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Abstract

Botnets are large networks of infected computers con-
trolled by an attacker. Much effort has already been in-
vested in the detection and analysis mechanisms, capable
of defusing this type of threat. However, botnets have
been constantly evolving, and will certainly continue to
do so. We must, therefore, make an effort to foresee and
study possible future designs, if we are to be capable of
timely development of adequate defense mechanisms.

Many of the most recent methods to detect and ana-
lyze botnets are based upon the vulnerabilities of their
command-and-control (C2) infrastructure. We thus be-
lieve that attackers will follow a predictable evolution-
ary pattern, and start using designs with more robust and
stealth C2 channels, thus minimizing the risk of shut-
down or infiltration. In this paper, we will therefore an-
alyze in detail a new kind of botnet C2 infrastructure,
where bots do not possess any information concerning
command-and-control mechanisms. These stealth, iso-
lated bots are controlled through honest participants not
pertaining to the botnet. This architecture eliminates the
possibility of estimation of the botnet size, minimizes the
probability of detection of individual bots, and eliminates
the possibility of researcher infiltration.

1 Introduction

Botnets are one of the dominant threats in the internet,
since they harness the power of thousands of infected
hosts, and may use them to perform abusive or fraudulent
activities, such as: spamming, phishing, click-fraud, dis-
tributed denial-of-service (DDoS), or stealing personal
data, such as email accounts or credit-card data [5]. A
significant amount of research has been invested in this
area, leading to both a better understanding of the botnet
phenomenon, and to the development of new detection
techniques.

Most of the initially proposed methods for botnet de-

tection are passive, and work either by detecting specific
malicious activity of bots (spam, DoS) [27], or by de-
tecting activity on the communication channels used to
control the botnet [11, 24, 10]. However, these passive
approaches can only monitor a small portion of the in-
ternet; also, they will only detect botnets with the mali-
cious behavior or the type of C2 targeted by that particu-
lar analysis.

More recently the research community adopted a more
active approach to the study of botnets: infiltration. They
create a client capable of mimicking the C2 protocol,
and join the botnet. This privileged position can then
be leveraged, to obtain accurate estimates of the size
of the botnet, or to gain inside information needed to
support an eventual hijacking or dismantling of the bot-
net [23, 12, 15].

Unfortunately, botnets are also evolving. The first kind
of C2 infrastructure used by botnets was based on cen-
tral IRC servers [8]. This allowed researchers to obtain
the IP addresses of the bots, and, sometimes, even con-
trol the botnet itself [5]. Botmasters then upgraded the
servers to stripped-down IRC or HTTP servers, which re-
duced some of the vulnerabilities of the previous servers
(namely, the possibility of identification and estimation
of the number of bots in the botnet). However, bot-
nets still had a single point of failure: the C2 server it-
self. Therefore, botnets began shifting towards peer-to-
peer command-and-control infrastructures, thus becom-
ing more resilient to takedown attempts. Forecasting the
evolutionary adaptive changes in botnet operation pro-
files is, therefore, of paramount importance, to allow
timely development of appropriate countermeasures.

Of particular concern are the stealth strategies that at-
tackers may employ, to reduce the probability of detec-
tion of their bots, and/or of infiltration of their botnets.
The intuition is that botmasters will try to avoid the us-
age of permanent command-and-control infrastructures,
since they have been one of the main targets of recent
research on botnet detection and analysis [11].



To create this new kind of botnet, attackers can lever-
age the capability of modern browsers to run pieces of
embedded code (such as Javascript or Flash), thus cre-
ating a layer of expendable hosts, composed by honest
visitors of malicious (or compromised) websites. These
hosts will be responsible for doing activities that are ver-
bose in nature, such as disseminating botmaster’s com-
mands. As will be seen, the existence of this layer can
constitute a formidable obstacle to the analysis, and/or
infiltration of the underlying botnet.

Contributions The main contribution of this paper is
the exposure and analysis of a possible path of botnet
evolution, capable of higher degrees of stealthiness and
resilience against infiltration. Hopefully, this will lead
to the timely development of adequate countermeasures
against this next generation of botnets. In particular, sev-
eral novel results are presented:

− We present and analyze new type of botnet C2 archi-
tecture, capable of achieving much higher degrees
of resilience to infiltration and size estimation by
the research community;

− We show that such an architecture can be lever-
aged to create an overlay (for stolen information re-
trieval) that cannot be used by anyone but the bot-
master;

− We analyze authentication scheme that allows bots
to unambiguously identify honest hosts being used
by the botmaster to disseminate commands, using
only the botmaster’s public key as a trust anchor;

− We also discuss a tunneling scheme that may al-
low the botmaster to retrieve information without
the risk of exposure of his own identity;

− A case-study implementation of such an architec-
ture is made;

− Also, the performance of this architecture is ana-
lyzed, both analytically and via Monte Carlo anal-
ysis, thus obtaining the practical bounds within
which this overall botnet scheme may constitute a
threat to network operations.

2 Background Model

As stated, our approach is focused on stealth botnets,
whose command-and-control architecture can avoid in-
filtration, size estimation, and reduce the detection prob-
ability of the individual bots. In this section, we will state
both the model and the assumptions to be made through-
out the paper.

