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Abstract

A large number of today’s botnets leverage the HTTP protocol to communi-
cate with their botmasters or perpetrate malicious activities. In this paper,
we present a new scalable system for network-level behavioral clustering of
HTTP-based malware that aims to efficiently group newly collected malware
samples into malware family clusters. The end goal is to obtain malware clus-
ters that can aid the automatic generation of high quality network signatures,
which can in turn be used to detect botnet command-and-control (C&C) and
other malware-generated communications at the network perimeter.

We achieve scalability in our clustering system by simplifying the multi-
step clustering process proposed in [31], and by leveraging incremental clus-
tering algorithms that run efficiently on very large datasets. At the same
time, we show that scalability is achieved while retaining a good trade-off
between detection rate and false positives for the signatures derived from
the obtained malware clusters. We implemented a proof-of-concept version
of our new scalable malware clustering system and performed experiments
with about 65,000 distinct malware samples. Results from our evaluation
confirm the effectiveness of the proposed system and show that, compared
to [31], our approach can reduce processing times from several hours to a
few minutes, and scales well to large datasets containing tens of thousands
of distinct malware samples.
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1. Introduction

Traditional signature-based anti-virus (AV) tools are mainly based on
a static analysis of the code of malicious software (a.k.a. malware), and
malware signatures are usually represented by a fixed set of byte sequences
in malware executable files [13]. To make AV detection harder, malware
writers commonly employ executable packing [16] and other automatic code
obfuscation techniques to generate large numbers of polymorphic variants of
the same malware [35] that appear syntactically different from each other
while remaining semantically similar, so that when executed they perform
similar malicious activities. As a consequence, AV companies have a hard
time keeping their signature databases up to date, and their AV scanners
often suffer from a high rate of false negatives [28]. Therefore, we need new
ways to detect malware-compromised machines within a network.

Behavioral malware clustering aims at grouping malware variants accord-
ing to similarities in their malicious behavior. This process is particularly
useful because once a number of different variants of the same malware have
been identified and grouped together, it is easier to write generic behavioral
signatures, as opposed to traditional AV signatures, that may be used to
detect future malware variants with low false positives and false negatives.
To the best of our knowledge, the behavioral-based systems for clustering
and classification of malware proposed so far are heavily based on an analy-
sis of system call traces and system events (e.g., registry modifications, files
dropped on disk, etc.) [7, 32, 8, 20], and only limited information from the
network traces is used. As a consequence, clustering algorithms such as [7, 8]
may generate clusters that are useful when the objective is to extract system-
level behavioral signatures, but may not perform as well when the goal is to
generate network-level behavioral signatures, as shown in [31].

Many of today’s botnets, and many other types of malware, leverage
HTTP-based network communications for command-and-control (C&C) pur-
poses or to perpetrate malicious activities. For example, according to [21] the
majority of spam botnets use HTTP to communicate with their command
and control (C&C) server. Also, [31] found that about 75% of malware sam-
ples that exhibit network activities produce HTTP traffic.
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The motivations for using the HTTP protocol are multiple. Developing a
web-based C&C application is typically easier than implementing customized
C&C communication protocols (e.g., peer-to-peer protocols), and there is
evidence that web-based “reusable” kits (or platforms) for botnet C&C are
available for sale on the Internet [12]. Furthermore, many networks (e.g., en-
terprise and government networks) implement aggressive egress-filtering rules
that block unwanted traffic. However, HTTP traffic is allowed in most net-
works, including networks that implement strict filtering policies, to enable
web browsing. This makes it possible for botnet C&C traffic to blend in with
legitimate HTTP traffic and reach the botmaster. Therefore, in this paper
we focus on behavioral clustering of HTTP-based malware, and we aim to
obtain malware clusters that aid in automatically generating network-level
behavioral signatures, which can be used to detect malware-generated com-
munications, including botnet C&C traffic, at the network perimeter.

Network-level signatures have some attractive properties, compared to
system-level signatures. For example, enforcing system-level behavioral sig-
natures often requires the use of virtualized environments and expensive dy-
namic process analysis [38]. On the other hand, network-level signatures are
often easier to deploy, and are able to monitor a large number of machines
without introducing any overhead at the end hosts. Although some work has
been done towards enabling efficient malware detection using system-level
behavioral signatures [22], the proposed technique is limited to malware that
does not compromise the operating system’s kernel. Also, in [22] the authors
do not apply any behavioral clustering, and the system-level signatures they
extract are often too specific, as demonstrated by their relatively low detec-
tion rate for certain malware families. Therefore, we believe that a malware
detection approach based on network-level behavioral signatures can be a
valuable complement to traditional AVs and system-level behavioral signa-
tures, and can play an important role in a comprehensive defense-in-depth
strategy against malware.

In this paper, we build on previous work by one of the authors [31] and
propose a new scalable network-level behavioral malware clustering system
that aims at efficiently clustering malware samples according to structural
similarities in their HTTP traffic, and to to provide quality input to algo-
rithms that automatically generate network signatures. Namely, after clus-
tering is completed, the HTTP traffic generated by malware samples in the
same cluster is processed by an automatic signature generation tool, in order
to extract network signatures that model the HTTP behavior of all the mal-
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ware variants in a cluster. An Intrusion Detection System (IDS) located at
the edge of a network can in turn deploy such network signatures to detect
malware-related outbound HTTP requests.

The main contribution of this work is scalability, which we achieve by sim-
plifying the multi-step clustering process proposed in [31] and by leveraging
incremental clustering algorithms that run efficiently on very large datasets.
At the same time, we show that scalability is achieved while retaining a
good trade-off between detection rate and false positives for the signatures
derived from the obtained malware clusters. We would like to emphasize
that scalability is an important requirement for malware clustering and sig-
nature generation systems, because it allows us to cope with the increasingly
growing number of new malware samples collected every day on the Internet.

We implemented a proof-of-concept version of our new malware clustering
system and performed experiments with about 65,000 distinct malware sam-
ples. Results from our evaluation confirm the effectiveness of the proposed
system, and show that, compared to [31], our new clustering approach can
reduce processing times from several hours to a few minutes and scales well
to large datasets containing tens of thousands of distinct malware samples.

2. Related Work

To cope with malware polymorphism, researchers have proposed a number
of solutions aimed at enabling the detection of new malware variants based on
a set of known malware samples. In [32, 33], Rieck et al. proposed a learning
system for analyzing and classifying unknown malware samples based on their
system behavior, and in [11], Christodorescu et al. proposed an automatic
technique for mining malicious behavior that is present in malware samples
but not in benign executables. The extracted behavioral model may than
be used as a system-level signature to detect infections by malware from the
same family.

