
Privacy-Preserving Payload-Based Correlation for
Accurate Malicious Traffic Detection

Janak J. Parekh, Ke Wang, Salvatore J. Stolfo
Department of Computer Science, Columbia University

500 W. 120th St., 450 Computer Science Building
New York, NY 10027

{janak,kewang,sal}@cs.columbia.edu

ABSTRACT
With the increased use of botnets and other techniques to obfuscate
attackers’ command-and-control centers, Distributed Intrusion De-
tection Systems (DIDS) that focus on attack source IP addresses
or other header information can only portray a limited view of
distributed scans and attacks. Packet payload sharing techniques
hold far more promise, as they can convey exploit vectors and/or
malcode used upon successful exploit of a target system, irrespec-
tive of obfuscated source addresses. However, payload sharing has
had minimal success due to regulatory or business-based privacy
concerns of transmitting raw or even sanitized payloads. The cur-
rently accepted form of content exchange has been limited to the
exchange of known-suspicious content, e.g., packets captured by
honeypots; however, signature generation assumes that each site
receives enough traffic in order to correlate a meaningful set of pay-
loads from which common content can be derived, and places fun-
damental and computationally stressful requirements on signature
generators that may miss particularly stealthy or carefully-crafted
polymorphic malcode.

Instead, we propose a new approach to enable the sharing of sus-
picious payloads via privacy-preserving technologies. We detail
the work we have done with two example payload anomaly detec-
tors, PAYL and Anagram, to support generalized payload corre-
lation and signature generation without releasing identifiable pay-
load data and without relying on single-site signature generation.
We present preliminary results of our approaches and suggest how
such deployments may practically be used for not only cross-site,
but also cross-domain alert sharing and its implications for profil-
ing threats.

Keywords
Distributed intrusion detection, anomaly detection, privacy preser-
vation, payload correlation, signature generation

1. INTRODUCTION
A Distributed Intrusion Detection/Collaborative Intrusion Detec-

tion System (DIDS/CIDS) is one that employs multiple Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

Intrusion Detection and/or Host Intrusion Detection sensors (NIDS/
HIDS), often across multiple local area networks, and correlates
resulting alerts to get a broader picture of Internet-based threats.
Most existing approaches (see section 5) share header-based alert
data, e.g., source IPs, destination ports, and aggregate statistics; the
goal of correlating such features across multiple sites is to detect
common sources of attack, especially as they are performing initial
scans to build hitlists in a future attack. Not only can these lists
be used in building fast-propagating worms [36], they can also be
used for targeted attacks, e.g., an attacker looking to exploit a crit-
ical infrastructure industry that may use common services, such as
the financial services industry.

However, the advent of botnets [7, 10, 33] and other forms of
indirection have made it far more difficult to discover the true at-
tack source, instead of bot machines which play a small role in the
actual process. While firewalling can be employed against com-
mon IPs [49], there is no guarantee an attacker will not scan using
one network and attack using another, thereby defeating proactive
attempts.

Instead, one can approach the problem from the perspective of
detecting the actual exploit used in the attack attempt: in an increas-
ingly monocultured-software world, specific vulnerabilities are co-
mmon to a large pool of applications [27]. We can leverage the
commonality of such attack approaches (and, in particular, the “in-
variant substrings” as defined in [30] and others) to identify and
protect against such attacks even if target machines are unpatched
and remain vulnerable. This is particularly advantageous for zero-
day worm detection, when common attack vectors may present
themselves across many sites in short timeframes, i.e. correlation
of common alerts across space, and for stealthy scanning for long
time periods, i.e. correlation of common alerts across time. In ei-
ther case, correlating alerts among collaborating sites requires care-
ful design for accuracy and efficiency.

Of course, exploit-specific vulnerability detection has its chal-
lenges: in particular, a reliance on payload detection and correla-
tion is necessary. It is impractical to assume that organizations can
exchange raw traffic streams; there is far too much data of a po-
tentially sensitive nature. Even if exchanged material is confined
merely to suspicious payloads as classified by an anomaly detector,
organizations may fear that some legitimate and/or sensitive traffic
may be misclassified and exchanged to other, possibly competing
institutions. Instead, techniques are required to exchange privacy-
preserving alerts that make it impossible for other entities to deter-
mine the actual content of the underlying traffic, yet at the same
time exchanging information that can effectively be correlated. We
propose that this is not only possible, but practical and broadly ap-
plicable, and propose a collection of techniques to do so.

This paper is organized as follows. Section 2 briefly discusses

the concepts of payload anomaly detection, and introduces two de-
tectors developed by our group—PAYL and Anagram—as a rep-
resentative class of local detectors. Section 3 then introduces the
privacy-preserving correlation techniques at the heart of this pa-
per. Section 4 shows some early results based on the techniques
described in section 3. We discuss related work in section 5, briefly
look at future possibilities in section 6 and conclude in section 7.

2. PAYLOAD ANOMALY DETECTION
In order to better motivate the correlation techniques described

in this paper, we first describe two payload anomaly sensors de-
veloped at Columbia: PAYL, which implements anomaly detec-
tion based on frequency-based 1-gram modeling, and Anagram,
which uses binary-based mixtures of higher order n-gram modeling
(n > 1). Both sensors train on normal unencrypted content flows
and employ service-specific models to test for suspicious traffic.1

Alerts are generated on traffic sufficiently deviant from normal; it
is these alerts that we wish to share with other sites to resolve false
positives from true zero-day attacks. The reader is encouraged to
refer to [46, 44, 45] for detailed descriptions of the aforementioned
sensors.

It is also important to note that we do not intend to address
all possible payload detection techniques here. Consequently, the
techniques described in section 3 may be usable with other (possi-
bly host-based and/or misuse) sensors.

2.1 PAYL: 1-gram frequency modeling
PAYL’s models are 1-gram byte frequency distributions condi-

tioned on packet length; tested traffic is classified as normal or ma-
licious by computing the Mahalanobis distance between the distri-
bution of the candidate packets and the frequency model. A larger
distance means bigger deviation from the model and a more ab-
normal packet; thresholding differentiates normal from malicious
traffic.

