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Abstract—In this paper, we propose Segugio, a novel defense
system that allows for efficiently tracking the occurrence of
new malware-control domain names in very large ISP networks.
Segugio passively monitors the DNS traffic to build a machine-
domain bipartite graph representing who is querying what. After
labeling nodes in this query behavior graph that are known to be
either benign or malware-related, we propose a novel approach to
accurately detect previously unknown malware-control domains.

We implemented a proof-of-concept version of Segugio and
deployed it in large ISP networks that serve millions of users. Our
experimental results show that Segugio can track the occurrence
of new malware-control domains with up to 94% true positives
(TPs) at less than 0.1% false positives (FPs). In addition, we
provide the following results: (1) we show that Segugio can
also detect control domains related to new, previously unseen
malware families, with 85% TPs at 0.1% FPs; (2) Segugio’s
detection models learned on traffic from a given ISP network
can be deployed into a different ISP network and still achieve
very high detection accuracy; (3) new malware-control domains
can be detected days or even weeks before they appear in a large
commercial domain name blacklist; and (4) we show that Segugio
clearly outperforms Notos, a previously proposed domain name
reputation system.

I. INTRODUCTION

Despite extensive research efforts, malicious software (or
malware) is still at large. In fact, numbers clearly show that
malware infections continue to be on the rise [1], [2]. Because
malware is at the root of most of today’s cyber-crime, it is
of utmost importance to persist in our battle to defeat it, or
at the very least to severely cripple its ability to cause harm
by tracking and blocking its command-and-control (C&C)
communications.

Our Research. In this paper, we propose Segugio1, a novel
defense system that allows for efficiently tracking the occur-
rence of new malware-control domain names in very large ISP
networks. Segugio automatically learns how to discover new
malware-control domain names by monitoring the DNS query
behavior of both known malware-infected machines as well as
benign (i.e., “non-infected”) machines. Our work is based on
the following simple but fundamental intuitions: (1) in time,
as the infections evolve, infected machines tend to query new
malware-control domains; (2) machines infected with the same
malware, or more precisely malware family, tend to query
the same (or a partially overlapping) set of malware-control
domains; and (3) benign machines have no reason to query
malware-control domains that exist for the sole purpose of
providing malware C&C capabilities or other “malware-only”
functionalities.

1The name Segugio refers to an Italian hound dog breed.
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Fig. 1: Machine-domain annotated graph. By observing who is querying what,
we can infer that d3 is likely a malware-related domain, and consequently that
MD is likely infected.

Segugio’s main goal is to track current malware infections
to discover where (i.e. to what new names) malware-control
domains relocate. In addition, we will show that Segugio can
also discover malware-control domains related to new malware
families previously unseen in the monitored networks.

To put the above observations and goals into practice, we
propose an efficient strategy. First, Segugio passively observes
the DNS traffic between the users’ machines and the ISP’s
local DNS resolver to build an annotated bipartite graph
representing who is querying what, as shown in Figure 1. In
this graph, nodes represent either machines or domain names,
and an edge connects a machine to a domain if that machine
queried the domain during the considered traffic observation
time window. The domain nodes are augmented with a number
of annotations, such as the set of IPs a domain resolved
to, its domain activity (e.g., how long ago a domain was
first queried), etc. Then, we label as malware those nodes
that are already known to be related to malware control
functionalities. For example, we can first label known malware
C&C domains, and as a consequence also propagate that label
to the machines, by marking any machine that queries a C&C
domain as malware-infected. Similarly, we can label as benign
those domains that belong to a whitelist of popular domains
(e.g., according to alexa.com), and consequently propagate
the benign label to machines that query exclusively known
benign domains. All remaining machine nodes are labeled
as unknown, because they do not query any known malware
domain and query at least one unknown domain, whose true
nature is not yet known. Segugio aims to efficiently classify
these unknown graph nodes.

Approach. Based on the machine-domain bipartite graph
(Figure 1), we can notice that unknown domains that are con-
sistently queried only (or mostly) by known malware-infected
machines are likely themselves malware-related, especially if
they have been active only for a very short time or point
to previously abused IP space. In essence, we combine the
machines’ query behavior (i.e., who is querying what) with
a number of other domain name features (annotated in the
graph) to compute the probability that a domain name is used
for malware control or that a machine is infected.



Main Differences w.r.t. Previous Work. Recently, researchers
have proposed domain name reputation systems [3], [4] as a
way to detect malicious domains, by modeling historic domain-
IP mappings, using features of the domain name strings,
and leveraging past evidence of malicious content hosted at
those domains. These systems mainly aim to detect malicious
domains in general, including phishing, spam domains, etc.

