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Abstract—The proper operation and maintenance of a network
requires a reliable and efficient monitoring mechanism. The
mechanism should handle large amount of monitoring data
which are generated by different protocols. In addition, the
requirements (e.g. response time, accuracy) imposed by long-
term planned queries and short-term ad-hoc queries should be
satisfied for multi-tenant computing models.

This paper proposes a novel mechanism for scalable storage
and real-time processing of monitoring data. This mechanism
takes advantage of a data-intensive framework for collecting
network flow information records, as well as data points’ indexes.
The design is not limited to a particular monitoring protocol,
since it employs a generic structure for data handling. Thus, it’s
applicable to a wide variety of monitoring solutions.

I. INTRODUCTION

Monitoring and measurement of the network is a crucial
part of infrastructure operation and maintenance. A good
understanding of the traffic passing through the network is
required for both planned and ad-hoc tasks. Capacity planning
and traffic matrix processing are planned, whereas traffic
engineering, load-balancing, and intrusion detection are ad-
hoc tasks which often require real-time behaviour.

1) Storage Requirements: Quite often, ad-hoc tools are
used for analysing network properties [1]. Traffic dumps or
flow information are common data type for an ad-hoc analysis.
The data volume for these types can be extremely large.

2) Analytic Requirements: The storage should be dis-
tributed, reliable, and efficient to handle high data input rate
and volume. Processing this large data set for an ad-hoc query
should be near real-time. It should be possible to divide and
distribute the query over the cluster storing the data.

3) Privacy Policies: Storing the packet payload which
corresponds to the user data is restricted according to European
data laws and regulations [2]. The same policy applies to the
flow information as well.

A. Related Work

Li et al. [3] surveyed the state of the art in flow information
applications. They identified several challenges in the fields
such as: machine learning’s feature selection for an effective
analysis, real-time processing, and efficient storage of data
sets. Lee et al. [4] proposed a mechanism for importing
network dumps (i.e. libpcap files) and flow information to
HDFS. They’ve implemented a set of statistical tools in
MapReduce for processing libpcap files in HDFS. The tool
set calculates statistical properties of IP, TCP, and HTTP

protocols. Their solution copies recently collected NetFlow
data to Hive tables in fixed intervals which doubles the
storage capacity requirement. Andersen et al. [5] described the
management of network monitoring datasets as a challenging
task. They emphasized on the demand for a data management
framework with the eventual consistency property and the real-
time processing capability. The framework should facilitate
search and discovery by means of an effective query definition
and execution process. Balakrishnan et al. [6] and Cranor et
al. [1] proposed solutions for the real-time analysis of network
data streams. However, they may not be efficient for the
analysis of high-speed streams in a long period [5].

B. Contributions

A flexible and efficient mechanism is designed and imple-
mented for real-time storage and analysis of network flow in-
formation. In contrast to other solutions, which have analysed
binary files on distributed storage systems, a NoSQL type of
data store provides real-time access to a flexible data model.
The data model flexibility makes it compatible with different
monitoring protocols. Moreover, the structure leads to fast
scanning of a small part of a large dataset. This property
provides low latency responses which facilitate exploratory
and ad-hoc queries for researchers and administrators. The
solution provides a processing mechanism which is about 4000
times faster than the traditional one.

The study concentrates on flow information records, due to
regulatory and practical limitations such as privacy directives
and payload encryption. However, one can leverage the same
solution for handling wider and richer datasets which contain
application layer fields. This study is a part of our tenant-aware
network monitoring solution for the cloud model.

The rest of the paper is organized as follows: Section
II explains the background information about data-intensive
processing frameworks and network monitoring approaches.
Section III describes the Norwegian NREN backbone net-
work as a case study. Dataset characteristics and monitoring
requirements of a production network are explained in this
section. Section IV introduces our approach toward solving
data processing challenges for network monitoring. Section
V discusses technical details of the implementation as well
as performance tunings for improving the efficiency. Section
VI evaluates the solution by performing common queries and
Section VII concludes the paper and introduces future works.