A raw PAYL alert typically contains metadata, including the
source and target IP/port pair, payload length, and score (distance
from model). Additionally, the suspicious packet may be included
in its alert. While the payloads can be shared, they significantly in-
crease alert sizes and run into privacy issues, especially for misclas-
sified traffic, i.e. false positives. While PAYL’s false positive rates
have been determined to be very low [44], the notion of transmit-
ting any raw payload inhibits collaboration among defensive sites.

2.2 Anagram: n-gram binary modeling
Anagram uses an alternative approach to anomaly detection via

binary-based high order n-gram modeling. Compared to 1-gram,
higher order n-grams are better at modeling sequential content in-
formation in packets, and thus it is capable of detecting signifi-
cant anomalous byte sequences and their location within a packet.
To avoid significant memory overhead associated with n-gram fre-
quency distributions, only a binary (yes/no) statistic is kept for each
possible gram. Scoring is accomplished by counting the percentage
of not-seen-before (i.e. unusual) n-grams out of the total n-grams in
the packet, and thresholding is again applied to differentiate traffic.

Surprisingly, analysis shows [45] that binary-based modeling pro-
duces extremely good results; it turns out the additional data repre-
sentation of frequency-based modeling is less advantageous when
the space of potential grams grows significantly (e.g., the likelihood
of having significant frequency information for distinct 5-grams,
or 2565 grams, is significantly smaller than for the 256 distinct

1Anagram utilizes other information and is semi-supervised.

1-gram), and the representational power of higher-order n-grams
effectively offsets the loss of frequency information.

The structure of a raw Anagram alert is similar to that of a raw
PAYL alert.

2.2.1 Bloom filters
Even though binary-based modeling significantly reduces space

overhead, there is still a significant number of possible n-grams as
n increases, and a typical hash set structure uses at least 4 bytes per
entry. Since only the binary set property is needed, we can use a
more efficient, bit-based representation to store the model, reducing
data requirements by an order of magnitude. A Bloom filter [5] is
one such structure; it is represented as a bit array of n bits, where
any individual bit i is set if the hash of an input value, mod n, is i.

A Bloom filter contains no false negatives, but may contain false
positives if collisions occur; the false positive rate can be optimized
by changing the size of the bit array to avoid saturation, as well as
using multiple hash functions (and requiring all of them to be set
for an item to be verified as present in the Bloom filter). Operations
on a Bloom filter are also O(1), keeping computational overhead
low. Finally, a Bloom filter has interesting privacy-preserving prop-
erties; we explore these in the next section.

3. CORRELATION TECHNIQUES
In this section, we describe several techniques (both raw and

privacy-preserving) to support content-based alert correlation. First,
however, we develop several metrics as to how we can best com-
pare these techniques.

3.1 Evaluating correlation techniques
The techniques described in this paper essentially trade off the

amount of information contained versus the privacy maintained.
On one extreme, we can consider the idea of transmitting the raw
packets that generated alerts; while this enables any correlation
technique, we consider it infeasible because of the sheer amount
of data and the fact it is not privacy-preserving. On the other end of
the spectrum, we can consider privately-encrypted packet content:
unless the key is shared, it essentially appears as noise to peers—
but this requires all or no trust. The techniques in this paper fall
somewhere in between, and we characterize their relative merits
from two perspectives: our ability to correlate data given a trans-
formed version of packets and the amount of privacy that is gained
using different privacy-preserving transformations of packet con-
tent.

Correlation ability. The fundamental question, given any tech-
nique, is whether it is possible to correlate alerts with low false
positive and low false negative rates. Given raw packets that gen-
erate an alert, there are several well-defined algorithms that aim
to accomplish this task. We consider the longest common subse-
quence, or LCSeq, as an appropriate baseline, as it is able to find
any non-semantic commonality in the candidate packets, and dis-
cuss it below. Other approaches, including semantic matching, are
discussed briefly in section 5, and are considered outside the scope
of this paper, which focuses on correlation amongst pure network
sensors, i.e. no host-specific information.

Given a technique, and a collection of alerts, we can then com-
pute a similarity score distribution as each pair of alerts is tested
(see section 4.1). This score distribution then becomes a useful
metric for comparing correlation ability. If we consider LCSeq as a
useful baseline, for instance, we can measure the deviation of other
techniques from LCSeq as a comparative measure of how other
techniques correlate alerts. Ideally, a network sensor would be able
to use a privacy-enabled technique and get similar results, signify-

ing an increase in the privacy preservation while maintaining the
ability to determine common threats and exploits.

Privacy gain. We characterize the baseline as having no pri-
vacy as raw packets are exchanged, and having total privacy with
encrypted content without the corresponding key (noise). To char-
acterize intermediate approaches, we utilize a probabilistic model:
given a representation of the encoded payload, what is the like-
lihood that a curious peer would be able to reconstruct the origi-
nal, possibly sensitive data? For most of the approaches listed, we
can estimate this probability by determining the number of orig-
inal payloads that could be represented by the encoded alert; the
resulting measurements are discussed in section 4.4.

Correlation speed. Finally, one remaining important character-
istic is the ability to correlate quickly, especially if many sites are
involved with many alerts being generated and exchanged. This
“speed” metric is reflected in two aspects: the resulting alert size af-
ter a transformation is applied, and the computation overhead nec-
essary to transform the original alert. As with the previous cases,
we consider raw packets the baseline: it is the largest unencrypted
alert encoding (up to 1500 bytes, i.e. bounded by packet size, per
alert) and LCSeq is amongst the slowest correlation mechanisms
(up to polynomial-time with respect to buffer size).

3.2 Alert correlation
We correlate content alerts using three main approaches: raw

packet alert correlation, frequency-based alert correlation, and n-
gram alert correlation. Techniques for other alerts (e.g., IP alerts)
are considered outside the scope of this paper.

3.2.1 Baseline: Raw payload correlation
As previously discussed, we choose raw packet alert correlation

as a baseline technique: it contains the most complete original in-
formation.