Notice that while both Notos [3] and Exposure [4] leverage
information derived from domain-to-IP mappings, they do not
leverage the query behavior of the machines “below” a local
DNS server. Unlike [3], [4], our work focuses specifically
on accurately tracking new “malware-only” domains by mon-
itoring the DNS query behavior of ISP network users. In
Section V, we show that our approach yields both a lower
false positive rate and much higher true positives, compared
to Notos [3] (we perform a direct comparison to a version of
Notos provided by the original authors of that system).

Kopis [5] has a goal more similar to ours: detect malware-
related domains. However, Kopis’s features (e.g., requester
diversity and requester profile) are engineered specifically for
modeling traffic collected at authoritative name servers, or
at top-level-domain (TLD) servers, thus requiring access to
authority-level DNS traffic [5]. This type of global access to
DNS traffic is extremely difficult to obtain, and can only be
achieved in close collaboration with large DNS zone operators.
Furthermore, due to the target deployment location, Kopis may
allow for detecting only malware domains that end with a
specific TLD (e.g., .ca). Unlike Kopis, Segugio allows for
efficiently detecting new malware-control domains regardless
of their TLD, by monitoring local ISP traffic (namely, DNS
traffic between ISP users and their local DNS resolver).
Therefore, Segugio can be independently deployed by ISP
network administrators, without the need of a collaboration
with external DNS operators.

Another work related to ours is [6], which uses graphical
models to detect malicious domains via loopy belief propa-
gation [7]. Unlike [6], which is limited to using machine-
domain relationships, Segugio can complement information
about the query behavior of the machines with properties of
the queried domain names (e.g., their lifetime and resolved IP
information). This allows us to achieve a significantly higher
accuracy, compared to [6], especially at low false positive rates.
In addition, the approach in [6] does not scale well to the very
large ISP-level DNS traffic that is the target of our work. On
the other hand, Segugio is specifically designed to be highly
efficient and has been evaluated in multiple very large ISP
networks. To concretely compare our own Segugio system to
the approach proposed in [6], we implemented loopy belief
propagation using the GraphLab [8] distributed computing
framework, and performed a number of pilot experiments
over the same datasets we use for evaluating Segugio (see
Section III). Our results indicate that Segugio on average can
achieve 45% better accuracy, compared to [6]. In addition,
the efficient classification approach we propose in this paper
allows us to process an entire day of DNS traffic in minutes,
rather the tens of hours required by loopy belief propagation.

We further discuss the differences between Segugio and
other related work in Section VII.

Summary of Our Contributions. In summary, with Segugio

we make the following contributions:

• We propose a novel behavior-based system that can
efficiently detect the occurrence of new malware-
control domains by tracking the DNS query behavior
of malware infections in large ISP networks.

• We implemented a proof-of-concept version of Segu-
gio, and deployed it in two large ISP networks that
serve millions of users. Our experimental results show
that Segugio in average can classify an entire day
worth of ISP-level DNS traffic in just a few minutes,
achieving a true positive (TP) rate above 94% at less
than 0.1% false positives (FPs).

• We provide the following additional results: (1) we
show that Segugio can also detect malware-control do-
mains related to previously unseen malware families,
with 85% TPs at 0.1% FPs; (2) Segugio’s detection
models learned on traffic from an ISP network can be
deployed into another ISP network and still achieve
very high detection accuracy; (3) new malware-control
domains can be detected days or even weeks before
they appear in a large commercial domain name black-
list; and (4) we show that Segugio clearly outperforms
Notos [3].

II. SEGUGIO SYSTEM DESCRIPTION

Segugio’s main goal is to track the DNS query behavior
of current malware infected machines to discover their new
malware-control domains. In addition, in Section IV-C we
show that Segugio is also capable of discovering domains
related to malware families previously unseen in the monitored
networks. In this section, we first motivate the intuitions
on which our system is based, and then describe Segugio’s
components.

Intuitions. As mentioned in Section I, Segugio is based on
the following main intuitions: (1) in time, infected machines
tend to query new malware-related domains; (2) machines
infected with the same malware family tend to query partially
overlapping sets of malware-control domains; and (3) benign
machines have no reason to query domains that exist for the
sole purpose of providing “malware-only” functionalities.

We motivate the above three intuitions as follows (in
reverse order), deferring a discussion of possible limitations
and corner cases to Section VI. Intuition (3) is motivated by the
fact that most malware-control domains host no benign content
whatsoever, because they are often registered exclusively for
supporting malware operations. This is particularly true for “re-
cently activated” domains. Therefore, non-infected machines
would have no reason to reach out to such domains. Intuition
(2) relates to the fact that different variants of a same original
malware are semantically similar, and will therefore exhibit
similar network behavior. Finally, intuition (1) is motivated
by the fact that malware needs to employ some level of
network agility, to avoid being trivially blacklisted. To this
end, malware-control servers will periodically relocate to new
domain names and/or IP addresses. This intuition is further
supported by the measurements on real-world ISP-level DNS
traffic reported in Figure 3. During one day of traffic observa-
tion, roughly 70% of the malware-infected machines queried
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Fig. 2: Segugio system overview.
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Fig. 3: Distribution of the number of malware-control domains queried by
infected machines. About 70% of known malware-infected machines query
more than one malware domain.

more than one malware-control domain name (Figure 3 also
shows that it is extremely unlikely that an infected machine
queries more than twenty malware-control domains in one
day). We also verified that these results are consistent across
different observation days and different large ISP networks.

