Ensembles Techniques. PROCEEDINGS OF WORLD ACADEMY OF
SCIENCE, ENGINEERING AND TECHNOLOGY, 38, February 2009.

[37] Marius Gheorghescu. An automated virus classification system. In Proceedings
of VIRUS BULLETIN CONFERENCE OCTOBER 2005, 2005.

[38] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas. Clustering aggre-
gation. ACM Trans. Knowl. Discov. Data, 1, March 2007.

[39] T. Gonzalez. Clustering to minimize the maximum intercluster distance. In
Theoretical Computer Science, volume 38, pages 293–306, 1985.

[40] Herv Debar Grgoire Jacob1 and Eric Filiol. Behavioral detection of malware:
from a survey towards an established taxonomy. Journal in Computer Virology,
4(3), 2008.

[41] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer problem
and its solutions. In RAID ’08, pages 98–115, 2008.

[42] Laune C. Harris and Barton P. Miller. Practical analysis of stripped binary
code. SIGARCH Comput. Archit. News, 33(5):63–68, 2005.

[43] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
2009.

[44] Huahai He and Ambuj K. Singh. Closure-tree: An index structure for graph
queries. In ICDE ’06: Proceedings of the 22nd International Conference on
Data Engineering, page 38, 2006.

[45] Hex-rays. The IDA Pro Disassembler and Debugger. http://www.hex-
rays.com/idapro/, 2008.

[46] Yi Hong, Sam Kwong, Yuchou Chang, and Qingsheng Ren. Unsupervised
feature selection using clustering ensembles and population based incremental
learning algorithm. Pattern Recognition, 41(9):2742–2756, 2008.

[47] Xiaohua Hu and Illhoi Yoo. Cluster ensemble and its applications in gene
expression analysis. In Proceedings of the second conference on Asia-Pacific
bioinformatics - Volume 29, APBC ’04, pages 297–302, Darlinghurst, Australia,
Australia, 2004. Australian Computer Society, Inc.

[48] Ilfak Guilfanov. Fast Library Identification and Recognition Technology.
http://www.hex-rays.com/idapro/flirt.htm, 1997.

[49] Computer Security Institute. 12th annual edition of the csi computer crime and
security survey. Technical report, Computer Security Institute, 2007.

168

[50] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: Fast, scal-
able code reuse detection in binary code. tech report CMU-CyLab-10-006,
Carnegie Mellon University, 2009.

[51] Jibz, Qwerton, snaker, and xineohP. Peid 0.95. http://www.peid.info/, 2008.

[52] Derek Justice. A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell., 28(8):1200–1214, 2006.
Fellow-Hero,, Alfred.

[53] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida.
Malware phylogeny generation using permutations of code. JOURNAL IN
COMPUTER VIROLOGY, 1:13–23, 2005.

[54] Jeffrey O. Kephart and William C. Arnold. Automatic extraction of computer
virus signatures. In Proceedings of the 4th Virus Bulletin International Confer-
ence, 1994.

[55] KilianWeinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. Feature hashing for large scale multitask learning. In Proceedings
of the 26 th International Conference on Machine Learning, 2009.

[56] J. Zico Kolter and Marcus A. Maloof. Learning to detect and classify malicious
executables in the wild. Journal of Machine Learning Research, 7:2006, 2006.

[57] J. Zico Kolter and Marcus A. Maloof. Learning to detect and classify malicious
executables in the wild. J. Mach. Learn. Res., 7:2721–2744, 2006.

[58] Tom Krazit. Mobile malware continues to rise with android users as tar-
gets. http://moconews.net/article/419-mobile-malware-continues-to-rise-with-
android-users-as-targets/, 2011.

[59] Christian Kreibich and Jon Crowcroft. Honeycomb: creating intrusion de-
tection signatures using honeypots. SIGCOMM Comput. Commun. Rev.,
34(1):51–56, January 2004.

[60] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. Polymorphic worm detection using structural information of exe-
cutables. In In RAID, pages 207–226. Springer-Verlag, 2005.

[61] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna.
Static disassembly of obfuscated binaries. In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13, SSYM’04, pages 18–18, Berkeley,
CA, USA, 2004. USENIX Association.

[62] Harold W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 1955.

169

[63] Karypis Lab. Family of graph and hypergraph partitioning software.
http://glaros.dtc.umn.edu/gkhome/views/metis, 2010.

[64] Tony Lee and Jigar J.Mody. An automated virus classification system. In
Proceedings of VIRUS BULLETIN CONFERENCE OCTOBER 2005, 2005.

[65] Zhichun Li, Manan Sanghi, Yan Chen, Ming yang Kao, and Brian Chavez.
Hamsa: fast signature generation for zero-day polymorphic worms with provable
attack resilience. In In SP 06: Proceedings of the 2006 IEEE Symposium on
Security and Privacy (Oakland06, pages 32–47. IEEE Computer Society, 2006.