II. BACKGROUND

A. Framework for Data-Intensive Distributed Applications

Using commodity hardware for storing and processing large
sets of data is becoming very common [7]. There are multiple
proprietary, open-source frameworks and commercial services
providing similar functionality such as: Apache’s Hadoop1

[8] and related projects, Google’s File System (GFS) [9],
BigTable [10], Microsoft’s Scope [11], Dryad [12]. In the
following, required components for the analysis and storage
of our dataset is explained.

1) File System (Hadoop Distributed FS): The first building
block of our solution, for handling network monitoring data, is
a proper file system. The chosen file system must be reliable,
distributed and efficient for large data sets. Several file systems
can fulfil these requirements, such as Hadoop Distributed
File System (HDFS) [8], MooseFS2, GlusterFS3, Lustre[13],
Parallel Virtual File System (PVFS)[14]. Despite the variety,
most of these file systems are missing an integrated processing
framework, except HDFS. This capability in HDFS makes it
a good choice as the underlying storage solution.

2) Data Store (HBase): Network monitoring data, and
packet header information are semi-structured data. In a short
period after their generation, they’re accessed frequently, and
a variety of information may be extracted from them. Apache
HBase4[15] is the most suitable non-relational data store for
this specific use-case. HBase is an open-source implementa-
tion of a column-oriented distributed data source inspired by
Google’s BigTable [10], which can leverage the MapReduce
processing framework of Apache. Data access in HBase is
key-based. It means a specific key or a part of it can be used
to retrieve a cell (i.e. a record), or a range of cells [15]. As a
database system, HBase guarantees consistency and partition
tolerance from the CAP theorem [16] (aka. Brewer’s theorem).

3) Processing Framework (Hadoop MapReduce): Process-
ing large data sets has demanding requirements. The process-
ing framework should be able to partition the data across
a large number of machines, and exposes computational fa-
cilities for these partitions. The framework should provide
the abstraction for parallel processing of data partitions and
tolerate machine failures. MapReduce [17] is a programming
model with these specifications. Hadoop is an open source
implementation by Apache Software Foundation, which will
be used in our study.

B. Network Monitoring

This study focuses on the monitoring of backbone networks.
The observation can be instrumented using Simple Network
Management Protocol (SNMP) metrics, flow information (i.e.
packet header), and packet payload. SNMP does not deliver
the granularity demanded by our use-case; also storing packets
payloads from a high capacity network is not feasible, because

1http://hadoop.apache.org/
2http://www.moosefs.org/
3http://www.gluster.org/
4http://hbase.apache.org/

of both scalability issues [1] and privacy policies [2]. Thus,
we are more interested in the packet header, and IP flow
information. An IP flow is a set of packets passing through
a network between two endpoints, and matching a certain
set of criteria, such as one or more identical header fields
[18]. In our study, a flow is a canonical five-tuple: source
IP, source port, destination IP, destination port, and protocol.
Flow information is flushed out of the network device after 15
seconds of inactivity, 30 minutes of persistent activity, TCP
session termination, or when the flow buffer in the device is
full. This makes the start and end time of a flow imprecise
[19]. IP flow information is an efficient data source for the
real-time analysis of network traffic.

IP flow information can be exported using different pro-
tocols, in different formats. NetFlow [20], sFlow [21], and
IP Flow Information Export (IPFIX) [18] are designed to
handle network monitoring data. Collected data have a variety
of use-cases. They can be used for security purposes, audit,
accountability, billing, traffic engineering, capacity planning,
etc.

C. Testing Environment

We have implemented, optimized, and tested our suggested
solution. The testing environment consists of 19 nodes, which
deliver Hadoop, HDFS, HBase, ZooKeeper, Hive services. The
configuration for these nodes is as follows: 6x core AMD
Opteron(tm) Processor 4180, 4x 8GB DDR3 RAM, 2x 3 TB
disks, 2x Gigabit NIC.