Behavioral malware clustering has been recently studied in [7, 8, 20, 31].
In particular, Bayer et al. [8] proposed a scalable malware clustering al-
gorithm based on malware behavior expressed in terms of detailed system
events. However, the network information they use is limited to high-level
features. As a consequence, [8] may generate clusters that are useful when
the objective is to extract system-level behavioral signatures, but may not
perform as well when the goal is to generate network-level behavioral signa-
tures, as shown in [31].
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Anomaly-based detection of malicious HTTP-traffic has been studied for
example in [24, 36, 37, 30, 6]. However, anomaly-based detection systems
are usually not able to attributed the detected malicious traffic to a specific
threat. By using behavioral clustering and signature generation, not only
we detect hosts that generate HTTP-based malware traffic, but we can also
identify the malware family with which such hosts have been infected.

Several data clustering studies addressed the problem of efficiently clus-
tering large volumes of data [5, 14, 15, 40]. CURE [15] employs a combination
of random sampling and partitioning to handle large databases. CURE is
robust to outliers and is able to identify clusters having non-spherical shapes
and wide variances in size. OPTICS [5] does not produce a clustering of a
data set explicitly, but instead supports the user in the task of finding the
clustering structure. DBSCAN [14] addresses several of the traditional limi-
tations of clustering algorithms. For example, DBSCAN relies on a density-
based notion of clusters which is designed to discover clusters of arbitrary
shape, and requires only one input parameter so that it can be easily tuned
by the user. To enable efficient malware clustering, in this paper we use
the BIRCH clustering algorithm presented in [40], which we discuss in Sec-
tion 3.2.1.

Another relevant problem in data clustering is that of measuring the
validity of clustering results. Several different clustering validity indexes have
been proposed in the literature [9, 17, 39]. Both the Dunn’s validity index
and the Davies-Bouldin (DB) index [17] are internal indexes that aim to
asses the quality of clustering by measuring how compact and well separated
the clusters are. Other validity indexes include the silhouette statistic [34],
and external indexes such as the Rand statistic, Jaccard coefficient, and the
Folks-Mallows index [17]. In this paper we make use of the DB index, and
of the graph-based cohesion and separation validity indexes proposed in [31],
which we briefly describe in Section 3.3.1 and 3.5, respectively.

3. Scalable HTTP-based Behavioral Clustering

Problem Definition. In this paper we follow the problem definition given
in [31]. The main objective is to perform behavioral clustering of malware
samples by finding structural similarities between the sequences of HTTP
requests generated by different malware samples as a consequence of infec-
tion. In practice, given a dataset of malware samples M = {m(i)}i=1..N , we
execute each sample m(i) in a controlled environment similar to BotLab [21]
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Figure 1: Overview of our new scalable behavioral malware clustering and
network signature generation system.

for a time T , and we store its HTTP traffic trace H(m(i)). We then want
to partition M into clusters according to a definition of structural similarity
among the HTTP traffic traces H(m(i)), i = 1, .., N , and we aim to do so
more efficiently than the clustering system proposed in [31].

3.1. System Overview

In order to attain scalability while maintaining high quality clusters, we
adopt the multi-step cluster refinement process shown in Figure 1.

• Coarse-grained Clustering : In this phase, malware samples are clus-
tered according to simple statistical features extracted from their ma-
licious HTTP traffic such as the total number of HTTP requests the
malware generated, the number of GET and POST requests, the av-
erage length of the URLs, etc. Therefore, the similarity between pairs
of malware samples reduces to computing the distance between vectors
of numbers, and allows us to leverage highly scalable clustering algo-
rithms. This process yields coarse-grained clusters of malware samples
that, while they show similar behavior according to our simple sta-
tistical features, may belong to different malware families. Therefore,
a further step of refinement is necessary to split these coarse-grained
results into more accurate clusters.

• Fine-grained Clustering : After splitting the collected malware set into
relatively large (coarse-grained) clusters, we further split each clus-
ter into smaller groups. To this end, we extract features related to
the structure of the HTTP queries generated by the malware samples.
This allows us to separate malware that have similar high-level statisti-
cal traffic features (thus causing them to fall in the same coarse-grained
cluster), but that present different structural characteristics. Measur-
ing the structural similarity between pairs of HTTP traffic traces is
relatively expensive. However, since the size of each coarse-grained
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cluster is much smaller than the total number of samples in the mal-
ware dataset, fine-grained clustering can be performed more efficiently
than by applying it directly on the entire malware dataset. This clus-
tering step is essentially identical to the fine-grained clustering step
used in [31].

• Signature Generation: Afterwards, for each of the obtained fine-grained
malware clusters we compute a cluster centroid that “summarizes” the
HTTP traffic generated by the malware samples in a cluster. In prac-
tice, the centroid of a cluster is represented by a set of network signa-
tures that match (most) malware traffic traces grouped in the cluster.
These network signatures are suitable for being deployed at a network
IDS to enable the detection of malware-generated traffic (see Section 3.4
for details on the automatic signature generation process). To extract
the signature, we use the same automatic signature generation module
previously used in [31].

Unlike the three-step clustering process proposed in [31], in this paper
we use a much more efficient two-step clustering approach that reduces the
overall clustering times from several hours to only a few minutes while re-
taining a good trade-off between the detection rate and false positives of our
malware detection signatures. Compared to [31], we have made the follow-
ing two key changes. We have replaced the precise hierarchical clustering
algorithm used for coarse-grained clustering with an approximate clustering
algorithm called BIRCH [40]. As we discuss in Section 3.2.1, BIRCH per-
forms incremental clustering and is suitable for fast clustering over very large
datasets. The second important change was to eliminate the meta-clustering
step used in [31], which was mainly responsible for merging over-compact
clusters that were sometimes obtained due to the use of precise hierarchi-
cal clustering in the coarse-grained clustering step. This choice was mainly
dictated by the high computational cost of the meta-clustering phase. We
noticed that the coarse-grained clustering algorithm used in [31] generated
overly compact clusters, few of which could actually be meaningfully refined
by the fine-grained clustering step. We then realized that meta-clustering
was mainly useful in merging clusters that had been erroneously split during
the coarse-grained clustering step. In the end, we found that if we could
perform a truly coarse-grained clustering step at the beginning, which would
produce relatively large clusters, these clusters could then be meaningfully re-
fined by the fine-grained clustering step without having to go back to merge

7



clusters that we erroneously split during the first clustering phase. As we
show in Section 4, our experimental results support our intuition, and show
that our new system can achieve the desired scalability while still obtaining
high quality malware detection signatures.

It is worth noting that the fine-grained clustering step is still performed
using precise hierarchical clustering, in a way very similar to [31] (see Sec-
tion 3.3 for details). The main reason for using precise hierarchical clustering
during the fine-grained clustering phase is the fact that to extract good net-
work signatures we need to obtain compact clusters, because otherwise the
extracted signatures would risk being over-generic and thus generate a large
number of false positives. In addition, hierarchical clustering allows us to
perform clustering in arbitrary metric spaces, such as the metric space we
define in Section 3.3 to measure the distance between malware samples.