The details of how bots are infected will not be ad-
dressed. We will assume the existence of a population of
computers infected with a malicious binary, which con-
tains: the code needed to perform the malicious activi-
ties; the public key of the botmaster; the initial botmas-
ter’s commands (e.g. send spam e-mail). Note that bots
do not possess any data (e.g. IP address, domain-names)
concerning the botmaster, other than its public key.

We further assume that bots can receive commands
from the botmaster through a common TCP port open
to the internet. Attackers can achieve this even in hosts
sitting behind NATs, through the use of the Internet Gate-
way Device (IGD) Protocol, implemented via UPnP, thus
providing port mapping capabilities. Also, it is common
in malware to have firewall killers, and, in general, to
eliminate some of the restrictions that a well configured
host may present.

Finally, and in order to simplify calculations, we as-
sume that the IP addresses of infected hosts are uni-
formly distributed throughout the fraction of the IP ad-
dressing space currently assigned, and that the whole
population of infected hosts is online.

3 Architecture

Contrarily to usual botnets, in our architecture bots do
not attempt to contact any controlling third-party server;
they simply execute the original botmaster’s orders, and
passively listen for commands. This can be seen as a
change in the normal communication paradigm. Usu-
ally, bots actively participate in some control infrastruc-
ture, both to retrieve information from the botmaster (e.g.
updates to the malicious binaries, new commands, etc.),
and to send information back (e.g. stolen credit card
data, email addresses, etc.). However, in the consid-
ered architecture, bots are passive in terms of C2, and
commands are pushed directly into the compromised ma-
chines. Command origin authentication is done by ver-
ifying if the incoming requests are signed with the bot-
master’s private key (remember that all the bots have the
corresponding public key). This type of authentication is
already being used in the wild [21].

This design presents a much greater threat than the
usual usual pull model: Researchers controlling indi-
vidual bots cannot infiltrate the C2 infrastructure, since,
from the perspective of a bot, there is none. This means
that, by controlling a bot, researchers cannot estimate
botnet size, or gain any type of privileged position in the
botnet that might lead to a possible attack vector. More-
over, none of the research methods for bot identification
by detection of the C2 communication pattern is applica-
ble, since there is no outbound (from bots to botmaster)
C2 traffic.
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However, attackers face two obvious difficulties with
this overall design:

Command dissemination. The botmaster does
not possess an established command dissemination
channel, and, thus, needs to individually send the
commands to each and every infected bot; however,
since bots never ”phone home”, the attacker does
not know the IP addresses of the infected hosts, and
commands will thus have to be sent to the bots by a
random (or semi-random) scanning strategy. Com-
mand dissemination will thus become a problem of
statistical nature;

Information retrieval. Since bots do not possess
the IP address of the botmaster, creating an up-
stream information flow (if information retrieval is
required) is a particularly difficult problem.

Unfortunately, both these difficulties may be over-
come by a motivated botmaster.

3.1 Command dissemination
Direct command dissemination by the botmaster, while
feasible, has some disadvantages for the botmaster:

− The botmaster would be exposing himself, by di-
rectly scanning the internet. Even if the attacker
uses a compromised host to act as a proxy, exposing
a host directly controlled by the botmaster may lead
to exposure of the botmaster’s true IP address;

− The botmaster may take too long to reach all the
participants in the botnet. This is particularly im-
portant when the botmaster wants a command to be
executed as soon as possible.

The botmasters might consider establishing a two-
leveled hierarchy of infected hosts, with different objec-
tives on both levels: one lower level to perform the mali-
cious activities (worker bots), and a higher intermediate
level, whose sole purpose would be to disseminate the
botmaster commands to the worker bots (as was done
in [25]). If botmasters opt for this solution, one may
try to impersonate one of these information relay hosts
which might allow us to thwart the propagation of the
commands, gain enough trust to be able to launch an
eclipse attack, or launch other disrupting attacks to the
C2 infrastructure [13].

Unfortunately, we believe that botmasters may try to
circumvent both theses difficulties through the use of a
new kind of intermediate C2 layer, between the botmas-
ter and the bots, composed solely of honest participants.
These participants are called honest, since they will not
be infected with the malicious binary, and are, thus, tech-
nically not part of the botnet. This intermediate C2 layer
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Figure 1: Global architecture.

works in the following way: The botmaster deploys a
website (or infects an existing one) possessing a specific
malicious code. This malicious code will not attempt to
infect the host through a drive-by-download, gain control
of the web user’s hosts, or exploit any vulnerability. In-
stead, it will have an obfuscated piece of code, to be ran
by the browser, that will make the web user’s browser
unwillingly disseminate command messages to the bots.

This may be done by leveraging the capabilities of
scripting languages like javascript. All users with
javascript enabled on their browsers will execute the ma-
licious code, and will, thus, become a part of the com-
mand dissemination layer. Such a command dissemina-
tion mechanism can be seen in Figure 1.

Bots will receive commands from the intermediate
honest website users, without acknowledging their re-
ception1. The only traffic sent by the bots is the one gen-
erated by the TCP handshake (one SYN/ACK message).
Furthermore, attackers may chose commonly open ports
belonging to potentially legitimate services, hindering
researchers from simply enumerating bots by the pres-
ence of an uncommon open port. This makes the task
of detecting C2 traffic very difficult. Moreover, a re-
searcher cannot achieve anything by replaying the re-
ceived commands, except further spreading of the com-
mand throughout the infected population.

This intermediate layer of command dissemination
presents several advantages for the attacker.

