Netgator: Malware Detection Using Program
Interactive Challenges

Brian Schulte, Haris Andrianakis, Kun
Sun, and Angelos Stavrou

IIIIIIIIII



Intro

Increase of stealthy malware In

enterprises
m Obfuscation, polymorphic techniques

Often uses legitimate communication

channels

= HTTP

Volume of traffic makes it difficult to process all
communications

m HTTPS
Lack of inspection currently

m Disguised as legitimate applications

IIIIIIIIII



Intro

Netgator

= Inspection of legitimate ports/protocols
Port 80, HTTP/S

m Transparent proxy

m 2 parts

Passive

Determine type of application
Easily catch “dumb” malware

Active
Challenge based on expected functionality (PICs)

IIIIIIIIII



Intro

Focus on HTTP/S, browsers

Study of 1026 malware samples

= QOut of samples where network activity was observed,
~80% utilized HTTP/S

= Very high percentage of HTTP/S malware try to
masquerade as browsers

= None passed our challenges

IIIIIIIIII



Intro

PIC

Challenge comprised of a request and expected response
pair
Communication intercepted

Response it sent back to exercise known functionality of
advertised program

If expected answer Is returned, communication is allowed
to pass through

If not, drop connection

IIIIIIIIII



Intro

2 pronged approach
m Passive to classify traffic
= Active to “challenge” application

Prototype built using HTML, Javascript, and
Flash challenges

Low overhead
m 353 ms end-to-end latency

IIIIIIIIII



Design and Implementation

2 major parts
m Passive
= Active

Passive

= Establish type of application
Browser, VOIP, OS updates, etc...

= Signatures are determined by unique HTTP header
orderings

IIIIIIIIII



Active Challenge Architecture

Proxy & ICAP server duo
= Squid, HTTP/S transparent proxy
m Greasyspoon, Java based ICAP server

What is ICAP?

= Internet Content Adaption Protocol

= Allows modification of all elements of HTTP
request/response

Body, headers, URL, etc...

IIIIIIIIII



Active Challenge Architecture

Web traffic interception {on
a proxy or firewall)

--------------

Weh servers

Traffic redirection thanks to
the ICAP protocol

L"\ L4
how L]
L ¢ r
L
'\‘_ 1 'i\
i
[ ’
- = bl
_"'J : mTy; . LIk Clal
i - -
T 2 e L g
.-‘ A
)

statsfreports

dsers

Developers

Flow processing
(request and/or response)

MASON

UNIVERSITY



Active Challenges

For known applications, we challenge them
based on known functionality
= For browsers, HTML/Flash/Javascript

Challenge code comprised of a redirect to the
originally requested file with a hash appended
as a parameter

To cut down on overhead, text/html data Is
challenged on the response

UUUUUUUUUU



Active Challenges

Two types
= Request
= Response

Request challenging

m Stop the initial communication

m Send back challenge immediately
= Higher latency, good protection

Response challenging
= Allow original response to come back

= Imbed challenge in original response
= Lower latency, possibly lower security

IIIIIIIIII



Active Challenges — Request Challenge

GET Avideo.avi

active challenge
-

GET Nideo.avi7hash=1 23._

Mideo.avi
=i af——— 1
I

GET Nideo.awi

active challenge

IIIIIIIIII



Active Challenges — Request challenging

Hash is unique each time
m Based on time, requesting IP, requested URL, and secret key

Headers replaced with HTTP response headers
m Forces the new response back to the client

Challenge code example, Javascript:

<html>

<head>

<script type="text/javascript- >

window.location = {URL requested}?=\
{hash generated}

</script>

</head>

<body></body>

</html>

IIIIIIIIII



Active Challenge — Response Challenge

Challenging every request at the request would
cause a lot of overhead
= Challenge text/html data at the response

Let the original request pass through
= Insert challenge inside the original response

Client gets response and then challenge is
processed

IIIIIIIIII



Active Challenge — Response Challenge

GET /page.html

challenge inserted page.html
-3

challenge inserted page.html
- ‘- —————————

GET /page.html

IIIIIIIIII



Active Challenges

The hash is what tells the proxy If the application
passed the challenge
= Attacker can just parse out hash

Encrypt the hash with a Javascript
Implementation of AES

The challenge that Iis sent back now contains
the code (and key) to decrypt the hash

m Forces the attacker to have a full Javascript engine to
decrypt the hash

UUUUUUUUUU



Active Challenges — Handling SSL

Squid’s SSL-bump utilized

Traffic encrypted with Netgator’s key
m Decrypted at proxy for processing
= Re-encrypted with external site’s key when leaving proxy

IIIIIIIIII



Active Challenges

Further cutting down on overhead

= Automatically pass network requests if the client has
passed a challenge for that site’s domain

Client has passed challenge for www.foo.com
= Request for www.foo.com/bar passes automatically

Records are periodically cleaned

= Avoid malware “piggy-backing” off legitimate client’s who
passed challenges

IIIIIIIIII



Experimental Evaluation

Used PlanetLab nodes for download tests

Downloads of 3 different file sizes
= 10KB, 100KB, 1MB

3 challenges types
= HTML, Javascript, Flash

Request and Response challenging

IIIIIIIIII



Experimental Evaluation

Average End-to-End Latency

3

580

274

HTML Javascript Flash Response
Type of Challenge

206

Overhead (milliseconds)
- 88888 8

IIIIIIIIII



Experimental Evaluation

HTML lowest overhead

Javascript results

= Nice middle ground between difficulty to pass challenge
and measured overhead

Flash results

= Highest overhead
m Toughest challenge, combines Javascript and Flash

Response challenge results

m By far the lowest, lower security though since the original
response is let through

IIIIIIIIII



Discussion

Attackers will attempt evasion

= Using a different user-agent/header signature
If unknown, communications are blocked
If known, challenge will still be sent

Some legitimate applications might not be able
to have challenges crafted
= Whitelist can be created

IIIIIIIIII



Related Works

Closest to our work 1s work by Gu et al.

= Active botnet probing to identify obscure command and
control channels

Main differences

= We do not expect nor ever rely on a human to be behind
an application’s communications

= Our work focuses on legitimate applications rather than
malicious botnets

IIIIIIIIII



Related Works

Our work similar to OS and application
fingerprinting
= Nmap

CAPTCHA puzzles

= Instead of focusing on humans, focus on the application

Traditional botnet detection
m BotSniffer, BotHunter, BotMiner

IIIIIIIIII



Conclusion

Netgator

= Inline malware detection system

m 2 parts
Passive to classify traffic and thwart “dumb” malware

Active to challenge applications identity
Program Interactive Challenges

= Fully transparent to the user

m Average latency
353ms for request challenges
24ms for response challenges

IIIIIIIIII



	Netgator: Malware Detection Using Program Interactive Challenges	
	Intro
	Intro
	Intro
	Intro	
	Intro
	Design and Implementation
	Active Challenge Architecture
	Active Challenge Architecture
	Active Challenges
	Active Challenges
	Active Challenges – Request Challenge
	Active Challenges – Request challenging 
	Active Challenge – Response Challenge
	Active Challenge – Response Challenge
	Active Challenges
	Active Challenges – Handling SSL
	Active Challenges
	Experimental Evaluation
	Experimental Evaluation
	Experimental Evaluation
	Discussion
	Related Works
	Related Works
	Conclusion