III. CASE STUDY: NORWEGIAN NATIONAL RESEARCH
AND EDUCATION NETWORK (NREN)

This study focuses on the storage and processing of IP flow
information data for the Norwegian NREN backbone network.
Two core routers, TRD GW1 (in Trondheim) and OSLO GW
(in Oslo), are configured to export flow information. Flow
information are collected using NetFlow [20] and sFlow [21].

A. Data Volume

Flow information is exported from networking devices at
different intervals or events (e.g. 15 seconds of inactivity, 30
minutes of activity, TCP termination flag, cache exhaustion).
The data are collected in observation points, and then the
anonymized data are stored for experiments. Crypto-PAn [22]
is used for the data anonymization. The mapping between the
original and anonymized IP address is ”one-to-one”, ”consis-
tent across traces”, and ”preserves prefix”.

Flow information is generated by processing a sampled set
of packets. Although sampled data is not as accurate as not-
sampled one, studies showed they can be used efficiently for
network operation and anomaly detection, by means of right
methods [23], [24].

There need to be a basic understanding of the dataset for
designing the proper data store. Data characteristics, common
queries and their acceptable response times are influential fac-
tors in the schema design. The identifier for accessing the data
can be on one or more fields from the flow information record



TABLE I: Traffic Characteristics

Traffic Type Statistics/day
Avg Max Min

Distinct Source IPs 987104 4740760 122266
Distinct Source IPs and
Source ports

6083640 13188647 844898

Distinct Destination IPs 1613040 2488893 420686
Distinct Destination IPs
and Destination ports

7010330 16379274 1113095

Distinct Bidirectional
flows

10683200 21454096 1829854

NetFlow records 21962800 44036078 4373665

(e.g. source or destination IP addresses, ports, Autonomous
Systems (AS), MACs, VLANs, interfaces, etc. ). Figure 1
depicts number of unique source, destination IP addresses,
unique source IP:source port, destination IP:destination port
tuples, unique bidirectional flows (biflows), and flow informa-
tion records per day for the TRD GW1 in a 5 month period.
The summary of numeric values for TRD GW1 and OSLO GW
is presented in Table I.

The average number of flow information records for both
routers is 22 millions per day, which corresponds to 60 GBs of
data in binary form. However, this number can become much
bigger if flow informations are collected from more sources
and the sampling rate is increased.

B. Data Access Methods

Monitoring data can be accessed for different purposes
such as: billing information, traffic engineering, security mon-
itoring, forensics. These purposes corresponds to a big set
of possible queries. The schema can be design such that it
performs very well for one group of queries. That may lead
to a longer execution time for the other query groups. Our
main goal is reaching the shortest execution time for security
monitoring and forensics queries. Three types of queries are
studied, IP based: requires fast IP address lookups (e.g.
specific IPs, or subnets), Port based: requires fast Port address
lookups (e.g. specific services), and Time based: requires fast
lookup on a time period.

Network monitoring data, and packet header information
are semi-structured data. They have arbitrary lengths and a
various number of fields. Storing this type of data as binary
files in a distributed file system is challenging. The next section
discusses several storage schemas and their applicability to
desired access methods.

IV. SOLUTION

Two major stages in the life cycle of the monitoring data can
be considered: short-term processing, and long-term archiving.

• Short-term processing: when collected monitoring data
are imported into the data store, several jobs should
be executed in real-time. These jobs generate real-time
network statistics, check for anomaly patterns and routing
issues, aggregate data based on desired criteria, and etc.

• Long-term archiving: Archived data can be accesses for
security forensics, or on-demand statistical analysis.
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Fig. 1: Number of distinct source IPs, source IPs: source ports,
destination IPs, destination IPs:destination ports, bidirectional
flows, and raw netflow records collected from Trondheim
gateway 1.

A. Choice of Technologies

Apache HBase satisfies our requirements (Section I) such
as consistency and partition tolerance. Moreover, the data
staging is affordable by proper configuration of cache feature,
in-memory storage size, in-filesystem storage size, regions
configuration and pre-splitting for each stage, and etc. For
instance, short-term data can be stored in regions with large
memory storage and enabled block cache. The block cache
should be configured such that the Working Set Size (WSS) fits
in memory [25]. While long-term archives are more suitable
for storage in the filesystem.