SE: String Equality. This is the simplest and most intuitive cor-
relation approach. Two alerts are deemed similar to each other only
if they have identical content. This metric is very strict and does
minimize false positives, but has no tolerance for any variation—
fragmentation, polymorphism, obfuscation, etc. Equality is mem-
ory and computationally efficient (linear time).

LCS: Longest Common Substring. LCS is one of the clas-
sic string comparison techniques; it is less deterministic than SE,
and is not susceptible to fragmentation. The longer the string that
LCS computes, the greater the confidence that the compared alerts
are similar. While it allows minor payload manipulation, multiple
changes often cause a short LCS, reducing confidence in its corre-
lation ability. LCS is reasonably fast; a suffix-tree implementation
is linear-time, but at the cost of having to store a suffix tree per alert
(or O(n2) for a naive but memory-efficient algorithm).

LCSeq: Longest Common Subsequence. LCSeq can be con-
sidered a generalization of LCS; instead of finding a single con-
tiguous matching block, LCSeq allows non-matching characters to
be interposed. This enables detection despite a variety of payload
manipulation operations, including insertion and reordering, and
potentially polymorphism. Like LCS, the length of a LCSeq is an
indication of similarity. Its main shortcoming is its computation
overhead; at best, sparse dynamic programming can achieve, on
average, O(n lg n) complexity (and can range to O(n2 lg n) worst-
case).

ED: Edit Distance. Edit distance, also known as Levenshtein
distance, is another commonly-used approach to compare string
similarity. It computes the smallest number of insertions, deletions,
and substitutions required to change one string into another. In gen-
eral, it has similar properties as LCSeq.

3.2.2 Frequency-modeled 1-gram alert correlation
Having discussed different techniques for raw payload compari-

son and correlation, we now describe our first alert transformation:
frequency modeling. As our work on PAYL demonstrates [46], 1-
gram frequency models are a good indicator of the nature of packet
content. We can leverage this technique and use frequency distribu-
tions as alerts, either with the corresponding normalized frequency
counts or with an approximation of this information.

Frequency Distribution. A packet payload can be represented
by its byte frequency distribution, making it nearly impossible to
reconstruct the actual payload except in degenerate cases—the byte
distribution contains byte values but no sequential information. Gi-
ven two packets with their respective distributions, we can apply
standard distance metrics to determine similarity; Manhattan dis-
tance is efficient (O(n) in length of the alert) yet produces a good
approximation of the actual distance. Frequency-based alerts are
comparatively sized compared to packets; a floating-precision fre-
quency distribution takes 1KB of space.

Z-String. A more compact frequency representation based upon
the packet payload’s byte distribution is what we term a “Z-String”,
short for “Zipf String” [46]. As its name implies, when a byte fre-
quency distribution is rank-ordered, it usually produces a Zipf-like
distribution (exponentially decreasing frequency values). We rank
order the distribution of a suspicious packet from most frequent
to least and drop the frequency counts, resulting in a Z-String. A
Z-String relies on the relative notion of frequency just by the or-
dering of the individual byte values, and since it is a string, we
can apply the raw matching techniques described above to the Z-
Strings themselves. Z-Strings are also often smaller than full pack-
ets (e.g., 8-bit byte-based packets would be referenced by a 256-
byte Z-String), and as such the string comparison times are gen-
erally shorter than on the raw packets themselves. However, Z-
Strings still have an O(n lg n) creation overhead in the size of the
alphabet. (See section 4.3 for an example generated Z-String.)

3.2.3 Binary-modeled n-gram alert correlation
While frequency-modeled 1-gram alerts offer a measure of pri-

vacy, 1-gram modeling cannot represent a sequence of characters.
For worms and other malicious binary payloads, we may want to
capture such sequences, as they may serve as invariants across mul-
tiple suspect payloads that can be correlated. As discussed in [45],
binary-based modeling produces surprisingly good results and leads
to two different possible alert types.

N-gram signature. We can generate a list of n-grams that are
found to be suspicious from an originating packet. Such a “sig-
nature” is position-independent while capturing specific malicious
byte sequences. Given two n-gram signatures, we can simply com-
pute the intersection of the two and threshold the cardinality of
the intersected set to determine a similarity score. Such an inter-
section is linear time in the length of the signatures by using fast
set-based data structures; depending on the n-gram size and packet
content, this can vary significantly; while most packets are regu-
lar and have few n-grams, encrypted traffic, with a very flat byte
distribution, can have as many n-grams as the size of the packet
itself. In either case, an n-gram signature is a degenerate form of
a raw packet; when distributing large n-grams, this is clearly not
privacy-preserving, as even a 5-gram can contain a password. In
these cases, we need a transformation on the n-gram itself.

Bloom filter n-gram signature. Instead of publishing an n-gram
signature, we can instead insert the n-grams into a Bloom filter and
publish it.2 Since Bloom filters support both insert and verify, set

2This is not to be confused with Anagram’s use of a BF model;
here, individual alerts are placed into Bloom filters.

intersections can be done between a (local) “raw” n-gram signature
and a published BF n-gram signature, identifying the same n-grams
as the previous technique without yielding other, potentially sensi-
tive n-grams. This approach is also linear in time but leverages a
BF’s space efficiency. Optionally, multiple alerts can be published
via a single Bloom filter, treating the BF as a bag of suspicious
n-grams. This enables a multiplicative reduction in the amount of
data transmitted and work needed to compute intersections.

Incidentally, correlating two BF n-gram signatures from differ-
ent sites can be done via a bitwise AND “intersection”; this does
not yield actual n-gram content, but may help find commonality be-
tween signatures, increasing confidence that the correct common
code has been found when correlated against local data. BF in-
tersection can also be used for model comparison, e.g., comparing
two Anagram models to see if different sites exhibit similar traffic
properties. Experiments on these approaches are outside the scope
of this paper and are briefly discussed in section 6.

4. RESULTS

4.1 Similarity Score
As discussed in section 3.1, we compute a set of similarity scores

for every correlation technique, 0 ≤ score ≤ 1, with a higher score
implying a more similar pair of alerts.