− Command dissemination is not done by the botmas-
ter, reducing the probability of it being detected.

− Detection of a command dissemination attempt,
only reveals the address of a honest user accessing
some malicious website. It does not reveal any part
of the botnet, nor the malicious website itself.

1For the moment this assumption creates a worst-case scenario
which will be abandoned at a later section.
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− Since there will be typically many victims access-
ing the malicious website, the time taken to deliver
the commands to the bot population decreases dra-
matically.

A skeleton version of this command dissemination
scheme (including the intermediate layer build-up via a
malicious website) has been implemented, for case-study
purposes. Implementation details, and a detailed perfor-
mance analysis will be presented in Section 4 to appreci-
ate it’s threat potential.

3.2 IPv6
It has been repeatedly shown that a full scan of all of
the IPv4 space is feasible. With the advent of IPv6, the
IP address space will change from from 32 to 128 bits,
dramatically increasing the amount of work needed by
random scanning worms to cover the whole internet by
a factor of 296 [18]. However, this increase in addressing
space might not be effective in stopping this method of
propagation. In [14], the propagation speed of a worm
in an IPv6 world is analyzed, and the authors present re-
sults indicating that such a worm can exhibit propagation
speeds comparable to an IPv4 random-scanning worm.
In this work, the authors realized that the directory and
naming services necessary for the functioning of the in-
ternet can be exploited, thereby considerably reducing
the required scanning range. More specifically, instead
of scanning random IPs, worms can perform DNS ran-
dom scanning, i.e., guessing DNS names instead of IP
addresses. Others works like [28, 18, 29] present several
other techniques that allow worms to reduce the search
space: scanning only assigned space; using public infor-
mation about the currently active IP ranges; using exist-
ing peer-to-peer networks to gather IP addresses; using
search engines and DNS zone transfers, amongst others.

Furthermore, there is one advantage that IPv6 net-
works bring to random scanning worms, and therefore,
to the botnet architecture presented: the effective disap-
pearance of NATs. With the increase of the use of pub-
lic IPv6 addresses for regular hosts, the number of bots
reachable from the internet will also increase, benefiting
potential attackers.

The advent of IPv6 will, therefore, not restrain mali-
cious attackers from using random scanning schemes on
their future botnets and might end up being beneficial for
for attackers.

3.3 Information Upstream
Until now, we have been describing how the attacker may
attempt to disseminate commands to the bots, in a stealth
manner. However, bots are often required to send in-
formation back to the botmaster (e.g. credit-card data).

In the discussed architecture bots cannot send informa-
tion to the botmaster or some rendezvous host, since they
do not possess the required IP addresses, or links to any
other botnet participant. This isolation ensures a high de-
gree of robustness and stealthiness of the botnet, but cre-
ates a challenging environment if an upstream channel is
required. However, even this difficulty may be circum-
vented by the botmaster.

We will describe two possible implementations of an
upstream information channel in these stringent condi-
tions. Each one of them is capable of providing a work-
able upstream channel, while preserving the three fol-
lowing characteristics:

1. The fact that they cannot be infiltrated by a re-
searcher through the C2 channel;

2. The stealthiness (and, therefore, detection avoid-
ance) conferred by the absence of a traditional C2

channel;

3. The fact that compromising any number of bots
does still not allow botnet size estimation.

3.3.1 Spamming Botnets

If the main objective of the botnet is sending spam, one
rather ingenious way of solving the upstream problem,
is sending the information encoded along with the spam
email, thus hiding the upstream communication in plain
sight. This can be done without allowing researchers to
read the information, by encrypting all the transmitted
information with the botmaster’s public key. With this
upstream solution, there is virtually no communication
done by the bot that doesn’t fit the ”sending spam” pro-
file, since bots are never required to respond to a com-
mand, or have any kind of interaction with the rest of
the botnet. To access the data, the botmaster only has to
receive spam, something very easy to accomplish these
days.

Obviously, researchers can use the spamming activity
to detect the active participants of a botnet, but an active
bot will, at most, only compromise itself.

This upstream solution raises again the issue of ran-
domness and performance in the information retrieval
process. The analysis of this specific information up-
stream channel will not be presented in this paper.

3.3.2 Information gathering Botnets

In the case of botnets whose purpose is solely covert in-
formation gathering (and not spam), the previous scheme
is not an option. In this type of botnet, information is
usually stolen locally from infected hosts, through the
use of key-loggers, and other mechanisms that usually
do not require interaction with external systems. This
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means that, to send information upstream, bots will have
to break silence, even though, assumedly, the amount of
involved information is not big enough, in itself, to lead
to bot detection. However, it is still possible to create an
upstream channel that:

1. Minimizes the risk of detection;

2. Allows the bots to keep operating undetected;

3. Does not expose the botmaster.

To achieve this, the command dissemination mecha-
nism must change. In particular, bots receiving a valid
command must now send an acknowledge to the dissem-
ination layer host from whom the command originated.
This information will allow the hosts in the dissemina-
tion layer to detect which contacted hosts are part of the
botnet, something that will be crucial for allowing the
botmaster to retrieve data from the bots, as will be seen
further ahead in the text.

Clearly, requiring bots to acknowledge commands,
opens a path for researchers to identify the participants
in the botnet. Since commands are disseminated ran-
domly over the internet, researchers can easily collect
them. Therefore, to determine if a specific IP address is
part of the botnet, a researcher could, in principle, sim-
ply replay one of the received commands, and verify if
an acknowledge was sent back. Unfortunately, even this
weakness can be circumvented by the botmaster, as dis-
cussed below.