Hive5 is an alternative for HBase, which is not suitable
for our application. It doesn’t support binary key-values, and
all parameters are stored as strings. This approach demands
for more storage, and makes the implementation inefficient.
While composite key structure is an important factor for
fast data access in the design, it is not supported by Hive.
Although Hive provides an enhanced query mechanisms for
retrieving data, aforementioned issues make it inapplicable to
our purpose.

B. Design Criteria

A table schema in HBase has three major components:
rowkey, column-families, and columns structures.

1) Row Key: A rowkey is used for accessing a specific part
of data or a sequence of them. It is a byte array which can have
a complex structure such as a combination of several objects.
Rowkey structure is one of the most important part of our
study because it has a great impact on the data access time,
and storage volume demand. The followings are our criteria
for designing the rowkey:

• Rowkey Size: Rowkey is one of the fields stored in each
cell, and is a part of a cell coordinate. Thus, it should

5http://hive.apache.org/



be as small as possible, while efficient enough for data
access.

• Rowkey Length (Variable versus Fixed): Fixed length
rowkeys, and fields help us to leverage the lexicographi-
cally sorted rows in a deterministic way.

• Rowkey Fields’ Order (with respect to region load):
Records are distributed over regions based on regions’
key boundaries. Regions with high loads can be avoided
by a uniform distribution of rowkeys. Thus, the position
of each field in the rowkey structure is important. Statis-
tical properties of a field’s value domain are determining
factors for the field position.

• Rowkey Fields’ Order (with respect to query time):
Lexicographic order of rowkeys makes queries on the
leading field of a rowkey much faster than the rest. This is
the motivation for designing multiple tables with different
fields order. Therefore, each table provides fast scanning
functionality for a specific parameter.

• Rowkey Fields’ Type: Fields of a rowkey are converted
to byte arrays then concatenated to create the rowkey.
Fields’ types have significant effect on the byte array size.
As an example number 32000 can be represented as a
short data type or as a string. However, the string data
type require two times more number of bytes.

• Rowkey Timestamps vs. Cell Version: It’s not rec-
ommended to set the maximum number of permitted
versions too high [25]. Thus, there should be a timestamp
for the monitoring record as a part of the rowkey.

• Timestamps vs. Reverse Timestamps: In the first stage
of data life cycle, recent records are frequently accessed.
Therefore, revere timestamps are used in the rowkey.

2) Column Families: Column families are the fixed part
of a table which must be defined while creating the schema.
It’s recommended to keep the number of families less than
three, and those in the same table should have similar access
patterns and size characteristics (e.g. number of rows) [15].
Column family’s name must be of string type, with a short
length. The family’s name is also stored in the cell, as a part
of the cell coordination. A table must have at least one column
family, but it can have a dummy column with an empty byte
array. We have used constant value D for our single column
family across all tables.

3) Columns: Columns are the dynamic part of a table
structure. Each row can have its own set of columns which
may not be identical to other rows’ columns. Monitoring data
can be generated by different protocols, and they may not have
similar formats/fields. Columns make the solution flexible and
applicable to a variety of monitoring protocols.

There are several tables with different fields’ orders in
rowkeys, but not all of them have columns. Complete monitor-
ing record is just inserted into the reference table, and others
are used for fast queries on different rowkey fields.

C. Schemas

Section III-B explained desired query types and Section
IV-B1 described required properties of a rowkey for fast scan-

ning. Here, three table types are introduced, each addressing
one query category: IP-based, Port-based, and Time-based
tables.