Raw packets and Z-Strings. For both of these alert types, our
basket of string comparisons can be used. For SE, the score is
binary: 0 or 1, where 1 means equality. For LCS and LCSeq, we
use the percentage of the common LCS or LCSeq length out of
the total length of candidate strings: score = 2 ∗ C/(L1 + L2),
where C is the length of LCS/LCSeq and Li is the length of string
i. For ED, larger values imply dissimilarity; we normalize it as
score = 1−D/(L1 +L2), where D is the computed edit distance
and Li the same as LCS/LCSeq.

Frequency distributions. As mentioned before, frequency dis-
tributions are compared using Manhattan distance: M =

Pn
i=1 |xi−

yi|, score = M/2.
Raw and BF n-grams. Since we no longer have full packet

content, we instead compute the percentage of common n-grams:
score = 2 ∗ Nc/(N1 + N2), where Nc is the number of common
n-grams and Ni the number of suspicious n-grams in alert i. If a
Bloom filter is used, a count may be kept with it or approximated
by Nb/Nh, i.e., the number of bits set divided by the number of
hash functions used.

4.1.1 Testing with real traffic
To compare the approaches, we randomly sampled HTTP pack-

ets from three sources: clean packets collected from www and www1
(two heavily-trafficked Columbia CS webservers), and malicious
packets collected from a sample of attacks (CodeRed, CodeRed II,
WebDAV, Mirela, a phpBB forum attack, and an IIS buffer overflow
(MS03-022) exploit). These packets were paired off in three sets:
10,000 “good-vs-good” pairs from 100 packets of www and www1
traffic each, 1,540 “bad-vs-bad” pairs formed in the cross-product
of the 56 packet malicious dataset, and 5,600 “good-vs-bad” pairs
of www1 and malicious packets. Similarity scores were generated
for all of the resulting pairs with all techniques, except SE, which
is too brittle to produce meaningful comparisons, and the n-gram
analyses, which cannot be compared over an entire packet.

Figure 1 visualizes a small random subset (80 pairs) of the scores
generated from the “good-vs-good” source. As figure 1 shows, the
performance plots of the methods appear similar, although their
centers and scale values differ as the scores are not normalized
between the correlation methods. On raw payloads, LCSeq and

ED bear very similar results, while comparisons on Z-Strings yield
“flatter” results, as less information is compared.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Si
m

ila
rit

y
Sc

or
e

Raw LCS

Zstr LCS

Raw LCSeq

Raw ED

Manhattan Distance

Zstr LCSeq

Zstr ED

Figure 1: Similarity score comparison of 80 random pairs of
“good-vs-good” alerts.

As a more complete experiment, normalized scores were gener-
ated and compared for all of the pairs formed amongst the three
datasets. To normalize the scores for a comparison, we first com-
pute similarity score vectors VA, VB for the same data over two
techniques A and B. The center of the two vectors are then aligned
by shifting the median of VA to match VB . Finally, VA’s range is
scaled proportionally so that its min and max values match VB’s.
This normalization allows us to compute the Manhattan Distance
of the two vectors, distance =

Pn
i=1 |VAi − VBi |; smaller values

imply greater similarity between the two methods. Note that these
scores are relative and dependent on the data used; the normal-
ized results are only useful for comparing against a baseline, not
as a source of absolute values or across datasets. These pairs were
tested with each technique, and the resulting scores were normal-
ized against and compared to the LCSeq score over raw packets.
Table 1 shows the computed results.

Type Raw- Raw- MD ZStr- ZStr- ZStr-
LCS ED LCS LCSeq ED

G-G .0948 .0336 .0669 .2079 .0794 .0667
B-B .0508 .0441 .0653 .0399 .0263 .0669
G-B .0251 .0241 .0110 .0310 .0191 .0233

Table 1: Manhattan distance from Raw-LCSeq; lower is better.

Averaged over the three scores, Raw-ED is, unsurprisingly, clos-
est to Raw-LCSeq. When privacy-preserving methods are consid-
ered, Manhattan distance performs the best overall, and particularly
well for good-vs-bad comparison. All of the privacy-preserving
methods are close when correlating pairs with attack traffic; we
conjecture that significantly different byte distributions enable ef-
fective comparison even when some information is lost via privacy-
preservation.

4.2 Cross-Domain Alert Correlation
Next, we compare the techniques by examining their actual per-

formance in identifying true alerts from false positives. Ideally, all
false alerts are eliminated by a small similarity score (i.e. the site
that produced the alert was the only site that saw this suspicious
packet) while true alerts are identified with high similarity scores
(i.e. the attack has been launched against more than one site).

In this experiment, we first randomly mix the aforementioned
collection of attacks into two hours’ traffic from www and www1,
respectively. Multiple instances of attacks—4 for CodeRed and 3
for CodeRed II—are present to simulate a real-world worm attack.
The attacks are also fragmented differently, as CodeRed does in
the wild; for instance, CodeRed may fragment into a sequence of
(1448, 1448, 1143) length packets, (4, 375, 1460, 1460, 740) len-
gth packets, etc. Multiple instances also enable testing correlation
between different attack types (e.g., CodeRed vs. CodeRed II).

Next, the two mixed traffic sets are each run through PAYL and
Anagram with previously-built models and with the alerting thresh-
old lowered so that 100% of the attacks are detected, but with
higher (and comparable) false positive rates. The resulting alert sets
are correlated against each other using each of the techniques; the
results are summarized in figure 2. For each method, the stacked
bar represents correlation results for false positives. The shaded
portion of the bar represents the 99.9% percentile similarity score
range, while the white represents the worst-case (highest) score; in
other words, while the worst-case FP score can be high, the vast
majority of false positives score relatively low.

The asterisk-marked (“*”) lines represent the range of similarity
scores when instances of the same worm are correlated, and the
open circle-marked (“o”) lines represent scores across CodeRed
and CodeRed II—a very simple measure of polymorphism. The
other worms, which were inserted without fragmentation, all scored
at or near 1, and so are not shown.3

Figure 2: Methods comparison. The correlation methods are,
from 1 to 8, Raw-LCS; Raw-LCSeq; Raw-ED; Frequency-MD;
Zstr-LCS; Zstr-LCSeq; Zstr-ED; N-grams with n = 5.