Dissemination layer authentication If we could forge
or replay commands, prompting acknowledgement from
the bots, the botnet size could be estimated, and the in-
fected machines identified. However, botmasters must
ensure that bots only acknowledge commands directly
originating from hosts in the dissemination layer. The
authentication must be done by the bots without access
to any information other than the botmaster’s public key
(that is the only trust anchor they possess), and without
the need to transmit (in order to avoid detection).

Such an authentication scheme can be devised, based
on a simple assumption: researchers are unable to access
the code of the malicious website used to gather dissem-
ination layer hosts, before expiration of the command is-
sued by the botmaster (commands sent by the botmaster
will thus possess a time-validity stamp). This scheme
requires, not only the existence of a public/private key-
pair owned by the botmaster (Kbm/K−1

bm ), but also one
key-pair for each of the deployed dissemination websites
(Kw/K−1

w ). The protocol is depicted in Figure 2. The fol-
lowing abbreviations are used in this figure: Kx/K−1

x as
x’s public/private keys; {m}K−1

x representing m signed

Bot Master 
(bm)
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Bot

Dissemination Website
(W)

Dissemination 
Layer Host

1
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Kbm, K-1
w, {Kw}K-1

bm, {C}K-1
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Kbm{Kw}K-1
bm, {M}K-1

w

1

2

1

Figure 2: Dissemination layer authentication.

with x’s private key; C represents the command to dis-
seminate; finally, M is the message sent to the bot. Pro-
tocol operation progresses as follows:

1. After compromising a vulnerable website, the bot-
master inserts the malicious code, which includes
the following information: the botmaster’s public
key (Kbm); the site-specific private key (K−1

w ); the
site-specific public key, signed with the botmaster’s
private key ({Kw}K−1

bm ); and the command to be
sent, also signed with the botmaster’s private key
({C}K−1

bm );

2. When any host accesses the infected website, the
malicious code is sent to the host, to be executed;

3. This host (which is now part of the command dis-
semination layer) sends the command message (M),
signed with the site-specific private key ({M}K−1

w ),
to possible bots. It also sends the site-specific pub-
lic key, signed with the botmaster’s private key
({Kw}K−1

bm ). Message (M) contains the command
to be executed (C) and the destination bot address;

4. The bot verifies the authenticity of M and C, and
the associated time stamp. If M and C are authentic
and not yet expired, command C is executed, and an
acknowledge is sent to the intermediate layer host.

This protocol creates a verifiable trust chain between
the botmaster’s public key, and message M: the bot ver-
ifies if the site-specific public key received is signed by
the botmaster, using the known botmaster’s public key;
then, it uses that public key to verify the signature of
message M; finally, it verifies if the Dst IP corresponds
to it’s own IP address. If these three steps are success-
ful, the bot knows that the host from which this message
was received, has had access to one of the botmaster’s
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command dissemination websites. Note that the bot still
has to verify the authenticity of C, and the time-stamp as-
sociated with it. Under the assumption that researchers
will not be able of accessing the code in the dissemina-
tion website before command expiration (expiration time
may be chosen in such a way as to guarantee that this
assumption holds true with a desired high probability),
reception of an authentic, non-expired command allows
the bot to reply with an acknowledge message, without
exposing itself to researchers. If this assumption does
not hold true, and researchers are somehow successful in
obtaining access to the dissemination website prior to the
expiration of C, all we obtained is the capability to iden-
tify IP addresses pertaining to the botnet, with no better
strategy than random scanning within a short time inter-
val. The insertion of false commands will still not be
possible.

Overlay Construction We will now discuss how the
botmaster can retrieve bot information from the dissemi-
nation layer without becoming exposed.

One possible way of implementing the upstream chan-
nel is to have the hosts in the dissemination layer retrieve
the information from each contacted bot, and post it back
to the compromised websites. However, this would cre-
ate one (or several) places to which the botmaster would
have to access for final information retrieval. If one or
more of these points could be identified, we could wait
for botmaster access, and accomplish direct botmaster
identification. Moreover, by taking these websites down,
we could also prevent the botmaster from retrieving the
stolen information.

The botmaster may, however, build an overlay within
the bots of the botnet, which only the botmaster can lo-
cate and use, to retrieve upstream information from the
bots. The mechanism is as follows: when a host in the
dissemination layer receives an acknowledge from a bot
to which it sent a command, it encrypts the bot’s IP ad-
dress with the botmaster’s public key. Then, it pushes
this information to every other bot found in subsequent
dissemination attempts. Each time a new bot is found, its
encrypted address is appended to the list, and pushed to
subsequently found bots. Each host in the dissemination
layer is, therefore, creating a path (a multiply-linked list,
in fact) containing all the bots it finds while disseminat-
ing the commands. Each bot will possess a list of the
encrypted addresses of the bots previously contacted by
the same dissemination layer host. Since the list is en-
crypted with Kbm, only the botmaster is capable of using
it. The mechanism is depicted in Figure 3.