1) IP Based Tables:
a) T1 (reference table), T2: The rowkey of this table

consists of: source IP address, source port, destination IP
address, destination port, and reverse timestamp (Table II).
Columns in this family are flexible and any given set can
be stored there. Column qualifiers identifier are derived from
fields’ names, and their values are corresponding values from
flow information records. Other tables are designed as sec-
ondary indexes. They improve access time considerably for
the corresponding query group. Table T1 is used for retrieving
flow information parameters that are not in the rowkey (e.g.
number of sent or received packets, bytes, flows)

Table T2 has destination address and port in the lead
position. This is used in combination with T1 for the analysis
of bidirectional flows.

b) T3, T4: are suitable when source and destination
addresses are provided by the query (Table II). For instance,
when two ends of a communication are known, and we want to
analyse other parameters such as: communication ports, traffic
volume, duration, etc.

2) Port Based Tables:
a) T5, T6: are appropriate tables for service discovery

(Table II). As an example, when we want to discover all nodes
delivering SSH service (on default port: 22), we can specify
the lead fields on T5 and T6 (source and destination ports),
and let the data store returns all service providers and their
clients. If the client c1 is communicating on the port p1 with
the server s1 on the port 22 at time ts, then there is a record
with the rowkey: [22][s1][c1][p1][1-ts] in the data store.

b) T7, T8: can fulfil the requirement for identifying
clients who use a particular service (Table II). The same record
from T5, T6 will have the rowkey: [22][c1][s1][p1][1-ts].

3) Time Based Tables: OpenTSDB6 is used for storing time
series data. This can be an efficient approach for accessing
and processing flows of a specific time period. A rowkey in
OpenTSDB consists of: a metric, a base timestamp, and a
limited number of tags in the key-value format. Source and
destination IP addresses and ports are represented as tags,
and a set of metrics are defined. Five fields from the flow
information record are chosen as metrics: number of input
and output bytes, input and output packets, and flows.

D. Storage Requirement

The storage volume required for storing a single replication
of a not-compressed record can be estimated using Equation
(1) as depicted in Table III. However, this estimation may vary
considerably if protocols other than NetFlow v5 and sFlow are
used for collecting monitoring data (e.g. IPFIX raw record can
be 250 bytes, containing 127-300 fields.)

Equation (2) is used for calculating the required capacity for
tables T2-T8 (See Table III). These tables don’t have columns
and values, which makes them much smaller than Table 1.

6www.opentsdb.net



TABLE III: Storage requirements IPv4

Est. # records Storage for T1 Storage for T2-T8 Storage for OpenTSDB Total
Single Record 1 (37 ∗ 23) + (133) ∼ 1KB 7tables ∗ 23B = 161B 5metrics ∗ 2B = 10B ∼ 1KB
Daily Import ∼ 20million 1KB ∗ 20 ∗ 106 = 20GB 161B ∗ 20 ∗ 106 ∼ 3GB 10B ∗ 20 ∗ 106 = 200MB ∼ 23GB
Initial Import 20m ∗ 150days ∼ 3 ∗ 109 1KB ∗ 3 ∗ 109 = 3TB 161B ∗ 3 ∗ 109 ∼ 500GB 10B ∗ 3 ∗ 109 = 30GB ∼ 3.5TB

TABLE II: IP Based and Port Based Tables

Table Row Key Query Type
T1 [sa] [sp] [da] [dp] [1 - ts] Extended queries
T2 [da] [dp] [sa] [sp] [1 - ts]
T3 [sa] [da] [sp] [dp] [1 - ts] Source-Destination

address queries
T4 [da] [sa] [dp] [sp] [1 - ts] Source-Destination

address queries
T5 [sp] [sa] [da] [dp] [1 - ts] Service server dis-

covery queries
T6 [dp] [da] [sa] [sp] [1 - ts] Service server dis-

covery queries
T7 [sp] [da] [sa] [dp] [1 - ts] Service client dis-

covery queries
T8 [dp] [sa] [da] [sp] [1 - ts] Service client dis-

covery queries

|recordT1| = |cq| ∗ (|rk|+ |cfn|+ |cn|) +
∑
i∈cq

|cvi|) (1)

|recordT2−T8| = (|rk|+ |cfn|) (2)

where:
|x| = x’s size in byte(s)
rk = row key (size = 23B)
cfn = column family name
cq = column qualifiers set
cn = column qualifier name
cv = column value

V. IMPLEMENTATION

A. Data Collection

A set of MapReduce jobs and scripts are developed
for collecting, storing, and processing data in HBase and
OpenTSDB7. In the MapReduce job, the map task read flow
information files and prepare rowkeys as well as columns
for all tables. In the next step they are written into the
corresponding tables. After that another task checks data
integrity by a simple row counting job. This verification is
not fully reliable, but it is a basic step for the integrity check
without scarifying performance.