We can draw several conclusions. First, correlation of identi-
cal (non-polymorphic) attacks works perfectly and accurately for
all techniques. Most of the techniques can also correlate multi-
ple instances of fragmented attacks; of the privacy-preserving tech-
niques, MD, LCSeq and ED on Z-Strings, and n-gram analysis4 all
perform well. (As intuition may suggest, ZStr-LCS is not partic-
ularly effective.) Polymorphic worm detection is far harder—even
in the case of CR vs. CRII, only Raw-LCSeq and n-grams achieve
promising results. N-gram analysis, in particular, stands out; it pro-
duces accurate results and is particularly effective at eliminating
false positives, and the use of BFs enables privacy-preservation.

3We could have artificially fragmented these worms to simulate the
CodeRed experiment, but we expect similar results.
4We do not distinguish between published raw n-grams and pub-
lished BF-based n-grams here, as they produce virtually identical
results.

4.3 Signature Generation
Correlating alerts across sites also enables the possibility of au-

tomatic signature generation and deployment, once true alerts are
identified. (We can also potentially use the scores computed dur-
ing similarity comparison as a “confidence” measure in mitigation
strategies to determine whether to deploy a signature.)

Raw packet-based signatures. Given the ability to share raw
alerts, we can exchange the LCS or LCSeq of highly similar pack-
ets. This has been the subject of much recent work (section 5), is
not privacy-preserving, and we do not discuss it further here.

Byte frequency/Z-Strings. Given the first packet of a CodeRed
II attack in figure 3 and its byte distribution displayed in figure 4,
we can generate a Z-String by ordering the distribution by most fre-
quent to least and dropping frequency information. Figure 5 shows
the first 20 bytes of the generated Z-String for the distribution in
figure 4, with nonprintable characters shown by their ASCII val-
ues. Both frequency distributions and Z-Strings can be used as
signatures.

GET./default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXX
XXX
XXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX%u9090
%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%
u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u
00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u0

Figure 3: Raw packet of CRII; only the first 301 bytes are
shown for brevity.

Figure 4: Frequency distribution for the CRII packet.

88 0 255 117 48 85 116 37 232 100
100 106 69 133 137 80 254 1 56 51

Figure 5: First 20 bytes of the Z-String computed from the
CRII packet.

N-Grams. N-grams are an intriguing approach to signature gen-
eration; n-grams are position-independent, making them robust to
reordering and fragmentation. Additionally, if position information
is kept, such a collection can be transformed into a flat signature if
desired. Figure 6 shows the results when a collection of 5-grams
based on the CodeRed II example packet are “flattened”. Nonprint-
able characters are represented by “.”; “*” represents a wildcard
for signature matching. Compared to the original, figure 6 suc-
cessfully captures the malicious encoding and deemphasizes the

padding “noise”. Results with different n-gram sizes and another
CRII packet are presented in an appendix in the extended version
of this paper on our website [31].

* /def*ult.ida?XXXX*XXXX%u9090%u6858%ucbd3%
u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%u
cbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8
b00%u531b%u53ff%u0078%u0000%u00=a HT*: 3379

Figure 6: Generated 5-gram signature from the CRII packet;
only the first 172 bytes are shown for brevity.

4.4 Measuring Privacy Gain
As discussed earlier, we can use a probabilistic model as a first-

order approximation to measure the relative privacy of each privacy-
preserving technique.

Frequency-based approaches. Recovery of the original text
from its privacy-preserving encoding can be modeled as follows:
given a frequency distribution f = {(b0, π0), (b1, π1), ..., (bn−1,
πn−1)}, where n is the size of the alphabet, bi is the byte value
with probability πi, and a target length l, we construct the content
of a packet p = {b0b0...b0b1b1...b1 · · · bn−1bn−1...bn−1}, with
π0l copies of b0, π1l copies of b1, and so on.

We can now characterize the recovery likelihood R = 1/
(l!/((π0l)!(π1l)!...(πn − 1l)!)), where the denominator is simply
the count of all permutations of p. This is an effective estimate of
the privacy of the frequency distribution, as it represents the like-
lihood an attacker will be able to correctly guess the true content
of the original packets. This number is, additionally, vanishingly
small. For the frequency distribution of the CRII packet shown in
figure 4, R ≈ 1/28208, well beyond the scope of feasibility, despite
the packet’s regularity thanks to the large padded section.

The value of R for a Z-String is orders-of-magnitude smaller; not
only do permutations of a packet pi have to be computed, there are
many such packets; since no frequency information is stored, one
must guess the frequencies for each of the bytes bi in the packet. In
short, effectively guessing the correct base packet pi and its correct
permutation is intractable.

N-grams. We can consider the privacy of both a raw collec-
tion of n-grams and a corresponding Bloom filter encoding. The
raw collection is not very privacy-preserving; not only can a byte
sequence contain valuable information (e.g., an entire password),
significant n-gram collections enable reassembly of much of the
original packet, even without position information. Given a 5-gram
{b1b2b3b4b5} from packet p, one can search for the 5-gram
{b2b3b4b5bx} in the collection, where bx is any byte; if found, one
can reasonably assume the presence of the 6-gram {b1...b5bx} in
packet p; since 2564, the number of “common” 4-grams contained
in both two 5-grams, is much greater than a packet’s size, it is
highly unlikely that the common 4-gram happens to be a coinci-
dence. Combined with the fact that high-scoring alerts can contain
nearly as many n-grams as the original packet’s size, this is imprac-
tical from a privacy perspective.