As will be seen in the analysis section, for realistic val-
ues of the parameters, each one of these individual paths
will not possess, on average, more than a couple dozens
of IP addresses. Since the IP addresses scanned by the
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Figure 3: Construction of an encrypted bot overlay by
the intermediate hosts.

dissemination layer are chosen at random, the individual
paths created by different dissemination hosts may, how-
ever, intercept. If the number of intersections is large
enough, the overlay may present a high degree of con-
nectivity, extending throughout the set of contacted bots.
The degree of connectivity of the overlay, as a function
of the involved parameters, will be seen in the analysis
section (Section 4). This overlay can be easily extended
to have bidirectional paths, by having the dissemination
hosts sending the encrypted IP address of a newly found
bot, to the last bot (or k bots) contacted.

With the overlay in place, retrieving information from
the botnet becomes a trivial task to the botmaster: he
simply has to find one of the bots of the overlay (by ran-
dom scanning), and then travel through the overlay to
find the rest of the bots in the overlay, pulling the infor-
mation stored in each bot along the way. We stress the
fact that, since the fingers are encrypted with Kbm, only
the botmaster can navigate the overlay.

Accessing the Overlay By simply joining the botnet
with honeypots, and waiting for information retrieval re-
quests, we might be capable of recording the IP address
of the botmaster, if we were part of the overlay, or if we
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were contacted by the botmaster while trying to reach
a bot in the overlay. This might give us an edge, even
though only a probabilistic one.

The botmaster can, however, circumvent this weak-
ness. Let us consider the following algorithm:

1. The botmaster (to be referred as Bot0) contacts one
of the bots in the overlay (let us call it Bot1), and re-
quests its overlay list (which is encrypted with Kbm,
as discussed above).

2. With probability ρ , Bot0 nominates Bot1 to be re-
sponsible for information retrieval, and the algo-
rithm proceeds to Step 5. With probability (1−ρ),
the botmaster returns one of the overlay bot ad-
dresses (randomly chosen, and in plain text) to Bot1,
and Bot1 is requested to connect with the bot in
that address (call it Bot2), and obtain its overlay list
(which Bot1 will forward back to Bot0);

3. With probability ρ , Bot0 nominates Bot2 (through
Bot1) to be responsible for information retrieval,
and the algorithm proceeds to Step 5. With proba-
bility (1−ρ), the botmaster returns one of the over-
lay bot addresses (randomly chosen, and in plain
text) to Bot2 (via Bot1), and Bot2 is requested to
connect with the bot in that address (call it Bot3),
and obtain its overlay list (which Bot2 and Bot1 will
forward back to Bot0);

4. And so on, for Bot3, Bot4, ...Botq;

5. The bot nominated as responsible for information
retrieval (Botq) crawls the full overlay, using the
botmaster (via the tunnel) to decrypt the overlay ad-
dress fingers of each successive bot, and sending the
collected information back through the established
tunnel. This step will be further refined below.

With this algorithm, the botmaster is creating a tunnel
through which the information will be retrieved, the re-
trieval itself being a task of the last bot in the tunnel Botq.
Since the retrieved information is sent to Botq already en-
crypted with Kbm, only the botmaster will be able to read
it.

The intuition of this approach is that each bot in the
tunnel looks to its successor in the exact same way the
botmaster looks to the first contacted bot. Hence, there is
no way for a contacted researcher to determine if his an-
tecessor is the botmaster, or simply an innocent bot at an
intermediate position in the tunnel. On the other hand,
nodes in this tunnel only know the IP addresses of the
previous and the next bots in the tunnel, and, thus, the
tunnel cannot be traced back to its origin. This mecha-
nism is depicted in Figure 4.
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Figure 4: Construction of a tunnel through q randomly
chosen bots.

4 Analysis

In this section, we will analyze the performance of both
the downstream and upstream techniques described in
the previous sections. This analysis will highlight the
impact on performance of the several system parameters,
and provide the practical bounds within which this over-
all botnet scheme may constitute a threat to network op-
erations. The performance of both the command dissem-
ination and the overlay construction mechanisms cannot
be validated in a real-world scenario, since this would
require controlling several thousands of nodes, which
largely exceeds the number of nodes at our disposal, even
when using platforms such as Planetlab. The perfor-
mance analysis will, thus, use both analytical and sim-
ulated results without the benefit of real-life deployment.

We will assume a botnet with a static population of
N = 150000 bots. This number of bots is easily achiev-
able, and in fact, there are botnets that largely exceed
this number [23]. These bots will be considered to be
uniformly distributed throughout the presently assigned
IPv4 address space. Using the Bogon list ( [2]), which
contains unallocated or reserved address blocks in the
IPA address space, only S = 3086889768 possible IP ad-
dresses will be considered. We must also consider: the
rate at which the browsers running on the intermediate
hosts are capable of sending out requests (r); the number
of days the dissemination website is up, or the malicious
code is active on the dissemination site (d); the number
of visitors the dissemination website receives per day (v);
and the average number of minutes that a user spends on
the dissemination website (m).

Without loss of generalization, two of these parame-
ters, r and d, will be considered constant throughout the
analysis. Since the scanning rate r varies from browser to
browser, we tested it on three browsers (Firefox, Safari,
and Chrome), and on two distinct platforms (Windows
and OS X). We obtained approximately the same perfor-
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mance in all cases (about 250 requests per second). This
is well below the reported performance of some previ-
ous well known cases (e.g. Code Red, [30]). Parameter
d will be assumed to be d = 1, which means that we will
assume only 24 hours of dissemination layer activity, un-
til command (C) expiration. This choice is based on the
assumption that researchers need at least 24 hours to get
the source code of the dissemination website. This seems
to be a conservative assumption, since, as reported in the
literature (e.g. [19]), it has been difficult to collect scripts
even from malicious websites that stay online for longer
periods of time.