[66] Zhenkai Liang and R. Sekar. Automatic generation of buffer overflow attack
signatures: An approach based on program behavior models. In ACSAC ’05:
Proceedings of the 21st Annual Computer Security Applications Conference,
pages 215–224, Washington, DC, USA, 2005. IEEE Computer Society.

[67] Zhenkai Liang and R. Sekar. Fast and automated generation of attack sig-
natures: a basis for building self-protecting servers. In CCS ’05: Proceedings
of the 12th ACM conference on Computer and communications security, pages
213–222, New York, NY, USA, 2005. ACM.

[68] C. Linn and S. Debray. Obfuscation of executable code to improve resistance
to static disassembly, 2003.

[69] Tom Liston. On the cutting edge: Thwarting virtual machine detection.
http://handlers.sans.org/tliston/ThwartingVMDetection Liston Skoudis.pdf,
2006.

[70] malwareanalysis.org. Cwsandbox:: Behavior-based malware analysis.
http://mwanalysis.org/, 2011.

[71] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.

[72] Lorenzo Martignoni, Mihai Christodorescu, and Somesh Jha. Omniunpack:
Fast, generic, and safe unpacking of malware. In In Proceedings of the Annual
Computer Security Applications Conference (ACSAC, 2007.

[73] M.Christodorescu, S.Jha, S.A.Seshia, D.Song, and R.E.Bryant. Semantics-
aware malware detection. In Proceedings of the IEEE Symposium on Security
and Privacy, 2005.

[74] Richard Myers, Richard C. Wilson, and Edwin R. Hancock. Bayesian graph
edit distance. IEEE Trans. Pattern Anal. Mach. Intell., 22(6), 2000.

[75] Michel Neuhaus and Horst Bunke. An error-tolerant approximate matching
algorithm for attributed planar graphs and its application to fingerprint classi-
fication. In SSPR/SPR, pages 180–189, 2004.

170

[76] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically gen-
erating signatures for polymorphic worms. In SP ’05: Proceedings of the 2005
IEEE Symposium on Security and Privacy, pages 226–241, Washington, DC,
USA, 2005. IEEE Computer Society.

[77] James Newsome and Dawn Song. Dynamic taint analysis for automatic detec-
tion, analysis, and signature generation of exploits on commodity software. In
Proceedings of the Network and Distributed System Security Symposium (NDSS
2005), 2005.

[78] Norman. Norman sandbox information center.
http://www.norman.com/security center/security tools/, 2010.

[79] Gunter Ollmann. Serial variant evasion tactics tech-
niques used to automatically bypass antivirus technologies.
http://www.damballa.com/downloads/r pubs/WP SerialVariantEvasionTactics.pdf,
2010.

[80] Alfredo Andres Omella. Methods for virtual machine detection.
http://www.s21sec.com/descargas/vmware-eng.pdf, 2009.

[81] Roberto Perdisci, Andrea Lanzi, and Wenke Lee. Classification of packed exe-
cutables for accurate computer virus detection. Pattern Recogn. Lett., 29:1941–
1946, October 2008.

[82] Matt Pietrek. An In-Depth Look into the Win32 PE File Format.
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx, 2002.

[83] Marco Pontello. Trid v2.02. http://mark0.net/soft-trid-e.html, 2008.

[84] Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. Binary obfus-
cation using signals. In Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, Berkeley, CA, USA, 2007. USENIX Association.

[85] Jason Raber and Eric Laspe. Deobfuscator: An automated approach to the
identification and removal of code obfuscation. Reverse Engineering, Working
Conference on, 0:275–276, 2007.

[86] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In Proceedings of
the 5th international conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA ’08, pages 108–125, Berlin, Heidelberg, 2008.
Springer-Verlag.

[87] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Dssel, and Pavel
Laskov. Learning and classification of malware behavior. In Diego Zamboni,
editor, DIMVA, volume 5137 of Lecture Notes in Computer Science, pages 108–
125. Springer, 2008.

171

[88] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Auto-
matic analysis of malware behavior using machine learning. tech report, Berlin
Institute of Technology, 2009.

[89] K. Riesen, M. Neuhaus, and H. Bunke. Bipartite graph matching for comput-
ing the edit distance of graphs. In Graph-Based Representations in Pattern
Recognition, volume 4538, 2007.

[90] Ran El-Yaniv Ron Begleiter and Golan Yona. On prediction using variable
order markov models. Journal of Artificial Intelligence Research, 22:384–421,
2004.

[91] Dennis Shasha, Jason, and Rosalba Giugno. Algorithmics and applications of
tree and graph searching. In Symposium on Principles of Database Systems,
pages 39–52, 2002.

[92] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[93] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, Alex
Strehl, and Vishy Vishwanathan. Hash kernels. In Proceedings of the 12th
International Conference on Artificial Intelligence and Statistics (AISTATS),
2009.