Instead, as previously proposed, we insert the collection of n-
grams into a Bloom filter before publishing it. The size of the
Bloom filter need not be much more than the number of n-grams;
we can pick a size, say 212 bits, which is more than twice the size
of any individual packet and not prone to significant false positives.
(This Bloom filter still takes substantially less memory than the n-
gram collection itself.) Given such an encoding, the only practical
way of recovering the data is to brute-force verify every possible
n-gram against the Bloom filter. For example, if we know that only
5-grams are contained in the Bloom filter, there are 2565 possi-

ble n-grams. Not only is testing all such n-grams computationally
infeasible, a brute-force attempt is likely to generate many, many
false positives, since there are 2565/212 possible n-grams for each
set bit in the Bloom filter (assuming one hash function5); the re-
covery likelihood R = (212/2565)m, where m is the number of
n-grams recovered, is again vanishingly small. This number grows
even smaller if multiple n-gram sizes are embedded in the same
Bloom filter.

Interestingly, despite the number of possible n-grams for each bit
of the Bloom filter, correlating such filters is not prone to significant
misclassification. We can characterize the “unlucky coincidence”
rate = (2565/212

2565)m, that is, the likelihood that we happen to incor-
rectly verify m possible n-grams, each represented by a particular
bit bi, out of all possible n-grams. This simplifies to (1

212)m, which
rapidly grows smaller with increasing m. In our experiments, we
found that a similarity score threshold of 0.1 produced good re-
sults; combined with the fact that the average number of n-grams
in a false positive alert is approximately 55, the probability of mis-
correlating a Bloom filter alert due to 5 unlucky coincidences is
(1
212)5—not a major concern. In short, testing multiple n-grams

eliminates coincidences very rapidly. Sizing the Bloom filter ap-
propriately to avoid saturation is a far more important issue.

Given the effectiveness of n-gram analysis, combined with its
strong privacy guarantees and compact size, we believe there is
great promise for this form of payload-based correlation.

5. RELATED WORK
We discuss selected related work from a number of different net-

work security and intrusion-detection areas, and encourage readers
to see the related work sections of [46, 44, 45] for a full discussion
on network anomaly detection, frequency and n-gram analysis. To
the best of our knowledge, there does not exist a collection of tech-
niques nor an evaluation similar in scope to this paper.

Distributed intrusion detection. Distributed intrusion detec-
tion has been researched for over 10 years; most research, e.g., [35,
32, 23] has focused on distribution within an enclave, although re-
cent work [2, 17, 49] has looked at Internet-scale correlation and
detection. These approaches primarily focus on packet header in-
formation and none of them are privacy-preserving; some use end-
to-end encryption, but this does not alleviate the notion of sensitive
data exchange. DShield [40] is the most active volunteer-based
DIDS project on the Internet that we are aware of, focusing on
“top 10”-style reports and blacklists. DOMINO [49] organizes a
decentralized, heterogeneous collection of NIDS sensors; the pa-
per measured, using DShield alert logs, the notion of information
gain—and concluded that 40-60 sites enables building summaries
and/or blacklists with high degrees of confidence. An interesting
application of this approach would be to measure confidence when
payloads are involved.

Signature generation and exchange. Another approach is to
exchange only “known bad” or exploit-specific signatures. Clas-
sic payload-based work in this field includes Earlybird [34], Hon-
eycomb [21], and Autograph [18]. These approaches generally
implement string-style payload comparison algorithms, including
LCS, LCSeq, and Rabin fingerprints, and can be considered along-
side the baseline techniques discussed here. Polygraph [30] ex-
plicitly addresses the notion of polymorphic worms using LCSeq-
like techniques; the authors show that even polymorphic attacks
must contain invariant substrings, a fact we leverage. FLIPS [28]
pairs PAYL with an Instruction Set Randomization infrastructure
for zero-day worm signature generation. PADS [39], or “Position-
5Additional hash functions do not affect our analysis.

Aware Distribution Signatures”, seek to blend frequency distribu-
tions and packet signature positioning.

More recently, work has focused on building semantic-aware or
vulnerability-based signatures to handle multiple (or polymorphic)
attacks for the same exploit. Kruegel et. al. [22] use structural
analysis of binary code and generate control-flow graphs to catch
worm mutations. Shield [42] provides vulnerability-specific but
exploit-generic filters based on predefined protocol-based policies.
Vigilante [8] introduces the notion of vulnerability-specific self-
certifying alerts that focus on filtering undesirable execution con-
trol, code execution, or function arguments, and can be exchanged
via P2P systems. VSEF [29] builds execution-based filters that
filter out vulnerable processor instruction-based traces. COVERS
[24] analyzes attack-triggered memory errors on a host and devel-
ops structural memory signatures. Nemean [50] uses session-layer
and application-protocol semantics to reduce false positives. Some
of these signatures and filter descriptions may be exchangeable us-
ing our techniques.

Privacy-preserving collaboration. Lincoln et al. [25] suggest
hash-based sanitization of several header fields, enabling equality
matching (e.g., identifying the same source IP) while removing
other features, including payloads; instead, our techniques keep
(and analyze) these payloads. Kissner [19] describes the notion of
privacy-preserving set operations using cryptographic techniques,
achieving stronger privacy guarantees. While it is restricted to set
union, intersection, etc., it may potentially support n-gram analysis.
Privacy-Preserving Friends Troubleshooting Network [16] extends
earlier work on PeerPressure [43]—collaborative software configu-
ration diagnosis—with a privacy-preserving architecture utilizing a
“friend”-based neighbor approach, including the use of secure mul-
tiparty computation to vote on configuration outliers and homomor-
phic encryption to protect privacy. Xu [47] introduces the notion of
“concept hierarchies” to abstract low-level concepts, along with the
use of entropy, to balance the sanitization and information gain of
alerts; a similar use of entropy may also be applicable here. The
JAM project in our research group [38] was an early inspiration for
this work; it originally looked at abstracting and comparing models
of data for bank fraud to enable competing financial institutions to
collaborate in catching criminals without releasing sensitive infor-
mation. This work, on the other hand, focuses on the validation of
byte content detected at multiple sites as indicators of common at-
tack information; the JAM work more closely resembles BF model
intersection, which we briefly discuss in section 6.