A. System Components

We now describe the components of our Segugio system,
which are also shown in Figure 2.

1) Machine-Domain Behavior Graph: As a first step, Segu-
gio monitors the DNS traffic between the machines in a large
ISP network and their local DNS server, for a given observation
time window T (e.g., one day). Accordingly, it constructs a
machine-domain graph that describes who is querying what.
Notice that we are only interested in authoritative DNS re-
sponses that map a domain to a set of valid IP addresses.

Based on the monitored traffic, Segugio builds an undi-
rected bipartite graph G = (M,D,E) that captures the DNS
query behavior of machines in the ISP network. Nodes in
the set M represent machines, whereas nodes in D represent
domain names. A machine mi ∈M is connected to a domain
dj ∈ D by an edge eij ∈ E, if mi queried dj during the
observation window T .

Node Annotations and Labeling. We augment each domain
node dj ∈ D by recording the set of IP addresses that
the domain pointed to during the observation window T (as
collected from the live DNS traffic). In addition, we estimate
how long ago (w.r.t. to T ) the domain was first queried.

We then label machine and domain nodes as either
malware, benign, or unknown. Specifically, by leveraging a
small number of public and private malware C&C domain
blacklists, we can first label known malware-control domains
as malware. To label benign domains, we leverage the top
one-million most popular second-level domains according to

alexa.com. Specifically, we label as benign those domains
whose effective second-level domain2 consistently appeared
in the top one-million alexa.com list for about one year (see
Section III for details). These domains are unlikely to be used
for malware control. Notice also that we take great care to
exclude certain “free registration” second-level domains from
our whitelist, such as dynamic DNS domains, blog domains,
etc., because subdomains of these second-level domains can
be freely registered and are very often abused. At the same
time, we acknowledge that perfectly filtering the whitelist is
difficult, and that some amount of noise (i.e., a few malicious
domains) may still be present. In Section IV-D we discuss the
potential impact of such whitelist noise, which may cause us
to somewhat overestimate our false positives.

All remaining domains are labeled as unknown, since we
don’t have enough information about their true nature. These
unknown domains are the ones we ultimately want to classify,
to discover previously unknown malware-control domains.
Finally, we label machines as malware, if they query malware-
control domains, in that they are highly likely infected. We can
also label as benign those machines that query only known
benign domains. All other machines are labeled as unknown.

2) Graph Pruning: Because we aim to monitor all DNS
traffic in large ISP networks, our machine-domain graph G may
contain several million machine nodes, hundreds of millions
of distinct domain nodes, and potentially billions of edges. To
boost performance and reduce noise, we prune the graph using
the following conservative rules:

(R1) We identify and discard machines that are essentially
“inactive”, because it is unlikely that they can help our
detection system. To be conservative, we only filter out
machines that query 6 5 domains.

(R2) In our ISP test networks, we observed a number of
machine nodes that likely represent large proxies or
DNS forwarders serving an entire enterprise network.
Such devices appear as nodes with very high degree,
and tend to introduce substantial levels of “noise”.
We therefore filter them by discarding all machines
that query > θd domains. Empirically setting θd to
be the 99.99-percentile of the distribution of number
of domains queried by a machine was sufficient to
remove these outlier machines.

(R3) The graph G may contain a number of domain nodes
that are queried by only one or very few machines.

2We compute the effective second-level domain by leveraging the Mozilla
Public Suffix List (publicsuffix.org) augmented with a large custom list of
DNS zones owned by dynamic DNS providers.



Because we are primarily interested in detecting mal-
ware domains that affect a meaningful number of
victim machines, we discard all domain names that
are queried by only one machine.

(R4) Very popular domains, i.e., domains that are queried
by a very large fraction of all machines in the mon-
itored network, are unlikely to be malware-control
domains. For example, assume we monitor an ISP
network serving three million users, in which a domain
d is queried by one million of them. If d was a
malware-control domain, this would mean that 1/3
of the ISP population is infected with the same
malware (or malware family). By extrapolation, this
would probably also mean that hundreds of millions
of machines around the Internet may be infected with
the same malware. While this scenario cannot be
completely ruled out, such successful malwares are
quite rare. In addition, due to the high number of
victims, the malware would draw immediate attention
from the security community, likely initiating exten-
sive remediation and take down efforts. Therefore,
we discard all domain names whose effective second-
level domain is queried by > θm machines, where
θm is conservatively set to 1/3 of all machines in the
network, in our experiments.