4.1 Case-study implementation

For a case-study, we implemented some parts of the de-
scribed architecture. To recruit intermediate layer hosts,
we created a Javascript program that was loaded and ran
on the victims’ browsers2. The reason for the choice of
Javascript is the fact that it is both present in all modern
browsers, and turned on by default.

We started by implementing a script capable of by-
passing the browser’s same origin policy. This policy
prevents access to most methods and properties across
pages on different websites [4]. Unfortunately, there are
widely available tools such as EasyXDM [3], that allow
bypass of this security mechanism across all mainstream
browsers3. Then, the malicious script was made to scan
a given IP address range, by sending AJAX requests to
all the IP addresses, and collecting correct replies from
the simulated bots. We also tested the rate at which our
malicious script was able to generate AJAX requests,
to obtain parameter r (the scan-rate of the intermediate
hosts). The significative difference between the scan-
rate obtained and the scan rates of usual worms can be
explained by the fact that browsers are not optimized to
send large numbers of simultaneous requests. Finally,
we tested public-key encryption libraries in Javascript, to
verify the feasibility of the dissemination layer authenti-
cation mechanism.

Adobe Flash could also have been used. It is still ubiq-
uitous in modern browsers, and it also possesses the ca-
pability of doing HTTP requests to hosts, and, therefore,
the capability of command dissemination. One interest-
ing characteristic of Flash is Adobe Stratus (see [1]),
a service that allows clients to send data from client
to client, without passing through a server (P2P com-
munication). This capability would allow cooperation
between the intermediate hosts, thereby increasing the
number of bots reached in each dissemination campaign,

2The victims referred here, are test computers allocated for that spe-
cific purpose.

3HTML5 formalizes a method for this: the postMessage interface,
removing the need for external tools.

as will be seen further ahead in the text.
On the issue of how to get honest website visitors to

run malicious code, there are two basic approaches: at-
tackers may create their own websites with that specific
purpose in mind [26], and advertise them through spam
email, trending topics on twitter, search engine poison-
ing, abusing URL shorteners, etc; alternatively, existing
websites can be used. We note that common vulnera-
bilities like XSS and SQL injection are sufficient to get
legitimate users running malicious code. The most com-
mon method for malware infection is precisely drive-by
downloads, in which attackers create malware-serving
websites to recruit bots. This is, in fact, commonly done.
Using these sites to also recruit intermediate layer hosts
would imply only a minor addition to common attack
procedures.

4.2 Command Dissemination
One of the first performance issues to be addressed is
the degree of completeness of command diffusion. Since
bots are completely stealth (they simply listen for com-
mands from the botmaster), their IP addresses are not
known to the botmaster, or to the intermediate hosts, and
commands must be sent randomly to the internet address
space, in the hope of reaching a considerable portion of
the universe of existing bots. In this analysis, we will
assume that a single host does not repeat IP addresses,
even though any address may turn out to be scanned as
much as v times, once by each host in the dissemination
layer. This inefficiency in the global scanning strategy
could be fixed, if the botmaster would allow cooperation
between the intermediate hosts. Attempting to reach all
bots in practical time is an impossible goal, but the pos-
sibility of reaching a significant percentage of bots must
be investigated.

Since each one of the hosts in the dissemination layer
has a fixed scanning rate r, and d is considered fixed,
there are only two parameters influencing the mean per-
centage of bots that will receive the disseminated com-
mands: v and m. Denoting by s(n) the number of bots
reached after n randomly addressed requests (n being the
sequential number of a given request within the global set
of all requests transmitted by the v intermediate hosts),
the equation governing bot discovery by random scan of
the used IPv4 address space is given by Equation 1:

E{s(n)}= E{s(n−1)}+ N−E{s(n−1)}
S− n

v
, (1)

E{·} being the expected value operator.
The solution to this difference equation, when written

as a function of the number of hosts in the dissemination
layer (v) is given by Equation 2:
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E{s(v)}= N
(

1−
(

1− m · r ·60 ·d
S

)v)
. (2)

In Figure 5, we plotted the mean fraction of bots re-
ceiving the disseminated command sent out by the bot-
master, as a function of the number of hosts in the dis-
semination layer (Equation 2), for three different values
of m (m = 10, m = 15 and m = 20).

As a side note, and as a justification for our choices
of the value of m, once a victim visits a malicious web-
site, attackers can use a combination of Clickjacking and
Tabnabbing to ensure that the malicious javascript is kept
running for as long as possible. Additionally, the intro-
duction of WebWorkers by HTML5 gives attackers the
ability of executing threads running malicious code with-
out slowing down or making the victim’s browser unre-
sponsive, which also helps attackers maintain their code
running without detection. These tricks, together with
the concept of tabbed browsing, mean that most users
will have each individual tab remain open throughout the
browsing session, which could stretch for hours. This
easily puts the average lifetime of an individual instance
of the malicious javascript in the order of tens of minutes.