Privacy-preserving databases and data mining. There is a tre-
mendous volume of work on various aspects of data mining and
databases, e.g. [1]; these primarily work offline, and assume se-
cure querying, perturbation, and aggregate computation of values
amongst one or two databases, and do not generally scale to the
run-time correlation described here.

Bloom filters. Bloom filters have been used for secure index-
ing and data exchange [4, 3, 14]; most focus on two-party inter-
action and precisely-defined entities. [12, 6] use Bloom filters for
hardware-based packet inspection and classification.

Secure multiparty computation (SMC) [48] is a theoretically
attractive way to accomplish privacy-preservation, e.g., intersection
can be fashioned as a secure computation problem. Du et al. [13]
briefly reviews the possibility of sharing intrusion detection infor-
mation via SMC; however, algorithmic cost remains a concern [25],
especially with large alert streams.

6. FUTURE WORK
Wide-scale deployment, cross-site evaluation. These techni-

ques are specifically designed to be deployed at many enclaves to

increase the correlation power and confidence provided by sensors
at different sites with different content flows. Our Worminator dis-
tributed collaborative intrusion detection platform [37, 26] focused
on slow, stealthy alert scan correlation with COTS IDS sensors. We
are integrating the work reported in this paper with a new and sub-
stantially different content exchange and sharing network known as
DNAD-2 (Distributed Network Anomaly Detection) and seek col-
laborators to share their respective suspicious content detected by
whatever local sensors may be available to them.

Polymorphic/obfuscated worm detection and mimicry attack.
As suggested by section 4, n-gram analysis has the potential of de-
tecting polymorphic worms, e.g., [11]. While the problem becomes
significantly harder as polymorphic worm engines launch mimicry
attacks [41, 20] to mask themselves, such attacks are generally
site-specific. Intersecting n-gram BFs across sites may provide
the opportunity to identify even the few bytes of invariant com-
mon “code” that appear anywhere in such attacks. Having more
BFs that can correlate these short regions increases the confidence
in having found the correct snippets. High-entropy regions, such as
those containing polymorphic or obfuscated code, would likely not
be correlated.

Privacy-preserving model correlation. Given different site a-
nomaly models, e.g., two Bloom filters that represent anomaly mod-
els for Anagram, we can do a bitwise AND of the two Bloom filters
to estimate the number of common “good” n-grams, or a bitwise
OR of the two Bloom filters to aggregate and update the respective
models. Further discussion of this concept is beyond the scope of
this paper; see [15, 9] for an application of this approach to enhance
access control.

7. CONCLUSION
We have presented a view of cross-site and cross-domain collab-

orative security by way of sharing content-based alerts among sites.
It is to everyone’s benefit to share important information without
violating policies that inhibit the disclosure of information. In par-
ticular, content-based alerts generated by locally-trained payload
anomaly detectors reveals an opportunity to detect the early onset
of zero-day worm or targeted attacks. We presented a comparative
evaluation of alternative correlation strategies and accuracy mea-
sures using test data sets with known worm exploits, and included a
proposed estimate of the “privacy gain” each method affords. This
is important in approaching the problem analytically in order to
help break down barriers to collaboration. We find that cross-site
and cross-domain privacy-preserving “suspect payload” alert shar-
ing is feasible and useful as revealed in the analysis of Bloom filter-
exchanged alerts encoding suspect anomalous n-grams.

The techniques hold promise for other purposes as well. For
example, sites may exchange their respective anomaly detection
models to measure their respective “content flow diversity”, en-
abling estimation of the relative value of different anomaly alerts
generated by different sites. More similar sites may have a higher
chance of detecting common exploits. Finally, privacy-preserving
content alerts may also be useful for other problems, such as col-
laborative spam filtering, suspicious content detection for botnet
command-and-control data streams, etc.

8. ACKNOWLEDGMENTS
We would like to thank Gabriela Cretu, Wei-Jen Li, Vanessa Frias-

Martinez, Michael Locasto, Angelos Stavrou, and Angelos Keromytis for
their feedback and collaboration on our design. We would also like to thank
Panagiotis Manolios and Peter Dillinger for their suggestions in Bloom fil-
ter design. This work was partially sponsored under a grant with the Army
Research Office, No. DA W911NF-04-1-0442.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In ACM

SIGMOD, 2000.
[2] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.

Keromytis, and D. Li. A Cooperative Immunization System for an
Untrusting Internet. In IEEE International Conference on Networks,
2003.

[3] M. Bawa, R. J. Bayardo Jr., and R. Agrawal. Privacy-Preserving
Indexing of Documents on the Network. In VLDB, 2003.

[4] S. M. Bellovin and W. R. Cheswick. Privacy-Enhanced Searches
Using Encrypted Bloom Filters, 2004.

[5] B. H. Bloom. Space/time trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM, 13(7):422–426, 1970.

[6] F. Chang, W.-c. Feng, and K. Li. Approximate Caches for Packet
Classification. In IEEE INFOCOM, 2004.

[7] E. Cooke, F. Jahanian, and D. McPherson. The Zombie Roundup:
Understanding, Detecting and Disrupting Botnets. In USENIX SRUTI
Workshop, Cambridge, MA, 2005.

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: End-to-End Containment of Internet
Worms. In ACM SOSP, 2005.

[9] G. Cretu, J. J. Parekh, K. Wang, and S. J. Stolfo. Intrusion and
Anomaly Detection Model Exchange for Mobile Ad-Hoc Networks.
In IEEE Consumer Communications and Networking Conference,
Las Vegas, NV, 2006.

[10] D. Dagon, C. Zou, and W. Lee. Modeling Botnet Propagation Using
Time Zones. In Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2006.

[11] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. von Underduk.
Polymorphic Shellcode Engine Using Spectrum Analysis, 2003.

[12] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood.
Deep Packet Inspection using Parallel Bloom Filters. In IEEE
Symposium on High Performance Interconnects (HOTI), 2003.

[13] W. Du and M. Atallah. Secure Multi-Party Computation Problems
and Their Applications: A Review and Open Problems. In New
Security Paradigms Workshop, 2001.

[14] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol. In ACM
SIGCOMM, 1998.