To make our pruning even more conservative, we apply two
small exceptions to the above rules. Machines that are labeled
as malware are not pruned away by rule (R1), even if they
query very few domains. The reason is that a machine may
appear to be basically “inactive”, but the malware running on
the machine may periodically query a very small list (e.g., two
or three) malware-control domains. We therefore keep those
machine nodes, as they may (slightly) help to detect currently
unknown malware domains. Similarly, known malware-control
domains are kept in the graph, even if they are queried by only
one machine (exception to R3).

3) Behavior-Based Classifier: We now describe how we
measure the features that describe unknown (i.e., to-be-
classified) domains, which aim to capture the intuitions we
outlined at the beginning of Section II. Then, we explain how
the behavior-based classifier is trained and deployed. We divide
the domain features in three groups:

(F1) Machine Behavior (3 features):
Consider Figure 4. Let S be the set of machines
that query domain d, I ⊆ S be the subset of these
machines that are known to be infected (i.e., are
labeled as malware), and U ⊆ S be the subset
of machine labeled as unknown. We measure three
features: the fraction of known infected machines,
m = |I|/|S|; the fraction of “unknown” machines,
u = |U |/|S|; and the total number of machines,
t = |S|, that query d. These features try to capture
the fact that the larger the total number t and fraction
m of infected machines that query d, the higher the
probability that d is a malware-control domain.

(F2) Domain Activity (4 features):
Intuitively, newly seen domains are more likely to be
malware-related, if they are queried mostly by known
malware-infected machines. Registration information

may be of help, but some malware domains may
have a long registration period and remain “dormant”
for some time, waiting to be used by the attackers.
Instead of measuring the “age” of a domain, we aim
to capture its domain activity. Let tnow be the day in
which the graph G was built, and tpast be n days
in the past, w.r.t. tnow (e.g., we use n = 14 in
our experiments). We measure the total number of
days in which d was actively queried within the time
window [tnow−tpast], and the number of consecutive
days ending with tnow in which d was queried. We
similarly measure these two features for the effective
second-level domain of d.

(F3) IP Abuse (4 features):
Let A be the set of IPs to which d resolved during
our observation window T . We would like to know
how many of these IPs have been pointed to in the
past by already known malware-control domains. To
this end, we leverage a large passive DNS database.
We consider a time period W preceding tnow (e.g.,
we set W = 5 months, in our experiments). We then
measure the fraction of IPs in A that were associated
to known malware domains during W . Also, for each
IP in A we consider its /24 prefix, and measure the
fraction of such prefixes that match an IP that was
pointed to by known malware domains during W .
Similarly, we measure the number of IPs and /24’s
that were used by unknown domains during W .

Past Feature Use. It is worth noting that while information
similar to our IP abuse features (F3) has been used in previous
work, e.g., in Notos [3] and Exposure [4], we show in
Section IV-B that those features are indeed helpful but not
critical for Segugio to achieve high accuracy. In fact, the
combination of our feature groups (F1) and (F2) by themselves
already allows us to obtain quite accurate classification results.
In addition, in Section V we show that by combining the IP
abuse features with our machine behavior features, Segugio
outperforms Notos.

Classifier Operation. To put Segugio in operation, we proceed
as follows. Let C be Segugio’s domain classifier trained
during a traffic observation window T1 (the training process
is explained later in this section). Our main objective is to
use C to classify unknown domains observed in DNS traffic
from a different time window T2. To this end, we first build a
machine-domain graph GT2 on traffic from T2. Then, for each
unknown (i.e., to be classified) domain d ∈ GT2

, we measure
the statistical features defined earlier, as shown in Figure 4.
Then, we input d’s feature vector into the previously trained
classifier C, which computes a malware score for d. If this
score is above a (tunable) detection threshold, we label d as
malware. The detection threshold can be chosen to obtain the
desired trade-off between true and false positives, which we
evaluate in Section IV.

Training Dataset. To obtain the dataset used to train the
classifier C, we proceed as follows (see Figure 5). Let T1 be
the “training time” (e.g., one day). For each benign or malware
domain d observed during T1, we first temporarily “hide” its
true label, and then measure its features as defined earlier.
The reason why we need to temporarily hide the ground truth
related to d is precisely to enable feature measurement. In
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Fig. 5: Training set preparation: extracting the feature vector for a known malware-control domain. Notice that “hiding” d’s label causes machine M1 to also
be labeled as unknown, because in this example d was the only known malware-control domain queried by M1. Machines M2, M3, M4 queried some other
known malware domains, and therefore keep their original labels.

fact, our definition of features (see above) applies to unknown
domains only, because if a domain is already known to be
malware, its first two machine behavior features, for example,
would be by definition always one and zero, respectively.