3.2. Coarse-grained Clustering

Let M = {m(i)}i=1..N be a set of malware samples, and H(m(i)) be the
HTTP traffic trace obtained by executing a malware m(i) ∈ M for a given
time T . We translate each trace H(m(i)) into a pattern vector v(i) containing
the following seven statistical features: the total number of HTTP requests,
the number of GET requests, the number of POST requests, the average
length of the URLs, average number of parameters in the request, average
amount of data sent by POST requests, and the average length of the re-
sponse. Because the range of different features in the pattern vectors are
quite different, we first normalize the dataset, as discussed in Section 4.2.1,
and then we partition the set M into coarse-grained clusters by applying the
BIRCH clustering algorithm [40] described in Section 3.2.1.

3.2.1. BIRCH Clustering
In this Section, we briefly summarize how BIRCH works and outline the

main properties that allow for efficient clustering of large datasets. In the
interest of space, we refer the reader to [40] for further details.

The main goal of BIRCH is to perform approximate clustering of arbi-
trarily large datasets with a guaranteed (configurable) memory bound and
with I/O access costs that grow linearly with the size of the dataset. In other
words, the dataset can be scanned only once, and the clustering is performed
incrementally. The algorithm trades memory usage for more “coarse” clus-
tering results. In practice, whenever the clustering process approaches the
preset memory limit, the clustering algorithm will further “compress” the
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Figure 2: Overview of BIRCH. Each letter in the CF-tree represents a dif-
ferent sub-cluster.

dataset, producing a less fine-grained representation of the data and thus
resulting in fewer, larger clusters.

BIRCH assumes the objects to be clustered can be represented in a d-
dimensional vector space (i.e., BIRCH does not support clustering in arbi-
trary metric spaces). To meet the scalability goals mentioned earlier, BIRCH
leverages a data structure called CF-tree, where CF stands for clustering fea-
ture. In practice, a CF-tree resembles a B-tree. Each entry of the tree’s nodes
is related to a sub-cluster, and each non-leaf entry (i.e., each non-leaf sub-
cluster) represents an agglomeration of a number of child sub-clusters, as
depicted in Figure 2. A sub-cluster C = {xi}i=1..n, where the xi are the n
single data points that belong to the cluster, is represented as an entry of the
CF-tree by a vector CF (C) = [n, s, ss], where s =

�
i xi and ss =

�
i x

2

i .
At the beginning, the CF-tree is empty and data points will be progres-

sively read from the dataset and incrementally added to the tree. When a
new data point x is added to a non-empty tree, this new data point will tra-
verse the tree by following the closest child entries. At each given node, if no
entry E exists for which dist(x,E) < R, where R is a predefined threshold
radius, x will be stored in a new tree entry E

� and will effectively form a
new sub-cluster. On the other hand, if dist(x,E) < R, x will be merged to
the sub-cluster E and CF (E) will be updated. It is worth noting that one
could choose different definitions of dist(x,E), as long as the chosen distance
function can be efficiently computed by using only E and the information
contained in CF (E). Once all data points are entered into the CF-tree, the
leaves of the tree provide a representation of the final clusters.
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If the pre-set memory usage bound is reached, BIRCH automatically
increases the value of R and rebuilds the CF-tree by aggregating sub-clusters
that are close to each other. In addition, because BIRCH builds the tree
incrementally, to mitigate the negative effects of potentially skewed orderings
of the data points in the dataset BIRCH includes a number of automatic
merging refinements [40] (we have implemented BIRCH in Java, and have
made the source code openly available at http://roberto.perdisci.com/
projects/jbirch).

3.3. Fine-grained Clustering

In the fine-grained clustering step we consider the structural similarity
among sequences of HTTP requests (as opposed to the statistical similarity
used for coarse-grained clustering). As in [31], we define the distance between

two HTTP requests r(i)k and r(j)h generated by two different malware samples

m(i) and m(j) (i.e., r(i)k ∈ H(m(i)), and r(j)h ∈ H(m(j))), as

dr(r
(i)
k , r(j)h ) =wm · dm(r(i)k , r(j)h ) + wp · dp(r

(i)
k , r(j)h )

+wn · dn(r
(i)
k , r(j)h ) + wv · dv(r

(i)
k , r(j)h )

(1)

where the subscripts m, p, n, and v, represent different parts of an HTTP
request. Specifically, m represents the request method (e.g., GET, POST,

HEADER, etc.), and the distance dm(r
(i)
k , r(j)h ) is equal to 0 if the requests r(i)k ,

and r(j)h both use the same method (e.g, both are GET requests), otherwise it
is equal to 1. p stands for page, namely the first part of the URL that includes
the path and page name, but does not include the parameters. dp(r

(i)
k , r(j)h )

is equal to the normalized edit distance between the strings related to the
path and pages that appear in the two requests r(i)k and r(j)h . n represents the

set of parameter names, and dn(r
(i)
k , r(j)h ) is equal to the Jaccard distance1

between the sets of parameters names in the two requests. v is the set of
parameter values, and dv(r

(i)
k , r(j)h ) is equal to the normalized edit distance

between strings obtained by concatenating the parameter values. The factors
wx, x ∈ {m, p, n, v} are predefined weights that give more importance to the
distance between the requests’ method and page, for example, and less weight
to the distance between parameter values. The fine-grained distance between

1The Jaccard distance between two sets A and B is defined as J(A,B) = 1− |A∩B|
|A∪B|
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two samples m(i) and m(j) can then be defined as the average minimum
distance between sequences of HTTP requests from the two samples.

Given the definition of fine-grained distance between malware samples
given above, we apply the single-linkage hierarchical clustering algorithm
and the DB cluster validity index (see Section 3.3.1) to split each coarse-
grained cluster into fine-grained clusters.

3.3.1. Single-Linkage Hierarchical Clustering
As mentioned above, while BIRCH is used for coarse-grained clustering,

the fine-grained clustering step relies on precise hierarchical clustering, specif-
ically, single-linkage agglomerative hierarchical clustering. In this section we
briefly describe how the hierarchical clustering algorithm works.

In order to apply the hierarchical clustering on a set of malware HTTP
traces O = {o1, o2, ..on}, where oi is the HTTP trace obtained by executing
malware sample mi, we first need to define a notion of distance between pairs
of traces (we defer the definition of such distance function to Section 3.3).
After a distance function dist(oi, oj) has been defined, we can compute a
distance matrix M = {dij}i,j=1..n that consists of the distances dij between
each pair of traces (oi, oj). The hierarchical clustering algorithm takes M as
input and produces in output a dendrogram, i.e., a tree-like data structure
in which the leaves represent the original traces in O, and the length of
the edges represent the distance between clusters [19]. The single-linkage

algorithm defines the distance between two clusters Ci = {o(i)k }k=1..ci and

Cj = {o(j)h }h=1..cj as δi,j = minl,m{dist(o
(i)
l , o(j)m )}. The obtained dendrogram

does not actually define a partitioning of the malware (more specifically their
HTTP traces) into clusters, rather it defines “relationships” among malware
samples.

