
Netgator: Malware Detection Using Program
Interactive Challenges

Brian Schulte, Haris Andrianakis, Kun
Sun, and Angelos Stavrou

Intro

 Increase of stealthy malware in
enterprises
 Obfuscation, polymorphic techniques

 Often uses legitimate communication
channels
 HTTP

 Volume of traffic makes it difficult to process all
communications

 HTTPS
 Lack of inspection currently

 Disguised as legitimate applications

Intro

 Netgator
 Inspection of legitimate ports/protocols

 Port 80, HTTP/S

 Transparent proxy

 2 parts
 Passive

 Determine type of application
 Easily catch “dumb” malware

 Active
 Challenge based on expected functionality (PICs)

Intro

 Focus on HTTP/S, browsers

 Study of 1026 malware samples
 Out of samples where network activity was observed,

~80% utilized HTTP/S

 Very high percentage of HTTP/S malware try to
masquerade as browsers

 None passed our challenges

Intro

 PIC
 Challenge comprised of a request and expected response

pair
 Communication intercepted
 Response it sent back to exercise known functionality of

advertised program
 If expected answer is returned, communication is allowed

to pass through
 If not, drop connection

Intro

 2 pronged approach
 Passive to classify traffic
 Active to “challenge” application

 Prototype built using HTML, Javascript, and

Flash challenges

 Low overhead
 353 ms end-to-end latency

Design and Implementation

 2 major parts
 Passive
 Active

 Passive

 Establish type of application
 Browser, VOIP, OS updates, etc…

 Signatures are determined by unique HTTP header
orderings

Active Challenge Architecture

 Proxy & ICAP server duo
 Squid, HTTP/S transparent proxy
 Greasyspoon, Java based ICAP server

 What is ICAP?

 Internet Content Adaption Protocol
 Allows modification of all elements of HTTP

request/response
 Body, headers, URL, etc…

Active Challenge Architecture

Active Challenges

 For known applications, we challenge them
based on known functionality
 For browsers, HTML/Flash/Javascript

 Challenge code comprised of a redirect to the

originally requested file with a hash appended
as a parameter

 To cut down on overhead, text/html data is
challenged on the response

Active Challenges

 Two types
 Request
 Response

 Request challenging
 Stop the initial communication
 Send back challenge immediately
 Higher latency, good protection

 Response challenging
 Allow original response to come back
 Imbed challenge in original response
 Lower latency, possibly lower security

Active Challenges – Request Challenge

Active Challenges – Request challenging

 Hash is unique each time
 Based on time, requesting IP, requested URL, and secret key

 Headers replaced with HTTP response headers
 Forces the new response back to the client

 Challenge code example, Javascript:

Active Challenge – Response Challenge

 Challenging every request at the request would
cause a lot of overhead
 Challenge text/html data at the response

 Let the original request pass through

 Insert challenge inside the original response

 Client gets response and then challenge is

processed

Active Challenge – Response Challenge

Active Challenges

 The hash is what tells the proxy if the application
passed the challenge
 Attacker can just parse out hash

 Encrypt the hash with a Javascript
implementation of AES

 The challenge that is sent back now contains
the code (and key) to decrypt the hash
 Forces the attacker to have a full Javascript engine to

decrypt the hash

Active Challenges – Handling SSL

 Squid’s SSL-bump utilized

 Traffic encrypted with Netgator’s key
 Decrypted at proxy for processing
 Re-encrypted with external site’s key when leaving proxy

Active Challenges

 Further cutting down on overhead
 Automatically pass network requests if the client has

passed a challenge for that site’s domain

 Client has passed challenge for www.foo.com

 Request for www.foo.com/bar passes automatically

 Records are periodically cleaned

 Avoid malware “piggy-backing” off legitimate client’s who
passed challenges

Experimental Evaluation

 Used PlanetLab nodes for download tests

 Downloads of 3 different file sizes
 10KB, 100KB, 1MB

 3 challenges types

 HTML, Javascript, Flash

 Request and Response challenging

Experimental Evaluation

Experimental Evaluation

 HTML lowest overhead
 Javascript results

 Nice middle ground between difficulty to pass challenge
and measured overhead

 Flash results
 Highest overhead
 Toughest challenge, combines Javascript and Flash

 Response challenge results
 By far the lowest, lower security though since the original

response is let through

Discussion

 Attackers will attempt evasion
 Using a different user-agent/header signature

 If unknown, communications are blocked
 If known, challenge will still be sent

 Some legitimate applications might not be able

to have challenges crafted
 Whitelist can be created

Related Works

 Closest to our work is work by Gu et al.
 Active botnet probing to identify obscure command and

control channels

 Main differences

 We do not expect nor ever rely on a human to be behind
an application’s communications

 Our work focuses on legitimate applications rather than
malicious botnets

Related Works

 Our work similar to OS and application
fingerprinting
 Nmap

 CAPTCHA puzzles

 Instead of focusing on humans, focus on the application

 Traditional botnet detection

 BotSniffer, BotHunter, BotMiner

Conclusion

 Netgator
 Inline malware detection system
 2 parts

 Passive to classify traffic and thwart “dumb” malware
 Active to challenge applications identity

 Program Interactive Challenges

 Fully transparent to the user
 Average latency

 353ms for request challenges
 24ms for response challenges

	Netgator: Malware Detection Using Program Interactive Challenges	
	Intro
	Intro
	Intro
	Intro	
	Intro
	Design and Implementation
	Active Challenge Architecture
	Active Challenge Architecture
	Active Challenges
	Active Challenges
	Active Challenges – Request Challenge
	Active Challenges – Request challenging
	Active Challenge – Response Challenge
	Active Challenge – Response Challenge
	Active Challenges
	Active Challenges – Handling SSL
	Active Challenges
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Discussion
	Related Works
	Related Works
	Conclusion