Notice that hiding d’s true label may have an impact on
the label assigned to the machines that query it. For example,
if d is a malware domain and there exists a machine that was
labeled as malware only because it queried d, once we hide d’s
ground truth that machine should also be relabeled as unknown,
as shown for machine M1 in the example in Figure 5. After
measuring the features, we label the obtained feature vector
with d’s original label (see Figure 5). By repeating this process
for every malware and benign domain, we obtain a dataset
that can be used to train the statistical classifier C (e.g., using
Random Forest [9], Logistic Regression [10], etc.).

III. EXPERIMENTAL SETUP

We deployed Segugio into two large regional ISP networks,
one located in the North West Coast and one in the West
United States. We refer to these ISP networks simply as ISP1

and ISP2. Notice that this paper is part of an IRB-approved
study; appropriate steps have been taken by our data provider
to minimize privacy risks for the network users.

By inspecting the DNS traffic between the ISPs’ customers
and their local resolvers, we observed between roughly one
to four million distinct machine identifiers per day (notice
that the identifiers we were provided were stable, and did not
appreciably suffer from DHCP effects, for example). Most of
our experiments with Segugio were conducted in the month of
April, 2013. In particular, we randomly sampled four days of
traffic from that month, per each of the ISP networks. Table I
summarizes the number of distinct machines and domains
observed in the traffic, and the (randomly) sampled days used
in our evaluation.

Domain and Machine Labeling. To label the known malware
domain names, we check if its entire domain name string
matches a domain in our C&C blacklist. We made use of
a large commercial C&C domain blacklist containing tens

of thousands of recently discovered malware-control domains
(in Section IV-E we also report on experiments using public
blacklists). The advantage of using a commercial blacklist, is
that domains are carefully vetted by expert threat analysts,
to minimize noise (i.e., mislabeled benign domains). All ma-
chines that query a known C&C domain are also labeled as
malware, because we assume benign machines would have no
reason to query “malware-only” C&C domains (see Section VI
for possible limitations).

To label known benign domains, we collected a one-
year archive of popular effective second-level domain (e2LD)
rankings according to alexa.com. Specifically, every day for
one year, we collected the list of top one million (1M, for short)
popular domain names. Then, we searched this large archive
for domain names that consistently appeared in the top 1M
list for the entire year. This produced a list of 458,564 popular
e2LDs, which we used to label benign domains. Accordingly,
we label a domains d as benign if its e2LD matches the
whitelist. For example, we would label www.bbc.co.uk as
benign, because its e2LD is bbc.co.uk, which is whitelisted.

The reason why we only add “consistently top” e2LDs
to our whitelist, is that sometimes malicious domains may
become “popular” (due to a high number of victims) and
enter the top 1M list for a brief period of time. The vast
majority of such domains can be filtered out by the filtering
strategy described above. In addition, we filter out e2LDs
that allow for the “free registration” of subdomains, such as
popular blog-publishing services or dynamic DNS domains
(e.g., wordpress.com and dyndns.com), as their subdomains
are often abused by attackers. At the same time, as mentioned
in Section II-A1, we acknowledge that perfectly filtering all
such “special” e2LDs may be difficult, and some small amount
of noise may remain in the whitelist. In Section IV-D we
discuss how the possible remaining noise may potentially
inflate the number of false positives we measure. Notice that
such whitelist noise may cause us to underestimate Segugio’s
true accuracy (i.e., the accuracy we could otherwise achieve
with a perfectly “clean” whitelist), and we therefore believe
this is acceptable because it would not artificially favor our



evaluation.

Table I summarizes the number of benign and malware
domains and machines we observed.

TABLE I: Experiment data (before graph pruning).

Traffic Source Num. of Domains Num. of Machines EdgesTotal Benign Malware Total Malware
ISP1, Day 1 (Apr.02) ∼ 9M ∼ 1.8M 13,239 ∼ 1.6M 50,339 ∼ 319.9M
ISP1, Day 2 (Apr.15) ∼ 9M ∼ 1.9M 20,277 ∼ 1.6M 49,944 ∼ 324.2M
ISP1, Day 3 (Apr.23) ∼ 8.2M ∼ 1.8M 18,020 ∼ 1.6M 47,506 ∼ 310.7M
ISP1, Day 4 (Apr.28) ∼ 10M ∼ 1.9M 11,597 ∼ 1.6M 44,299 ∼ 312.3M
ISP2, Day 1 (Apr.08) ∼ 10.2M ∼ 2M 15,706 ∼ 4M 78,990 ∼ 352.6M
ISP2, Day 2 (Apr.20) ∼ 9.8M ∼ 2M 14,279 ∼ 3.9M 74,098 ∼ 347.1M
ISP2, Day 3 (Apr.26) ∼ 9.6M ∼ 2M 36,758 ∼ 3.9M 69,773 ∼ 333.7M
ISP2, Day 4 (Apr.30) ∼ 10.6M ∼ 2.2M 13,467 ∼ 4M 72,519 ∼ 355.6M

Domain Node Annotations. For each day of traffic monitor-
ing, we build a machine-domain bipartite graph, as discussed
in Section II-A. Each domain node is augmented with informa-
tion about the IP addresses the domain resolved to during the
observation day, and its estimated activity. Given a machine-
domain graph built on a day ti, to estimate the domain activity
features (see Section II-A3) for a domain d we consider DNS
queries about d within two weeks preceding ti. For estimating
the resolved IP abuse features, we leverage a large passive
DNS (pDNS) database, and consider pDNS data stored within
five months before ti.