[94] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated
worm fingerprinting. In OSDI’04: Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implementation, pages 4–4, Berkeley,
CA, USA, 2004. USENIX Association.

[95] Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles - a
knowledge reuse framework for combining multiple partitions. Journal of Ma-
chine Learning Research, 3:583–617, 2002.

[96] Alexander Strehl, Joydeep Ghosh, and Claire Cardie. Cluster ensembles - a
knowledge reuse framework for combining multiple partitions. Journal of Ma-
chine Learning Research, 3:583–617, 2002.

[97] Symantec Corp. Symantec Global Internet Security Threat Report. Volume
XII. http://www.symantec.com/, April 2008.

[98] Yong Tang and Shigang Chen. Defending against internet worms: A signature-
based approach. In In Proceedings of IEEE INFOCOM05, 2005.

[99] The Silicon Realms Toolworks. Armadillo.
http://www.siliconrealms.com/armadillo.htm, 2008.

[100] Yuanyuan Tian and Jignesh M. Patel. Tale: A tool for approximate large graph
matching. In ICDE, pages 963–972, 2008.

172

[101] T.Lee and J.J.Mody. Behavioral classification.
http://www.microsoft.com/downloads/details.aspx?FamilyID
=7b5d8cc8-b336-4091-abb5-2cc500a6c41a&displaylang=en,2006.

[102] Alexander Topchy, Anil K. Jain, and William Punch. Combining multiple weak
clusterings. Data Mining, IEEE International Conference on, 0:331, 2003.

[103] Trend Threat Research Team. Zeus: A persistent criminal enterprise.
http://us.trendmicro.com/imperia/md/content/us/trendwatch/researchandanalysis/zeusapersis
2010.

[104] Sharath K. Udupa, Saumya K. Debray, and Matias Madou. Deobfuscation: Re-
verse engineering obfuscated code. Reverse Engineering, Working Conference
on, 0:45–54, 2005.

[105] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

[106] UPX. the ultimate packer for executables. http://upx.sourceforge.net/.

[107] VirusTotal. Free online virus, malware and url scanners.
http://www.virustotal.com/, 2010.

[108] VMProtect. Vmprotect. http://www.vmprotect.ru/, 2008.

[109] VMWare. Vix api. http://www.vmware.com/support/developer/vix-api/,
2010.

[110] VxHeaven. Vxheaven virus collection. http://vx.netlux.org/, 2010.

[111] Helen J. Wang, Helen J. Wang, Chuanxiong Guo, Chuanxiong Guo, Daniel R.
Simon, Daniel R. Simon, Alf Zugenmaier, and Alf Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known vulnerability exploits.
In In ACM SIGCOMM, pages 193–204, 2004.

[112] XiaoFeng Wang, Zhuowei Li, Jun Xu, Michael K. Reiter, Chongkyung Kil, and
Jong Youl Choi. Packet vaccine: black-box exploit detection and signature
generation. In CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security, pages 37–46, New York, NY, USA, 2006. ACM.

[113] Georg Wicherski. pehash: A novel approach to fast malware clustering. In 2nd
Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET’09),
2009.

[114] Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris Bookholt. Au-
tomatic diagnosis and response to memory corruption vulnerabilities. In CCS
’05: Proceedings of the 12th ACM conference on Computer and communications
security, pages 223–234, New York, NY, USA, 2005. ACM.

173

[115] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph indexing: a frequent structure-
based approach. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 335–346, 2004.

[116] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in
graph databases. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, 2005.

[117] Mark Vincent Yason. The art of unpacking.
https://www.blackhat.com/presentations/bh-usa-07/Yason/Whitepaper/bh-
usa-07-yason-WP.pdf, 2007.

[118] Yanfang Ye, Tao Li, Yong Chen, and Qingshan Jiang. Automatic malware
categorization using cluster ensemble. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’10,
pages 95–104, New York, NY, USA, 2010. ACM.

[119] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An ar-
chitecture for generating semantics-aware signatures. In SSYM’05: Proceedings
of the 14th conference on USENIX Security Symposium, pages 7–7, Berkeley,
CA, USA, 2005. USENIX Association.

[120] P. Yianilos. Excluded middle vantage point forests for nearest neighbor search,
1999.

[121] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search
in general metric spaces. In SODA: ACM-SIAM Symposium on Discrete Algo-
rithms, 1993.

[122] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach. Springer, 2006.

[123] Pavel Zezula, Paolo Ciaccia, and Fausto Rabitti. M-tree: A dynamic index
for similarity queries in multimedia databases. Technical Report 7, HERMES
ESPRIT LTR Project, 1996.

[124] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance be-
tween trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.

[125] Peixiang Zhao, Jeffrey Xu Yu, and Philip S. Yu. Graph indexing: tree + delta
≤ graph. In VLDB ’07: Proceedings of the 33rd international conference on
Very large data bases, pages 938–949, 2007.

174