[15] V. Frias-Martinez and S. J. Stolfo. BARTER: Profile Model
Exchange for Behavior-based Access Control. Technical report,
Columbia University, 2006. Submitted to conference.

[16] Q. Huang, H. J. Wang, and N. Borisov. Privacy-Preserving Friends
Troubleshooting Network. In NDSS, San Diego, CA, 2005.

[17] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-peer
approach to network intrusion detection and prevention. In WETICE,
2003.

[18] H.-A. Kim and B. Karp. Autograph: Toward Automated, Distributed
Worm Signature Detection. In USENIX Security Symposium, San
Diego, CA, 2004.

[19] L. Kissner and D. Song. Privacy-Preserving Set Operations. In
CRYPTO, 2005.

[20] O. Kolesnikov, D. Dagon, and W. Lee. Advanced Polymorphic
Worms: Evading IDS by Blending in with Normal Traffic, 2006.

[21] C. Kreibich and J. Crowcroft. Honeycomb - Creating Intrusion
Detection Signatures Using Honeypots. In ACM Workshop on Hot
Topics in Networks, Boston, MA, 2003.

[22] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic Worm Detection Using Structural Information of
Executables. In Symposium on Recent Advances in Intrusion
Detection, Seattle, WA, 2005.

[23] C. Kruegel, T. Toth, and C. Kerer. Decentralized Event Correlation
for Intrusion Detection. In International Conference on Information
Security and Cryptology, 2002.

[24] Z. Liang and R. Sekar. Fast and Automated Generation of Attack
Signatures: A Basis for Building Self-Protecing Servers. In ACM
Conference on Computer and Communications Security, Alexandria,
VA, 2005.

[25] P. Lincoln, P. Porras, and V. Shmatikov. Privacy-Preserving Sharing
and Correlation of Security Alerts. In USENIX Security, 2004.

[26] M. E. Locasto, J. J. Parekh, A. D. Keromytis, and S. J. Stolfo.

Towards Collaborative Security and P2P Intrusion Detection. In
IEEE Information Assurance Workshop, West Point, NY, 2005.

[27] M. E. Locasto, S. Sidiroglou, and A. D. Keromytis. Software
Self-Healing Using Collaborative Application Communities. In
Internet Society (ISOC) Symposium on Network and Distributed
Systems Security, pages 95–106, San Diego, CA, 2006.

[28] M. E. Locasto, K. Wang, A. D. Keromytis, and S. J. Stolfo. FLIPS:
Hybrid Adaptive Intrusion Prevention. In Symposium on Recent
Advances in Intrusion Detection, Seattle, WA, 2005.

[29] J. Newsome, D. Brumley, and D. Song. Vulnerability-Specific
Execution Filtering for Exploit Prevention on Commodity Software.
In Network and Distributed Security Symposium (NDSS), San Diego,
CA, 2006.

[30] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically
Generating Signatures for Polymorphic Worms. In IEEE Security
and Privacy, Oakland, CA, 2005.

[31] J. J. Parekh, K. Wang, and S. J. Stolfo. Privacy-Preserving
Payload-Based Correlation for Accurate Malicious Traffic Detection.
Technical report, 2006. http://mice.cs.columbia.edu/
getTechreport.php?techreportID=409.

[32] P. Porras and P. G. Neumann. EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances. In National
Information Systems Security Conference, 1997.

[33] H. Project and R. Alliance. Know your Enemy: Tracking Botnets,
3/13/05 2005. http://www.honeynet.org/papers/bots/.

[34] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. In 6th Symposium on Operating Systems Design and
Implementation (OSDI ’04), San Francisco, CA, 2004.

[35] S. Staniford-Chen, S. Cheung, R. Crawford, and M. Dilger. GrIDS -
A Graph Based Intrusion Detection System for Large Networks. In
National Information Computer Security Conference, Baltimore,
MD, 1996.

[36] S. Staniford-Chen, V. Paxson, and N. Weaver. How to 0wn the
Internet in Your Spare Time. In USENIX Security, 2002.

[37] S. J. Stolfo. Worm and Attack Early Warning: Piercing Stealthy
Reconnaissance. IEEE Security and Privacy, 2004.

[38] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W. Fan, and
P. Chan. JAM: Java Agents for Meta-Learning over Distributed
Databases. In International Conference on Knowledge Discovery and
Data Mining, Newport Beach, CA, 1997.

[39] Y. Tang and S. Chen. Defending Against Internet Worms: A
Signature-Based Approach. In IEEE Infocom, Miami, FL, 2005.

[40] J. Ullrich. DShield home page, 2005.
http://www.dshield.org.

[41] D. Wagner and P. Soto. Mimicry Attacks on Host-Based Intrusion
Detection Systems. In ACM CCS, 2002.

[42] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known
Vulnerability Exploits. In ACM SIGCOMM, 2004.

[43] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic Misconfiguration Troubleshooting with PeerPressure. In
OSDI, San Francisco, 2004.

[44] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous Payload-based
Worm Detection and Signature Generation. In Symposium on Recent
Advances in Intrusion Detection, Seattle, WA, 2005.

[45] K. Wang, J. J. Parekh, and S. J. Stolfo. Anagram: A Content
Anomaly Detector Resistant to Mimicry Attack. In Symposium on
Recent Advances in Intrusion Detection, Hamburg, Germany, 2006.

[46] K. Wang and S. J. Stolfo. Anomalous Payload-based Network
Intrusion Detection. In Symposium on Recent Advances in Intrusion
Detection, Sophia Antipolis, France, 2004.

[47] D. Xu and P. Ning. Privacy-Preserving Alert Correlation: A Concept
Hierarchy Based Approach. In 21st Annual Computer Security
Applications Conference, Tucson, AZ, 2005.

[48] A. C. Yao. Protocols for Secure Computations. In IEEE Symposium
on Foundations of Computer Science, 1982.

[49] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection in
the DOMINO Overlay System. In NDSS, 2004.

[50] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An Architecture
for Generating Semantics-Aware Signatures. In USENIX Security
Symposium, 2005.