Graph Pruning. Following the process described in Sec-
tion II-A2, we prune the graph by applying our set of con-
servative filtering rules (R1 to R4). In average, the pruning
process reduced the number of domain nodes by 26.55%, and
the machine nodes by 13.85%. Also, we obtained a 26.59%
reduction of the total number of edges.

IV. EXPERIMENTAL RESULTS

A. Cross-Day and Cross-Network Tests

To evaluate Segugio’s accuracy and generalization capa-
bilities, we performed extensive train-test experiments. In this
section we aim to show that Segugio’s classifier trained on a
given network can be successfully deployed both in the same
and different ISP networks, and can achieve high accuracy
even when classifying DNS traffic observed several days after
the training was completed.

Training and Test set preparation. To prepare the training
and test sets, we consider two days of traffic. We experiment
with consecutive days, train-test days that are separated by
“gaps”, and with traffic collected from different networks. We
use the DNS traffic from the first day for training purposes,
and then test our Segugio classifier on the second day of
traffic (observed at the same or a different network). We
devised a rigorous procedure to make sure that no ground truth
information about the test domains is ever used during training
and feature measurement.

More specifically, to prepare the training and test sets, we
first built the machine-domain graphs Gt1 and Gt2 according
to the DNS traffic observed on two different days, t1 and
t2, respectively (notice again that these two days of traffic
do not need to be consecutive, and in our experiments they
are separated by a gap of several days). Our main goal in
preparing the training set was to make sure that a large subset
of the known malware and benign domains that appear in
both day t1 and day t2 are completely excluded from training,

and are used only for testing. This allows us to evaluate the
classifier’s generalization ability, and how accurately we can
detect previously unknown malware and benign domains. In
other words, our test dataset contains a large number of domain
names for which we pretend not to know the ground truth, and
whose labels are never used to train Segugio or to measure the
statistical features of test domains.

To this end, given graph Gt2 , we first “hide” all the ground
truth labels for the domains in the test set, thus obtaining a
new graph G′t2 where the test domains are labeled as unknown.
We use this new graph to measure the features and classify
each unknown test domain following the process described in
Section II-A (see also Figure 4). This allows us to obtain an
unbiased estimate of the true and false positive rates.

Cross-day and cross-network test results. We used multiple
training and test sets to evaluate our behavior-based classi-
fier on the two ISP networks, and on several combinations
of different networks and dates for traffic days t1 and t2.
The number of test samples used in these experiments are
reported in Table II. The first two rows correspond to cross-
day experiments in the same ISP, and the last row is related to
a cross-network experiment where we train Segugio on traffic
from ISP1 and test it on domains seen in ISP2. The TP rate
is computed by dividing the number of correctly classified
malicious test domains by the total number of malicious
domains in the same test dataset (e.g., 9,980 for the ISP1

experiments in Table II). The FP rate is computed in a similar
way by considering the benign test domains. The classification
results for these three experiments are reported in Figure 6.
Segugio was able to consistently achieve above 92% TPs at
0.1% FPs.

TABLE II: Cross-day and cross-network test set sizes.
Test Experiment malicious domains benign domains

ISP1 cross-day (13 days gap) 9,980 780,707
ISP2 cross-day (18 days gap) 6,490 820,219

ISP1,ISP2 cross-network (15 days gap) 6,477 879,328

B. Feature Analysis

We also performed a detailed analysis of our statistical
features, by training and testing Segugio after completely
removing one of the three feature groups described in Sec-
tion II-A3 at a time. For example, in Figure 7 the “No IP”
ROC curves (dashed black line) refer to a statistical classifier
learned without making use of the IP abuse features (F3). As
we can see, even without the IP abuse features, Segugio can
consistently achieve more than 80% TPs at less than 0.2% FPs.
Also, we can see from the “No machine” line that removing
our machine behavior (F1) features (i.e., using only domain
activity and IP abuse features) would cause a noticeable drop
in the TP rate, for most FP rates below 0.5%. This shows
that our machine behavior features are needed to achieve high
detection rates at low false positives. Overall, the combination
of all three feature groups yields the best results.