Performance evaluation was performed by processing
records of a single day. The day is chosen randomly from
working days of 2013. The statistical characteristics of the
chosen day represents properties of any other working days.
The performance of the implementation is not satisfactory in
this stage. For HBase, the maximum number of operations
per second is 50 with the maximum operation latency of
2.3 seconds. HDFS shows the same performance issue, the

7Available at: https://github.com/aryantaheri/netflow-hbase

maximum number of written bytes per second is 81 MB/s. The
task is finished after 45.46 minutes. Therefore, a performance
tuning is required.

B. Performance Tuning

The initial implementation of the collection module was not
optimized for storing large datasets. By investigating perfor-
mance issues, seven steps are recognized as remedies [26],
[25]. These improvements will also enhance query execution
process, and are applied there as well.

a) Using LZO compression: Although compression de-
mands more CPU time, the HDFS IO and network utilization
are reduced considerably. Compression is applied to store files
(HFiles) and the algorithm must be specified in the table
schema for each column family. The compression ratio is
dependent on the algorithm and the data type, and for our
dataset with the LZO algorithm the ratio is about 4.

b) Disabling Swap: Swappiness is set to zero on data
nodes, since there is enough free memory for the job to
complete without moving memory pages to the swap [26].

c) Disabling Write Ahead Log (WAL): All updates in a
region server are logged in WAL, for guaranteeing durable
writes. However, the write operation performance is improved
significantly by disabling it. This has the risk of data loss in
case of a region server failure [25].

d) Enabling Deferred Log Flush (DLF): DLF is a table
property, for deferring WAL’s flushes. If WAL is not disabled
(due to the data loss risk), this property can specify the flushing
interval to moderate the WAL’s overhead [25].

e) Increasing heap size: 20TB of the disk storage is
planned to be used for storing monitoring data. The formula
for calculating the estimated ratio of disk space to heap
size is: RegionSize/MemstoreSize ∗ReplicationFactor ∗
HeapFractionForMemstores [27]. This leads to a heap
size of 10GB per region server.

f) Specifying Concurrent-Mark-Sweep Garbage Collec-
tion (CMS-GC): Full garbage collection has tremendous over-
head and it can be avoided by starting the CMS process
earlier. Initial occupancy fraction is explicitly specified to be
70 percent. Thus, CMS starts when the old generation allocates
more than 70 percent of the heap size [26].

g) Enabling MemStore-Local Allocation Buffers
(MSLAB): MSLAB relaxes the issue with the old generation
heap fragmentation for HBase, and makes garbage collection
pauses shorter. Furthermore, it can improve cache locality by
allocating memory for a region from a dedicated memory
area [28].

h) Pre-Splitting Regions: The pre-splitting of regions has
major impact on the performance of bulk load operations. It
can rectify the hotspot region issue and distribute the work load



TABLE IV: Initial region splits for tables T1-T4 (Store file
size in MBytes-Number of store files)

Region Starting IP address T1 T2 T3 T4
1 30-1 0-0 0-0 5-1
2 17.17.17.17 23-1 0-0 0-0 0-0
3 34.34.34.34 32-1 6-1 5-1 0-0
4 51.51.51.51 172-1 22-1 21-1 22-1
5 68.68.68.68 325-1 57-1 57-1 57-1
6 85.85.85.85 77-1 11-1 10-1 11-1
7 102.102.102.102 85-1 9-1 13-1 0-0
8 119.119.119.119 57-1 11-1 0-0 11-1
9 136.136.136.136 102-1 11-1 10-1 11-1
10 153.153.153.153 543-1 92-1 82-1 97-1
11 170.170.170.170 21-1 0-0 0-0 0-0
12 187.187.187.187 887-1 138-1 141-1 139-1
13 204.204.204.204 73-1 11-1 10-1 11-1
14 221.221.221.221 5-1 0-0 0-0 1-1
15 238.238.238.238 0-1 0-0 0-0 0-0