As previously stated, the dissemination strategy could
be made considerably more efficient if the botmaster al-
lowed cooperation between the intermediate hosts, since
in that case no address would be scanned twice, implying
a constant bot discovery rate. To appreciate this increase
in efficiency, the bot discovery performance of such an
approach is also represented in Figure 5, for the case
of m = 20. From Figure 5, we can conclude that the
non-cooperative approaches require, for effectiveness, a
medium sized dissemination site (2000 < v < 20000).
Sites with lower visitor rates will generate low popu-
lated dissemination layers, and low levels of access to the
bot population (percentages of botnet coverture smaller
than 20%). Alternatively, a set of smaller sized web sites
would be needed.

4.3 Overlay Connectivity
The total number of bots reached in the command dis-
semination phase is not, however, the only parameter
from which the threat level depends. Another issue that
must be addressed is the capability to form an overlay of
sufficient size to allow proper operation of the upstream
information retrieval mechanism (see Section 3). The
problem is two sided: we must evaluate the mean size
and statistical distribution of the path of bots reached
by each one of the intermediate hosts; also, we must
consider the connectivity between these different indi-
vidual paths, since both parameters will determine the
maximum size of the connected overlay and, hence, its

Figure 5: Fraction of population reached with a varying
number of dissemination hosts for (S)mall, (M)edium
and (B)ig websites.

information retrieval capability. The worst case overlay
will be one that includes all the bots reached in the com-
mand dissemination phase, a situation that corresponds
to a fully connected set of individual paths.

The number k of successes (k contacted bots) in the
process of randomly scanning the IPv4 address space by
a single host follows a hypergeometric distribution. That
is:

P(k) =

(
N
k

)(
S−N

m · r ·60 ·d− k

)
(

S
m · r ·60 ·d

) (3)

Its mean value (mean length of the individual bot paths)
is given by (m · r · 60 · d ·N)/S and is, therefore, a linear
function in both r and m.

Evaluating the connectivity of the global overlay (that
is, the connectivity of the set of individual bot paths)
now becomes a typical problem of graph analysis. To
perform this evaluation, we simulated several dissemina-
tion campaigns using Mathematica. For each campaign,
v bot chains of random IP addresses (from the set of S
used addresses) were generated. The length of each indi-
vidual chain was obtained with (3) with the appropriate
parameters. We then evaluated the overall connectivity
of the generated graph, and determined the mean size
of the biggest cluster of bots. As a preliminary note,
we note that the parameter with the biggest impact on
the connectivity (length) of the overlay is the number of
minutes spent on the dissemination website by the visi-
tors (m), due to its impact on the length of the individual
paths.
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Figure 6: Percentage of overlay connectivity with a vary-
ing number of minutes of dissemination.

In Figure 6 we present the mean size of the largest
connected cluster of bots (as a percentage of the total
number of bots present in the graph), plotted as a func-
tion of m. The Monte Carlo simulation to generate this
curve consisted of 100 different simulated dissemina-
tion campaigns, with N = 150000, S = 3086889768 and
v = {2000, 5000, 10000, 20000}. We can see that, even
for the smallest value of v, m > 20 implies that the set of
bots contacted in the dissemination command becomes
almost fully connected, thus creating a worrisome over-
lay, highly capable of supporting information retrieval.

A final performance issue should be addressed: the
mean amount of time required for the botmaster to con-
tact the overlay. We should note, however, that this is not
a critical issue. Once the overlay is set up, there is no par-
ticular timeline for the botmaster to comply with in this
last information retrieval phase. However, the existence
of dynamics in the bot population may introduce breaks
in the connected overlay (bots going off-line), splitting
it into smaller sub-paths and, thus, hampering the effec-
tiveness of the retrieval process. Hence, we should also
consider this additional parameter l - the mean number of
scan attempts it takes the botmaster to contact the over-
lay, by randomly scanning the used IP address space (l
can then be directly translated into time). Since the tun-
neling scheme doesn’t affect the probability structure of
the scan, the scan process is still governed by a hyperge-
ometric arrival process (Equation 3), but with N replaced
by the mean overlay max size (p). This implies that the
probability mass distribution for the number of scan at-
tempts needed to reach one of the bots of the overlay (u)
is:

P(u) =
[

p
S− p−u+1

]u−1

∏
i=0

S− p− i
S− i

(4)

The mean number of tries required to reach one of the
bots of the overlay becomes:

l = E{u}= S/p. (5)

With the results of Equation 5, Figure 6 and Equation 2,
the effectiveness of the overall botnet downstream and
upstream flows can be evaluated and, thus, the overall
danger to network operations properly considered.

5 Discussion

These results show that the possibility of emergence of
this type of botnet constitutes a serious threat, requiring
new defensive approaches. From the previous section,
we note that the time taken for researchers to identify
the malicious website plays a critical role on the feasibil-
ity of the proposed architecture. Currently, the detection
of malicious websites takes several days, and if a mali-
cious website stays online for a smaller period of time,
it will probably remain undetected. Furthermore, there
is a lot of fragmentation on the available website black-
lists, allowing users to access websites that were already
detected as malicious in other blacklists. We need, there-
fore, to focus our efforts in developing improved mech-
anisms to detect and blacklist malicious websites, in a
faster and more efficient manner.

Also, the discussed architecture reduces the useful-
ness of “client-side” honeypots emulating normal end-
user systems. Since bots do not possess information re-
garding the C2 infrastructure, capturing them is of lim-
ited use. Therefore, in order to be able to detect and mit-
igate this threat, we should switch our focus to “server-
sided” honeypots, detecting and analyzing the creation
of the malicious websites themselves, instead of bot in-
fections.