A partitioning of the set O into clusters can be obtained by cutting the
dendrogram at a certain hight h. The leaves that form a connected sub-graph
after the cut are considered part of the same cluster [19]. Of course, different
values of the height of the cut h may produce different clustering results.
Choosing the best clustering involves a cluster validity analysis process to
find the value of h that produces the most compact and well separated clus-
ters. In order to automatically find the best value of h, we make use of the
Davies-Bouldin (DB) index [17]. The DB index summarizes the intra-cluster
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dispersion and inter-cluster separation. It can be formally defined as

DB(h) =
1

c(h)

c(h)�

i=1

max
j=1..c(h),j �=i

{
δi + δj
δi,j

} (2)

where δi and δj represent a measure of dispersion for cluster Ci and Cj,
respectively, δi,j is the separation (or distance) between two clusters, c(h)
is the total number of clusters produced by a dendrogram cut at height
h, and DB(h) is the related DB index. The lower the value of the DB
index, the more compact and well separated the clusters [17]. Therefore,
we can find the best2 clustering by cutting the dendrogram at height h∗ =
argminh>0

DB(h), where DB(h) is the value of the DB index computed over
the clusters obtained by cutting the dendrogram at height h.

3.4. Automatic Signature Generation
To perform automatic signature generation, we use the same algorithm

described in [31]. We summarize the signature generation process here, and
refer the reader to [31] for more details.

LetCi = {m(i)
k }k=1..ci be a cluster of malware samples, andHi = {H(m(i)

k )}k=1..ci

the related set of HTTP traffic traces obtained by executing each malware
sample in Ci. Each signature sj is extracted from a pool pj of HTTP requests
selected from the traffic traces in Hi. To create an HTTP request pool, we
pair HTTP requests from different traces in Hi that are the most similar
to each other according to Equation 1 (see [31] for more details). Once the
pools have been filled with HTTP requests, we use the Token-Subsequences
algorithm described in [26] to extract a signature sj from each pool pj, and
finally derive a signature sets Si for each malware cluster Ci.

We then apply a post-filtering signature pruning process to the final sig-
nature sets Si. Namely, we test the signature sets Si against a large dataset
of legitimate traffic, and we discard the signatures that generate any false
positives. After filtering, the pruned signature set can then be deployed into
an IDS at the edge of a network in order to detect malicious HTTP requests,
which are a symptom of malware infection.

3.5. Cluster Validity Analysis
To assess the quality of the malware clusters produced by our system,

and in particular to assist with the tuning of the radius R for the BIRCH

2Best in the sense of the DB index.

12



clustering algorithm, we use the cluster validity analysis technique proposed
in [31]. Essentially, our validity analysis approach is based on a measure
of the cohesion (or compactness) of each cluster, and the separation among
different clusters, where cohesion and separation are defined in terms of the
agreement between the labels assigned to the malware samples in a cluster
by multiple AV scanners.

The cohesion of a cluster Ci measures the average similarity between any
two objects in the cluster, and is maximum when the AV scanners consis-
tently label the malware samples in a cluster as belonging to the same family
(although different AVs may use different labels to indicate a given malware
family). On the other hand, the separation between two clusters Ci and
Cj measures the average family label distance between malware belonging to
Ci and malware belonging to Cj, and gives us an indication about whether
the malware samples in the two clusters were labeled by the AV scanners
as belonging to different malware families or not. Both the cohesion index
and the separation index vary in [0, 1]. Ideally, we would like the clusters
generated by our behavioral clustering system to have a cohesion index value
as close as possible to one, and be well separated at the same time, i.e., have
a separation index greater than zero and as close as possible to one.

For a formal definition of the cohesion and separation indexes we refer
the reader to [31].

4. Experiments

To evaluate our system we performed three different sets of experiments.
The first set of experiments consisted of a preliminary investigation to tune
the parameters of our system. In particular, we were mainly interested in
evaluating how much the quality of the malware clusters and the process-
ing time depend on the value of the threshold radius R for BIRCH (see
Section 3.2.1). Results related to this set of experiments are provided in
Section 4.2. The second set of experiments provides a directed comparison
between our new system and [31]. The results show that the new malware
clustering system proposed in this paper is much more scalable than [31],
and can still generate quality malware detection signatures. The results of
this comparison are provided in Section 4.3. Finally, the third set of experi-
ments is aimed to evaluate the scalability of the proposed system. By using
a large malware dataset consisting of more than 27,000 distinct samples, we
show that our systems is able to automatically generate effective malware
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signatures within a limited processing time. In Section 4.4 we discuss the re-
sults of this evaluation. We performed each set of experiments on a different
datasets of malware samples, which we refer to as Dataset 1, Dataset 2, and
Dataset 3, respectively. Overall, these datasets consists of about 65,000 dis-
tinct samples, collected between 2009 and 2010. Details about these datasets
are provided in Section 4.1.

4.1. Datasets

Each of the three datasets used for the experimental evaluation consists
of distinct (no duplicates) malware samples collected from a number of dif-
ferent malware sources (e.g. MWCollect [2]), and commercial malware feeds.
We also scanned each malware sample with three commercial AV scanners,
namely McAfee [3], Avira [1], and Trend Micro [4] in order to obtain the AV
labels required for computing the cohesion and separation indexes as defined
in Section 3.5.

Dataset Size Collected Notes
Dataset 1 11,723 March 1-31, 2010 Used in Section 4.2

Dataset 2 25,720 Feb. 1st - Aug. 31, 2009 Used in Section 4.3 (same dataset used in [31])

Dataset 3 27,375 Jul. 1st - Dec. 31, 2010 Used in Section 4.4.

Table 1: Details of the datasets used for the experimental evaluation of the
algorithm. Dataset 2 is the same dataset used in [31].

Dataset 1 consists of 11,723 malware samples collected during the month
of March 2010. At the end of the scanning process with the three commercial
AV, 11,692 resulted labeled from at least one AV, whereas the remaining 31
samples resulted unlabeled.

Dataset 2 consists of 25,720 malware samples collected in the period
between February 1 and July 31 2009. The number of samples collected
every month ranges between 2,274 (collected in April) and 5,587 (collected
in July). Details about the exact number of samples collected during each
month are provided in Table 5. This dataset was first used in [31], and allows
for a direct comparison with previous work.

Dataset 3 consists of 27,375 collected in the period from July 1 to Decem-
ber 31, 2010. Each sample within this dataset was labeled as known malware
by at least one AV scanner.