TABLE V: Initial region splits for tables T5-T8 (Store file size
in MBytes-Number of store files)

Region Starting Port number T5 T6 T7 T8
1 197-1 137-1 198-1 137-1
2 4369 7-1 0-0 0-0 0-0
3 8738 0-0 0-0 0-0 0-0
4 13107 0-0 0-0 0-0 0-0
5 17476 0-0 0-0 0-0 0-0
6 21845 0-0 9-1 8-1 0-0
7 26214 0-0 0-0 0-0 0-0
8 30583 0-0 0-0 0-0 10-1
9 34952 0-0 12-1 0-0 12-1
10 39321 0-0 13-1 10-1 12-1
11 43690 9-1 12-1 0-0 12-1
12 48059 37-1 49-1 38-1 60-1
13 52428 25-1 49-1 26-1 50-1
14 56797 25-1 37-1 25-1 38-1
15 61166 26-1 24-1 25-1 25-1

among all region servers. Each region has a start and an end
rowkeys, and only serves a consecutive subset of the dataset.
The start and end rowkeys should be defined such that all
regions will have a uniform load. The pre-splitting requires a
good knowledge of the rowkey structure and its value domain.

Tables T1-T4 start with an IP address, and T4-T8 have a
port number in the lead position. Thus, they demand different
splitting criteria. The initial splitting uses a uniform distribu-
tion function, and later it’s improved by an empirical study.
IPv4 space has 232 addresses, and the address space is split
uniformly over 15 regions, as shown in Table IV. Furthermore,
port number is a 16 bit field with 65535 values and the same
splitting strategy is applied for it, Table V.

The performance gain for storing a single day of flow
information is considerable. On average, 754 HBase operations
are performed in a second (x30 more operations/s), the average
operation latency is decreased to 27 ms (x14 faster), and
the job is finished in 15 minutes (x3 sooner). Despite high
efficiency improvement, there are some hotspot regions which
should be investigated more.

Tables IV and V show regions’ start keys,the number of
store files, and their sizes. It can be observed that splitting
regions using the uniform key distribution function doesn’t

lead to a uniform load in regions.
In tables T1-T4, regions R4, R5, R10, R12 have big

store files compared to the rest of regions. Highly loaded
regions serve entries within the following IP address
spaces (anonymized) : R4 → [51.51.51.51, 68.68.68.68),
R5 → [68.68.68.68, 85.85.85.85), R10 → [153.153.153.153,
170.170.170.170), R12 → [187.187.187.187, 204.204.204.204)

By investigating these IP address blocks, we identified
that some of them contains Norwegian address blocks8 and
some others are popular services providers. In addition, empty
regions contain special ranges such as: private networks and
link-local addresses.

In tables T5-T8, regions R1, R12, R13, R14, R15 have
high loads, and they serve the following port numbers: R1
→ [0, 4369), R12 → [48059, 52428), R13 → [52428, 56797), R14
→ [56797, 61166), R15 → [61166, 65536),

For tables T5-T8, R1 covers well known ports (both system
ports and user ports) suggested by Internet Assigned Num-
bers Authority (IANA)9, and R12-R15 contains short-lived
ephemeral ports (i.e. dynamic/private ports). In the empirical
splitting, the difference between system ports, user ports, and
private/dynamic (ephemeral) ports will be taken into account.

A large fraction of records have port numbers of popular
services (e.g. HTTP(S), SSH) or IP addresses of popular
sources/destinations (e.g. Norwegian blocks, popular services).
Therefore, regions should not be split using a uniform distri-
bution over the port number range or the IP address space.
The splitting is improved by taking these constrains into
consideration and the result is significant. The average number
of operations per second is 1600 (x64 more), the latency is
5ms (x80 less), and the job duration is reduced to 6.57 minutes
(x7.5 faster). The results are depicted in Figure 2.