C. Cross-Malware Family Tests

While Segugio’s main goal is to discover the occurrence of
new malware-control domains by tracking known infections,
in this section we show that Segugio can also detect domains
related to malware families previously unseen in the monitored
networks. Namely, no infection related to those families was
previously known to have occurred in the monitored networks.
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Fig. 6: Cross-day and cross-network test results for the two ISP networks (FPs in [0, 0.01])
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Fig. 7: Feature analysis: results obtained by excluding one group of features
at a time, and comparison to using all features (FPs in [0, 0.01])

To this end, we performed a set of experiments by splitting
our dataset of known blacklisted C&C domains according to
their malware family, rather than at random. The source of
our commercial blacklist was able to provide us with malware
family labels3 for the vast majority of blacklisted domains
(less than 0.1% of blacklisted domains were excluded form
these experiments). Overall, the blacklist consisted of tens of
thousands of C&C domains divided in more than one thousand
different malware families.

To prepare our new tests, we devised an approach similar
to standard cross-validation and partitioned the blacklisted
domains into balanced sets (or folds) of malware families.
Namely, each fold contained roughly the same number of

3Often, the labels were more fine-grained than generic malware families,
and associated domains to a specific cyber-criminal group.

malware families. The net result is that the domains used
for test always belonged to malware families never used for
training. Said another way, none of the known malware-control
domains used for training belonged to any of the malware
families represented in the test set.

The results are reported in Figure 8 (due to space con-
straints, we only show results from ISP1; results for ISP2 are
similar). As we can see, Segugio is able to discover domains
related to new malware families with more than 85% TPs at
0.1% FPs. To explain this result, we performed a set of feature
analysis experiments (similar to Section IV-B) using the new
experiment settings. We found that if we remove the (F1)
group of machine behavior features, the detection rate drops
significantly. In other words, our machine behavior features
are important, because using only feature groups (F2) and (F3)
yields significantly lower detection results for low FP rates.

One reason for the contribution of our machine behavior
features (F1) is the existence of multiple infections. Some ma-
chines appear to be infected with multiple malware belonging
to different families, possibly due to the same vulnerabilities
being exploited by different attackers, to the presence of
malware droppers that sell their infection services to more than
one criminal group, or because of multiple infections behind a
NAT device (e.g., in case of home networks). Also, the domain
activity features (F2) may help because the new domains were
only recently used. Finally, the IP abuse features (F3) may
help when new malware families point their control domains
to IP space that was previously abused by different malware
operators (e.g., in case of the same bulletproof hosting services
used by multiple malware owners).

0.000 0.002 0.004 0.006 0.008 0.010
FP

0.0

0.2

0.4

0.6

0.8

1.0

T
P

AUC=0.996, PAUC=0.924
TP%  |  FP%

--------------------
0.97 - 0.01

57.26 - 0.03
72.34 - 0.05
81.78 - 0.07
85.21 - 0.10
92.83 - 0.30
96.55 - 0.50
97.98 - 0.70
98.95 - 1.00

Baggingj48r
RandomForest
LibLinear

Fig. 8: Cross-malware family results (one day of traffic observation from
ISP1; FPs in [0, 0.01])



D. Analysis of Segugio’s False Positives

We now provide an analysis of domains in our top Alexa
whitelist that were classified as malware by Segugio. It is
worth remembering that the whitelist we use contains only
effective second-level domains (e2LDs) that have been in the
top one million list for an entire year (see Section III for
more details). During testing, we count as false positive any
fully qualified domain (FQD) classified by Segugio as malware
whose e2LD is in our whitelist.

By analyzing Segugio’s output, we found that most of
the false positives are due to domains related to personal
websites or blogs with names under an e2LD that we failed
to identify as offering “free registration” of subdomains. As
discussed in Section III, such e2LDs may introduce noise in
our whitelist, and should have been filtered out. For example,
most of Segugio’s false positives were related to domain names
under e2LDs such as egloos.com, freehostia.com, uol.com.br,
interfree.it, etc. Unfortunately, these types of services are easily
abused by attackers. Consequently, many of the domains that
we counted as false positives may very well be actual malware-
control domains. Figure 9 shows an example subset of such
domains.

thaisqz.sites.uol.com.br
jkishii.sites.uol.com.br
sjhsjh333.egloos.com
ivoryzwei.egloos.com
dat007.xtgem.com
vk144.narod.ru
jhooli10.freehostia.com
7171.freehostia.com
cr0s.interfree.it
cr0k.interfree.it
id11870.luxup.ru
id23166.luxup.ru
...

Fig. 9: Example set of domains that were counted as false positives. The
effective 2LDs are highlighted in bold.

We now provide a breakdown of the false positives gener-
ated by Segugio during the three different cross-day and cross-
network tests reported in Section IV-A and in Figure 6 (a),
(b), and (c). Table III summarizes the results. For example,
experiment (a) produced 724 distinct false positive FQDs,
using a detection threshold set to produce at most 0.05% FPs
and > 90% TPs. Many of these FP domains shared the same
e2LD. In fact, we had only 401 distinct e2LDs. Of these,
the top 10 e2LDs that contributed the most FQDs under their
domain name caused 32% of all FPs.