The details about Dataset 1, 2, and 3 are summarized in Table 1.
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In order to evaluate the false positive rate (see Section 4.3.2), we also
collected a dataset of legitimate traffic. We collected this dataset by sniff-
ing the HTTP requests crossing the web-proxy of an enterprise network for
about 2 days, between November 25 and November 27, 2008. The collected
dataset of legitimate traffic contained over 25.3 · 106 HTTP requests from
2,010 clients towards thousands of different websites. We used existing auto-
matic techniques for detecting malicious HTTP traffic and manual analysis
to confirm that the collected HTTP traffic was actually as clean as possible.
We split this dataset in two parts. We used the first day of traffic for signa-
ture pruning, and the second day to estimate the false positive rate of our
pruned signatures (we will discuss our findings regarding false positives later
in this section).

4.2. Experiments Set 1: Evaluation of the System Setup

In this section, we show the results achieved during a set of preliminary
experiments that were aimed at finding the best setup for our system. During
these experiments, we addressed the following problems:

• Choice of the re-scaling method for the coarse-grained features.

• Estimate of the best value for the BIRCH radius.

4.2.1. Statistical features re-scaling
Since the features used for the coarse-grained clustering are in different

ranges, a re-scaling step is first required. In these experiments, we consid-
ered two different re-scaling techniques: feature normalization and feature
standardization respectively. Given a d -dimensional feature vector x with
components xi (i=1,2,...,d), features normalization re-scales each component
of the vector according to the following equation

x∗
i =

xi −min(xi)

max(xi)−min(xi)
(3)

where themin andmax are computed across the whole dataset. On the other
hand, features standardization computes the mean µi and variance σi for each
component (again across the whole dataset), and then each component is re-
scaled according to the following equation:

x∗
i =

xi − µi

σi
(4)
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We based the choice between standardization and normalization on the
evaluation of how much the clustering quality (measured in terms of cohesion
and separation indexes) changes with the value of the R radius for each one
of these techniques. Section 4.2.3 provides the related results.

4.2.2. Estimate of the BIRCH radius
The BIRCH algorithm is mainly driven by a radius parameter R, and

can run under a guaranteed (and configurable) memory limit. Considering
the whole size of the datasets used in our experiments (hundreds of MB)
and the amount of memory available on the machines used (several GB),
we can set the memory limit to a value that actually does not influence the
final clustering produced by the algorithm. Therefore, the coarse-grained
clustering process is only driven by the value of the BIRCH radiusR. Because
our main goal is to improve the scalability of the clustring system proposed
in [31], we aim to obtain an estimate of the radius R such that:

• The whole clustering and signature generation process can be com-
pleted in a limited amount of time (e.g., 1 hour).

• The quality of the resulting clustering, measured in terms of cohesion
and separation indexes, is as high as possible.

In the following, we discuss how the value of R influences the clustering
process and how to obtain a good estimate of this parameter.

4.2.3. Results
In this set of experiments, we repeated the clustering process for 24 differ-

ent values of the radius R in the range [10−5, 2.5] by using both normalization
and standardization for features re-scaling. The maximum value of 2.5 was
chosen for the following reason. With a (coarse-grained) features vector of
size seven and using the Euclidean distance measure, the maximum distance
between any two instances in our dataset is about 2.6, when considering nor-
malized features. Even if this distance increases when standardization is used
(it becomes equal to about 17), we noticed that increasing the radius above
2.5 did not produce any significant change in the results, and therefore we
decided to report results in [10−5, 2.5] for the standardized features as well.

Figure 3 reports the values of cohesion and separation for all the values
of the radius R. Similar to [31], we evaluated the separation by measuring
the percentage of separation indexes higher than 0.1. We can observe from
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the plot on the left that the radius R has a very limited impact on the
separation index. In particular, the percentage of separation indexes higher
than 0.1 goes from 86.6% to 88.5% for features standardization, and from
87.5% to 88.3% for features normalization. These results are consistent with
those reported in [31], where the authors achieved 90% on a different and
smaller dataset.
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Figure 3: Impact of the BIRCH radius on the coarse-grained clustering eval-
uated on Dataset 1. Plot on the left shows the percentage of separation
indexes higher than 0.1, whereas that on the right shows the average value
of the cohesion indexes. In both cases results achieved by using both feature
standardization (red) and normalization (blue) are shown.

In addition, we evaluated the average value of the cohesion indexes, which
is reported in Figure 3 (plot on the right). The average value has been
computed only for those clusters that contain at least two malware samples.
In fact, clusters containing just one malware sample have a cohesion equal
to 1 by definition, and including them would mistakenly bias the final result.
Indeed, the average cohesion is quite high, since it is in the range from 0.87
to 0.89 whatever the value of R is.

A third result concerns the time required to complete the whole clustering
and signature generation process. Figure 4 reports results obtained with
standardized features. Values of R smaller than 0.05 allow us to perform the
entire clustering and signature generation process very quickly, and generally
in less than one hour. For instance, the task can be completed in about 4
minutes when the radius is set to 0.001, in 12 minutes with a radius equal to
0.01 and in 50 minutes if the value of the BIRCH radius is 0.05. For values
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of R higher than 0.05 the processing time quickly increases, and therefore
values of the BIRCH radius higher than 0.05 are not convenient, especially
for large datasets.
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Figure 4: Time required to complete the clustering and signature generation
process for different values of the BIRCH radius on Dataset 1. Coarse-grain
features have been re-scaled with standardization.

A clear explanation of why this happens is provided by Figure 5. As
expected, by increasing the value of R the number of coarse-grained clusters
reduces, and their average size increases. On the other hand, the same figure
shows that the number of fine-grained clusters (i.e., the clusters from which
signatures are eventually extracted) does not change much with R and always
remains around 3,500. The main implication is that the higher R, the more
time the system spends to perform fine-grained clustering. Figure 4 shows
that this has a strong impact on the whole processing time, because the
precise hierarchical clustering algorithm (see Section 3.3.1) does not scale
well with the number of samples [19].

Now, we can use all these results in order to obtain an estimate of a
good value for the radius R. Let us assume that we want to use standardized
features: the reason is that the algorithm exhibited a more “regular” behavior
in the range of interest for R when standardized features where used. In
order to finally obtain good quality signatures, we would have coarse-grained
clusters as large as possible so that the final clustering is produced mainly on
the basis of the fine-grain clustering. This result is achieved by using a high

18



10
−6

10
−4

10
−2

10
0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

BIRCH Radius

 

 

Coarse−grain clusters
Fine−grain clusters
Signatures

Figure 5: Number of coarse and fine-grain clusters generated on Dataset 1
for different values of the BIRCH radius. The number of generated signatures
is also shown.

value for R. Nevertheless, we have seen from Figure 4 that values of R higher
than 0.05 are not suitable for practical uses since the fine-grained clustering
process becomes expensive from the point of view of the processing time.
From the point of view of the clustering quality, we do not observe in Figure 3
significative fluctuations of the percentage of separation indexes higher than
0.1 for the whole range of the considered values of R. This percentage is
always higher than 88% (the maximum is achieved for R=0.02) in the range
from 2 · 10−4 to 0.2. At the same time, the figure shows (on the right) that
the highest value of cohesion is achieved for R=0.005 and that very similar
results are achieved for values of R close to 0.005. From this, we conclude
that R=0.01 can be considered as the value of the radius that provides the
desired trade-off among the time required to perform the clustering process
and the results in terms of clustering quality. Therefore, we set R = 0.01
as the value to use in the comparison of our algorithm with the algorithm
proposed in [31] (see Section 4.3).