VI. EVALUATION

This section analyses several query types and their response
times.

A. Top-N Host Pairs

Finding Top-N elements is a common query type for many
datasets. In our dataset, elements can be IP addresses, host
pairs, port numbers, etc. In the first evaluation, a query for
finding Top-N host pairs is studied for a 150 days period.
These pairs are hosts which have exchanged the most traffic
on the network. The query requires processing of all records
in the table T1, and aggregation of input and output bytes for
all available host pairs, independent of the connection initiator
and port numbers. Table T1 has 5 billion records.

Traditional tools (e.g. NFdump) are not capable of an-
swering this query, because the long period corresponds to
an extremely large dataset. For this purpose, two chaining
MapReduce jobs are written for HBase tables. The first one
identifies host pairs and aggregates their exchanged traffic. The
second one sorts pairs based on the exchanged traffic.

8http://drift.uninett.no/nett/ip-nett/ipv4-nett.html
9http://www.iana.org/
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Fig. 2: Storage performance under different implementations (SNS: Single day processing without pre-splitting, SS: Single day
processing with a uniform splitting function, SSE: Single day processing with an empirical pre-splitting function)

On average, the first job finishes after 26 minutes, and the
second one after 19 seconds. These are reasonable duration for
processing a large dataset, since, Top-N host pairs queries are
not executed very frequently, and there is no real-time demand
for them.

B. Service Server Discovery for a Given Period

This query type contains time filters which means a subset
of the dataset in the given time range is of interest. The
query can be executed using two methods. The first method
uses HBase tables to retrieve records which satisfy non-time
criteria (i.e. intermediate result). Then, compliant records with
the time filter are returned as the target dataset. Finally, the
target dataset is processed according to the query specifica-
tions. Since, time criteria can not be evaluated in each data
node10, the time range filtering is performed in a single node.
Therefore, this method is inefficient when the intermediate
result is large.

The second method benefits from OpenTSDB. OpenTSDB
key structure simplifies accessing data within a time range, at
the cost of storage volume and response time. This method
retrieves records within the time frame, first. Then, other
filters are evaluated and the final processing is performed.
This approach is efficient for small periods when the estimated
number of compliant records with all filters is high.

10Because the timestamp has a trailing position in the rowkey structure.

Fig. 3: Queries performance evaluation

Figure 3 depicts response times of several queries using
multiple methods. The first two methods (i.e. HBase, and
OpenTSDB) are explained earlier. The other methods use a
traditional tool (i.e. NFdump) for retrieving and processing
records. NFD1 is executed over the complete dataset, and
NFD2 processes only a subset of the dataset which satisfies the
time constrain. HBase outperforms OpenTSDB by an average
factor of 87 and NFD1 by an average factor of 4472. Its
performance is not comparable with NFD2, since NFD2 has
a limited dataset.



VII. CONCLUSION

The paper proves the effectiveness of a data-intensive
processing framework for delivering scalable and efficient
network monitoring services. The proposed mechanism is not
dependent on a specific network monitoring protocol, and it’s
applicable to any protocol as long as rowkey design criteria are
satisfied. Data point structure is designed by careful analysis
and conversion of monitoring record’s fields. Therefore, the
collection’s process and storage volume overheads are reduced,
and real-time data retrieval is accomplished.

Long-term queries are performed by MapReduce jobs and
short-term queries are executed through available scanning
APIs. These two accessing methods fulfil response time
requirements of planned (e.g. statistical analysis, evidence
gathering) and ad-hoc (e.g. forensics) activities.

Further Work

There are several areas which required further study and
improvement such as: advanced query interface for network
operators and researchers, embedded analytical engine for
statistical studies, robust underlying infrastructure for en-
hanced availability, and integration with a cloud platform’s
network management service for a better real-time monitoring
and security enforcement mechanisms using Software Defined
Networking (SDN) technologies.
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