Finally, there is a vastly unexplored space concerning
heuristics that allow browsers to detect malicious behav-
ior that does not directly target the user’s browser. As of
now, having javascript code sending thousands of back-
to-back connections is not considered malicious by the
majority of detection methods, since they focus on the
detection of specific attacks (exploit attempts, for exam-
ple). Heuristics that enable detection of code that creates
a large number of connections to different remote desti-
nations, with a potentially large number of those being
failed requests, should be put in place. These heuristics
would also be useful in the detection of other types of
attacks, such as browser-based denial-of-service, where
malicious code is also sent to hundreds of legitimate
clients, having them send thousands of requests to some
specific remote location, thereby effectively creating a
distributed denial-of-service attack.
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6 Related Work

Botnet detection has been a major research topic in re-
cent years. Lately, researchers have been focusing on
detection of the command-and-control traffic, as a way
to detect the presence of infected machines, and analyse
the botnet infrastructure [24, 7, 17, 6].

Centralized botnets are the most commonly known
and studied botnets. Most of these botnets use IRC
servers as their centralized control point, having the bots
joining in as normal clients. The existence of a central-
ized control point is the biggest weakness of this kind of
infrastructure, since it represents a single point of fail-
ure in the architecture. Also, this particular kind of C2

infrastructure allows researchers to extract information
about the botnet, such as its size and the participants’s IP
addresses.

Several techniques have been found to detect this type
of C2 infrastructure. In [11], the authors proposed sev-
eral statistical algorithms to detect these botnets, based
on their multiple crowd-like behavior. An extension of
this work was done in [10], where the authors presented
a framework to perform clustering on the monitored C2

communication and malicious activities, performing a
cross-correlation between them to attain the final results.
Also, some researchers have studied particular details of
the IRC protocol, enabling the detection of this specific
kind of botnets [9]. Unfortunately, botnets are also in
constant evolution, and, more recently, there was a shift
in C2 architectures towards the use of P2P networks.
This new C2 infrastructure is focused on survivability,
and is therefore, considerably harder to take down. How-
ever, due to the open and decentralized nature of peer-to-
peer protocols, the academic community has also found
several ways of detecting and infiltrating them.

In [16], researchers were able to infiltrate the Storm
botnet by impersonating proxy peers in the overlay net-
work used for the C2 infrastructure. They were able to
take advantage of this privileged position in the overlay,
to rewrite URLs in the spam sent by the bots. Also, there
are several results on botnet size estimation that exploit
the openness of the C2 infrastructure overlay to estimate
the botnets’ size, or to extract the stolen information from
the bots [13]. One other way of disrupting the operation
of these botnets has been to attack the bootstrap proce-
dure, and tamper with the domain name service (DNS),
as bots typically resolve domain names to connect to
their C2 infrastructure. Therefore, by collaborating with
the domain registrar, it is possible to change the mapping
of a botnet domain to point to a machine controlled by
the researchers.

It is our intuition that botmasters will try to camou-
flage their C2 infrastructure, and maybe avoid its use al-
together, if possible. One such example of camouflage

can be found in [22]. Overbot is a P2P C2 infrastruc-
ture proposed by Starnberger et al., that camouflages bots
as normal P2P clients, thwarting researchers from distin-
guishing a compromised host from a honest P2P partici-
pant. This solution turns out to be impractical for several
reasons, one of them being the fact that it requires the
existence of several sensor bots inside the P2P network,
possessing the botmaster’s private key, and sniffing all
control communications that passes trough them. A sim-
ilary stealthy approach is also described in [20], where
the authors design a botnet architecture that makes use
of the Skype P2P network as a C2 infrastructure.

In the literature, there are some references to the prin-
ciple of no single bot knowing more about the infrastruc-
ture than its own local information [8]. This would allow
the detection and compromise of an unbounded number
of bots, since none of them possesses enough knowledge
to allow the compromise or exposure of the full botnet.
However, to the best of our knowledge, this is the first
work to show that this principle can be implemented in a
practical way.

7 Conclusions

Most of the recent approaches to botnet detection and
analysis are based upon the vulnerabilities of the botnet’s
internal C2 infrastructure. In this paper, we showed that,
with the present capabilities of scripting languages like
javascript, it is already possible to devise a botnet which
does not, in fact, possess an internal C2 infrastructure,
and is, therefore, impervious to such methods of analysis.

An example of such an architecture was discussed,
were bots do not possess any information concerning
command-and-control mechanisms. These stealth, iso-
lated bots are controlled through honest participants not
pertaining to the botnet. This architecture eliminates the
possibility of estimation of the botnet size, minimizes the
probability of detection of individual bots, and eliminates
the possibility of researcher infiltration. The impact on
performance of the several system parameters was ana-
lyzed, the bounds within which such an architecture may
constitute a threat were determined, and a case-study
architecture was implemented. We believe that, given
the recent focus on detecting the C2 communication pat-
tern of botnets by the academic community, botmasters
will follow a predictable evolutionary pattern, and try to
employ this type of architecture to harden their botnets
against researchers. As was shown, for some combina-
tions of the relevant parameters, these botnets may con-
stitute serious, effective threats, very difficult to analyze
and defuse. An effort is, therefore, needed, if we are to
preclude the emergence of this type of botnet.
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