4.3. Experiments Set 2: Direct comparison with [31]

In this section we compare our system with the network-level clustering
system proposed in [31]. To perform a direct comparison, we use the malware
samples in Dataset 2 (which is the same dataset used in [31]). As discussed in
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Section 4.2.2, we set R=0.01 (the BIRCH threshold radius) and we used stan-
dardization to re-scale the features. We compared the two systems in terms
of detection rate (Section 4.3.1), false positive rate (Section 4.3.2), and in
terms of the time required to complete the clustering process (Section 4.3.3).

4.3.1. Detection Rate
We measured the ability of our signatures to detect current and future

malware samples. We would like to emphasize again that our malware dataset
contains no duplicates, i.e., future samples represent new malware samples
that are not part of the dataset used for signature generation. We mea-
sure the detection rate of our automatically generated signatures as follows.
First, for each month worth of malware samples in Dataset 2, we generated
a set of malware signatures. For example, Sig Feb09 represents the set of
network signatures extracted from malware samples collected in February
2009. Given the signatures in the set Sig Feb09, we matched them (using
Snort) over the HTTP traffic traces generated by malware samples collected
in Feb09, Mar09, Apr09, etc. We repeated the same process by testing the
signatures extracted from a given month on the HTTP traffic generated by
the malware collected in that month and in future months. We consider a
malware sample to be detected if its HTTP traffic causes at least one alert
to be raised. The detection results we obtained are summarized in Table 2.
Take as an example the first row. The signature set Sig Feb09 “covers” (i.e.,
is able to detect) 85.0% of the malware samples collected in Feb09, 50.4%
of the malware samples collected in Mar09, 41.9% of the malware samples
collected in Apr09, and so on. Therefore, it is easy to see that each of the
signature sets we generated is able to generalize to new, never-before-seen
malware samples. This is due to the fact that our network signatures aim
to “summarize” the behavior of a malware family, instead of single malware
samples. As we discussed before, while malware variants from a same family
can be generated at a high pace (e.g., using executable packing tools [16]),
and may look very much different from each other from a static analysis point
of view, when executed they will behave similarly, and therefore can be de-
tected by our behavioral network signatures. Naturally, as malware behavior
evolves, in time the detection rate of our network signatures will decrease.
Also, our approach is not able to detect “unique” malware samples, which
behave differently from any of the malware groups our behavioral clustering
algorithm was able to identify. Nonetheless, it is evident from Table 2 that if
we periodically update our signatures with a signature set automatically ex-
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tracted from the most recent malware samples, we can maintain a relatively
high detection rate on current and future malware samples.

Detection Rate %
Feb09 Mar09 Apr09 May09 Jun09 Jul09

Sig Feb09 85.0 (85.9) 50.4 (50.4) 41.9 (47.8) 24.6 (27.0) 19.2 (21.7) 22.3 (23.8)

Sig Mar09 - 66.0 (64.2) 41.2 (38.1) 28.4 (25.6) 30.8 (23.3) 44.9 (28.6)

Sig Apr09 - - 64.9 (63.1) 29.3 (26.4) 29.8 (27.6) 26.5 (21.6)

Sig May09 - - - 64.3 (59.5) 55.3 (46.7) 59.9 (42.5)

Sig Jun09 - - - - 66.8 (58.9) 57.4 (38.5)

Sig Jul09 - - - - - 65.5 (65.1)

Table 2: Signature detection rate on current and future malware samples on
Dataset 2. The results achieved in [31] are reported between parentheses.

In the same table, we also provide (in parentheses) the values of detection
rate achieved by [31] on the same dataset. It can be noticed that with
the signatures in the sets from Sig Mar09 to Sig Jul09 we always achieve a
detection rate higher than that obtained in [31]. We obtained improvements
from 0.4% (Sig Jul09/Jul09) up to 18.9% (Sig Jun09/Jul09 ). On the other
hand, signatures in the set Sig Feb09 provided a slightly worse detection
rate. Nevertheless, the detection rate values remain comparable with those
achieved in [31], and if we consider the results in Table 2 as a whole we can
certainly conclude that the system proposed here provides signatures that
are in general effective in detecting malware samples.

4.3.2. False Positive Rate
In order to measure the false positives generated by our network sig-

natures we proceeded as follows. For each of the signature sets Sig Feb09,
Sig Mar09, etc., we used Snort to match them against the second day of
legitimate HTTP traffic collected as described in Section 4.1. Table 3 sum-
marizes the results obtained and also reports the results achieved by the
behavioral clustering algorithm proposed in [31]. The column labeled as “FP
rate” reports the false positive rate, measured as the total number of alerts
generated by a given signature set divided by the number of HTTP requests
in the legitimate dataset. The numbers between parentheses represent the
absolute number of alerts raised. On the other hand, the column labeled as
“Distinct IPs” reports the fraction of distinct source IP addresses that were
deemed to be compromised, due to the fact that some of their HTTP traffic
matched any of our signatures. The numbers between parentheses represent
the absolute number of the source IPs for which an alert was raised. Having
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a small number of distinct IPs is important because the smaller this number,
the more false alarms are “concentrated” on a limited number of machines
that the network administrator could easily identify and further analyze.

FP rate % (samples) Distinct IPs % (number) Time (minutes)
New [31] New [31] New [31]

Sig Feb09 1 · 10−4
(14) 0 (0) 0.15 (3) 0 (0) 16 13

Sig Mar09 5 · 10−4
(61) 3 · 10−4

(38) 0.55 (11) 0.29 (6) 34 10

Sig Apr09 9 · 10−5
(11) 8 · 10−6

(1) 0.29 (6) 0.05 (1) 63 6

Sig May09 1 · 10−3
(128) 5 · 10−5

(6) 0.59 (12) 0.20 (4) 55 9

Sig Jun09 9 · 10−4
(112) 2 · 10−4

(26) 1.54 (31) 0.44 (9) 51 12

Sig Jul09 9 · 10−4
(116) 1 · 10−4

(18) 0.35 (7) 0.34 (7) 79 38

Table 3: False positives measured on one day of legitimate traffic (approxi-
mately 12M HTTP queries from 2,010 different source IPs). “Time” is the
processing time required to analyze the legitimate traffic with the given set
of signatures. Results achieved in [31] are also provided.

We provide the following interpretation of the results provided in Table 3.
First, we can observe that false positive rates generated by our new system are
slightly higher than those generated by [31]. Nevertheless, false positive rates
are always smaller than 10−3, which is a value that can be considered still
reasonable. Second, an increase in the processing time can also be observed.
In spite of this, the system is still able to “keep up” with the network traffic in
real-time: in fact, matching the signatures against one entire day of legitimate
traffic (about 12M HTTP queries from 2,010 distinct source IPs) is done in
one hour and twenty minutes at maximum. The motivation for the increased
processing time resides in the fact that the modified algorithm proposed
in this paper tends to generate more signatures (approximately three times
more) with respect to the original algorithm in [31]. Let us consider the
signature set Sig Feb09 as an example. Using the algorithm proposed in this
paper, the signatures set consists of 1,340 signatures. On the other hand,
the algorithm proposed in [31] generated 544 signatures that were reduced
to 446 after a pruning step.

In addition, we also wanted to evaluate the detection rate achieved with
a 0% of false positive rate. To achieve this, for each set of signatures, we
manually pruned all the signatures that generated false alarms, thus effec-
tively reducing the false positives of the new pruned signature sets to zero.
Then, we used the remaining signatures to reevaluate the detection rate on
the second day of legitimate traffic. Take as an example the signature set
Sig Feb09. We removed from the original signatures set the five signatures

22



that were responsible for the resulting 14 false alarms (see Table 3). By
following this procedure, we removed 23 signatures from the signature set
Sig Jul09. Finally, using the remaining set of signatures we evaluated the
detection rate in the same way described in Section 4.3.1. The results pro-
vided in Table 4 show that the detection rate values remains very close to
those achieved by using the whole signature sets. The reduction is 2.8% in
the worst case and it is less than 1% in 17 out of the 21 cases. In addition,
the same table marks in bold the detection rate values that resulted higher
than those obtained in [31] (where the false positive rate was generally higher
than 0% as shown by Table 3). Table 4 shows that our algorithm achieves an
higher detection rate in 13 out of the 21 cases even if we use the new pruned
signatures sets.

Detection Rate %
Feb09 Mar09 Apr09 May09 Jun09 Jul09

Sig Feb09 84.9 (85.0) 50.3 (50.4) 41.8 (41.9) 24.3 (24.6) 18.9 (19.2) 22.1 (22.3)

Sig Mar09 - 65.9 (66.0) 40.6 (41.2) 28.0 (28.4) 30.2 (30.8) 44.6 (44.9)

Sig Apr09 - - 63.7 (64.9) 26.5 (29.3) 27.0 (29.8) 24.2 (26.5)

Sig May09 - - - 64.1 (64.3) 54.8 (55.3) 59.6 (59.9)

Sig Jun09 - - - - 66.2 (66.8) 56.5 (57.4)

Sig Jul09 - - - - - 65.0 (65.5)

Table 4: Signature detection rate on current and future malware samples
achieved on Dataset 2 using the new pruned signature sets. Signatures that
generated false alarms were manually removed in order to achieve 0% false
positive rate. The values in parentheses represent the detection rate achieved
by using the original signature sets (see Table 3 for the corresponding false
positives). Detection rate values higher than those achieved in [31] are re-
ported in bold.

Overall, we can observe that scalability comes at a cost, because of the
increase in the number of signatures and the slight decrease in signature
quality. However, our experimental results support the conclusion that we
can achieve a significant decrease in processing time compared to [31] (see
Section 4.3.3) while still obtaining quality signatures.

4.3.3. Processing Time
In this section we analyze the clustering results and the processing time

required to cluster the malware samples in Dataset 2. The results are re-
ported in Table 5. We report the number of coarse-grained and fine-grained
clusters generated and the processing time required to perform coarse-grained
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clustering, fine-grained clustering, and finally, the time required to generate
signatures. The results related to the system proposed in [31] are reported
between parentheses. It is worth noting that for [31] the processing time
under the column “signatures” includes both the meta-clustering phase and
the signatures generation process.

Table 5 shows that our algorithm tends to generate a smaller number of
clusters, compared to [31]. In particular, this difference is more relevant for
the number of coarse-grained clusters. For instance, the number of coarse-
grained clusters generated by our algorithm on the dataset May09 is 2,426
whereas in [31] it was 3,339. Differences in the number of clusters are less
evident if we look at the number of fine-grained clusters.

Number of Clusters Processing Time

dataset samples coarse fine coarse fine signatures
Feb09 4,758 2,305 (2,538) 2,594 (2,660) 25s (34m) 2m24s (22m) 3m22s (6h55m)

Mar09 3,563 1,869 (2,160) 2,103 (2,196) 7s (19m) 2m11s (3m) 2m45s (1h3m)

Apr09 2,274 1,128 (1,325) 1,342 (1,330) 8s (8m) 1m16s (5m) 3m58s (28m)

May09 4,861 2,426 (3,339) 3,068 (3,423) 13s (56m) 3m25s (8m) 4m48s (2h52m)

Jun09 4,677 2,427 (3,304) 2,935 (3,344) 9s (57m) 3m11s (3m) 3m52s (37m)

Jul09 5,587 2,615 (3,358) 3,105 (3,390) 9s (1h5m) 3m30s (5m) 5m5s (2h22m)

Table 5: Summary of clustering results on Dataset 2. In parentheses, results
achieved by the algorithm proposed in [31] are reported.

One of the main goals of this work was to make the system proposed in
[31] more scalable. We achieved this goal, since our new system provides
a significant reduction of the processing time for clustering and signatures
generation. For instance, we reduced the time required to perform coarse-
grained clustering of the malware samples of Jul09 from 1 hour and 5 minutes
to 9 seconds only. In general, we can observe that in these experiments, the
system required a maximum of 25 seconds to complete the coarse-grained
clustering step.

We also improved on the fine-grained clustering step. We achieved this
by first computing the “approximate radius” of the coarse-grained clusters;
basically, we compute the maximum distance (based on the coarse-grained
features) among malware samples assigned to the same coarse-grained clus-
ter. Then, we perform fine-grained clustering only if this distance exceeds a
given threshold that we empirically set to the value of � = 1 · 10−9. In other
words, we do not attempt to split coarse-grained clusters that are already
extremely compact. This optimization is particularly effective for datasets
containing a large number of polymorphic variants of the same malware. The
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reason is that malware samples that are grouped in such extremely compact
coarse-grained clusters typically exhibit identical behavior and thus have the
same values of coarse-grained features. Moreover, because they are vari-
ants of the same malware, they exhibit very strong structural similarity. As
a consequence, the single-linkage hierarchical clustering algorithm used for
fine-grained clustering would not split these clusters. Therefore, in these
cases we can simply skip the fine-grained clustering step, with a great saving
of processing time.

Furthermore, it is worth noting that the efficiency of the fine-grained
clustering could be further improved in several ways. First, algorithms for
the efficient computation of the structural distance matrices can be used (e.g.
[20]). Second, it would be possible to compute the matrices containing the
distances for the fine-grained clustering phase in a parallel fashion. Third,
it would be trivial to parallelize the fine-grain clustering step, since each
coarse-grained cluster can be further independently refined.

Finally, we have also reduced the time required to generate signatures,
as shown by the “signatures” column in Table 5. Given that the proposed
system is able to obtain high quality clustering results at the end of the
fine-grained clustering step, the meta-clustering step is not required. This
provides a significant saving of processing time. In fact, while [31] required
up to 7 hours to complete the signature generation step, our system requires
no more than 5 minutes for Dataset 2.

4.4. Experiments Set 3: Evaluation of the system scalability

The last set of experiments was aimed at evaluating the scalability of
our system. In order to perform this evaluation we clustered a large dataset
of malware (Dataset 3 ) consisting of more than 27,000 samples. We first
evaluated the processing time required to accomplish the task of clustering
malware samples and generating signatures. Then, we evaluated the quality
of the resulting clustering in terms of cohesion and separation indexes. In
order to perform this evaluation we considered seven different values of the
R radius in the range from 0.005 to 0.09. We applied standardization to
re-scale the coarse-grained features.

Table 6 shows the results of the clustering process. We can notice that the
clustering process splits the malware dataset into about 16,000 fine-grained
clusters. Table 6 also shows that the maximum size of the generated clusters
is of several hundreds (even thousands) of malware samples. For instance,
the largest cluster generated by the system when the radius R was set to 0.01
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BIRCH Number of Clusters Cluster size

Radius coarse fine maximum
0.005 12,513 16,743 838

0.007 12,039 16,315 577

0.01 11,258 16,197 900

0.02 9,160 15,955 1255

0.05 6,629 15,165 1770

0.07 5,664 15,428 2227

0.09 4,808 16,052 2243

Table 6: Clustering results on Dataset 3 for different values of the BIRCH
radius.

contained 900 malware samples. This result is absolutely reasonable, since
we observed that some of the malware families in our datasets had thousands
of variants. For instance, we counted 3,863 malware samples labeled by Avira
AV as TR/Crypt, 2,809 labeled as TR/Drop, and 1,975 as TR/Dldr.

Table 7 reports the processing times. We can see that our new system
scales quite well as it is always able to perform clustering and generate the
signatures from Dataset 3 in less than four hours. The task that consumed
the most processing time was the signature generation process, since it takes
at least one hour and thirty minutes to complete.

Finally, we evaluated the quality of the obtained clustering in terms of co-
hesion and separation. As we did for Dataset 1 we computed the percentage
of separation indexes higher than 0.1 and the average cohesion index. The
results are reported in Figure 6, with the values of separation and cohesion
provided by two separate plots. The two plots show that our algorithm is
able to create a high quality clustering. The percentage of separation indexes
higher than 0.1 is about 80% independently from the specific value of the ra-
dius R. On the other hand, the average of cohesion is around 0.73 for all the

BIRCH Processing Time

Radius coarse fine sig. gener. signatures
0.005 41s 19m30s 1h31m44s 13166

0.007 41s 20m8s 1h42m20s 13940

0.01 42s 25m15s 1h54m42s 14349

0.02 40s 32m5s 2h6m30s 14980

0.05 41s 47m14s 2h37m29s 16191

0.07 41s 55m55s 2h6m35s 15857

0.09 40s 1h5m44s 2h12m26s 15608

Table 7: Time required to complete the clustering process on Dataset 3 for
different values of the BIRCH radius.
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Figure 6: Impact of the BIRCH radius on the final clustering quality evalu-
ated on Dataset 3. The plot on the left shows the percentage of separation
indexes higher than 0.1, whereas the plot on the right shows the average
value of the cohesion indexes. We used standardization to re-scale the coarse-
grained features.

values of R considered in this experiment.

5. Limitations and Future Work

Like previous studies that rely on executing malware samples to per-
form behavioral analysis (including system-level behavioral malware clus-
tering systems) [21, 7, 8], our analysis is limited to malware samples that
perform some “interesting actions” (i.e., malicious activities) during the ex-
ecution time T . Unfortunately, these interesting actions (both at the system
and network level) may be triggered by events [10, 25] such as a particular
date, the way the user interacts with the infected machine, etc. In such
cases, techniques similar to the ones proposed in [23] may be used to identify
and activate such triggers. Trigger-based malware analysis is a challenging
research topic out of the scope of this paper.

Since we perform an analysis of the content of HTTP requests and re-
sponses, encryption represents our main limitation. Some malware writers
may decide to use the HTTPS protocol in their malware samples, instead of
HTTP. However, it is common for enterprise networks, for example, to force
HTTPS traffic to traverse an edge proxy, and to use a “man-in-the-middle”
approach to split HTTPS flows by installing enterprise-specific SSL/TLS
root certificates on each host within the enterprise network. This enables
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the proxy to observe the underlying unencrypted HTTP traffic, which is
re-encrypted before leaving the network edge, and to apply a number of
security and privacy checks. Therefore, it is possible for such networks to
deploy network signatures for detecting malware traffic, even when malware
uses HTTPS. Also, HTTPS may play against the malware itself. Even if no
“main-in-the-middle” on HTTPS communications is employed, the proxy can
verify if the public key (which is transmitted in clear text) provided by the
contacted Web server is signed by a legitimate certification authority (CA).
Assuming that a reputable CA will not certify a malicious website (e.g., a
botnet C&C website), the malicious HTTPS traffic can be identified and
blocked. A detailed analysis of HTTPS-based malware is out of the scope of
this paper, and will be part of our future work.

Evasion attacks, such as noise injection attacks [29] and other similar
attacks [27], may affect the results of our clustering system and network
signatures. Since we run the malware in a protected environment, it may
be possible to identify what HTTP requests are actually performed to send
or receive information critical for the correct functioning of the malware,
and what requests are instead noise created to mislead the clustering and
the signature generation algorithm. This may be accomplished by correlating
network traffic with system- and network-level malicious activities performed
by the malware [18], and by identifying whether the malware is injecting
randomly generated/selected elements into the network traffic. However, a
generic solution to sophisticated noise injection attacks remains a challenging
research problem. We would like to emphasize that such kind of attacks
may be launched against system-level malware clustering (such as [7, 8])
and signature generation algorithms as well, e.g., by creating “noisy” system
events that do not serve real malicious purposes, but simply try to mislead
the clustering and the generation of a good detection model. Therefore, we
believe this is a limitation which is in common to most malware analysis-
based systems.

6. Conclusions

In this paper, we presented a new scalable network-level behavioral mal-
ware clustering system, which focuses on HTTP-based malware and clusters
malware samples based on a notion of structural similarity between the ma-
licious HTTP traffic they generate. The output of our clustering system
can be readily used as input for algorithms that automatically generate net-
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work signatures, thus enabling the detection of HTTP-based malware traffic,
including botnet C&C traffic, at the network edge.

Our experimental results on about 65,000 distinct malware samples con-
firm the effectiveness of the proposed clustering system, and show that we
can achieve a much better scalability compared to previous work by reducing
processing time from several hours to a few minutes while producing quality
malware detection signatures at the same time.
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