TABLE III: Analysis of Segugio’s FPs

Test Experiment (a) ISP1 (b) ISP2 (c) ISP1-ISP2

cross-day cross-day cross-network
Absolute number of false positives for overall 0.05% FPs and > 90% TPs
Fully qualified domains (FQDs) 724 807 786
Effective second-level domains (e2LDs) 401 410 451
Contribution of top 10 e2LDs 230 (32%) 308 (38%) 247 (31%)
Feature Contributions
> 90% infected machines 73% 71% 55%
Past abused IPs 86% 85% 80%
Active for ≤ 3 days 26% 20% 27%
Evidence of Malware Communications (sandbox traces)
Domains queried by malware 21% 23% 19%

Table III also shows that 73% of all false positive domains
were queried by a group of machines of which more than 90%
were known to be infected. Also, 86% of the FP domains
resolved to a previously abused IP addresses, and 26% of

them were active for only less than three days. Finally, using a
separate large database of malware network traces obtained by
executing malware samples in a sandbox, we found that 21%
of the domains that we counted towards the false positives had
been contacted by known malware samples.

To summarize, our experiments show that Segugio’s false
positive rate is low (e.g., ≤ 0.05% FPs at a TP rate ≥ 90%)
and FPs may also be somewhat overestimated. In general,
Segugio yields much lower FPs than previously proposed
systems for detecting malicious domains (see Section V for
a comparison to Notos [3]). Even so, we acknowledge that
some false positives are essentially inevitable for statistical
detection systems such as Segugio. Therefore, care should
be taken (e.g., via an additional vetting process) before the
discovered domains are deployed to block malware-control
communications.

E. Experiments with Public Blacklists

To show that Segugio’s results are not critically dependent on
the specific commercial malware C&C blacklist we used as
our ground truth, we also performed a number of experiments
using public blacklist information.

Cross-day Tests. We repeated the cross-day experiment
on machine-domain graphs labeled using exclusively known
malware-control domains collected from public blacklists.
More specifically, we collected domains labeled as mal-
ware C&C (we excluded other types of non-C&C mali-
cious domains) from the following sources: spyeyetracker.
abuse.ch, zeustracker.abuse.ch, malwaredomains.com, and
malwaredomainlist.com. Overall, our public C&C domain
blacklist consisted of 4,125 distinct domain names. We then
used this blacklist to label the malware nodes in the machine-
domain graph, and then performed all other steps to conduct
cross-day experiments using the same procedure described in
Section IV-A (the only change was the blacklist).

Figure 10 reports the results on traffic from ISP2 (results
for the other ISP network and different days of traffic are very
similar). Segugio was able to achieve over 94% true positives
at a false positive rate of 0.1%.

0.000 0.002 0.004 0.006 0.008 0.010
FP

0.0

0.2

0.4

0.6

0.8

1.0

T
P

AUC=0.988, PAUC=0.962
TP%  |  FP%

--------------------
78.39 - 0.01
85.34 - 0.03
90.68 - 0.05
92.59 - 0.07
94.43 - 0.10
97.13 - 0.30
97.61 - 0.50
97.96 - 0.70
98.06 - 1.00

BaggingJ48
RandomForest
LibLinear

Fig. 10: Cross-day results using only public blacklists

Cross-Blacklist Tests. To further demonstrate Segugio’s abil-
ity to discover new malware-control domains, we conducted
another experiment by using our commercial C&C blacklist
(described in Section III) for training purposes, and then testing
Segugio to see if it would be able to detect new malware-
control domains that appeared in the public blacklists but
were not in our commercial blacklist (and therefore were not



used during training). By inspecting a day of traffic from
ISP2, we observed 260 malware-control domains that matched
our public blacklist. However, of these 260 domains, 207
domains already existed in our commercial blacklist as well.
Therefore, we used only the remaining 53 new domains that
matched the public blacklist (but not the commercial blacklist)
to compute Segugio’s true positives. We found that Segugio
could achieve the following trade-offs between true and false
positives: (TPs=57%, FPs=0.1%), (TPs=74%, FPs=0.5%), and
(TPs=77%, FPs=0.9%). While the TP rate looks somewhat
lower than what obtained in other tests (though still fairly good,
considering the low FP rates), we believe this is mainly due to
the limited test set size (only 53 domains) and noise. In fact,
we manually found that the public blacklists we used contained
a number of domains labeled as C&C that were highly
likely benign (e.g., recsports.uga.edu and www.hdblog.it), and
others that were likely not related to malware-control activities
(though possibly used for different malicious activities), which
would not be labeled as malware by Segugio.

F. Early Detection of Malware-Control Domains

We also performed experiments to measure how early
Segugio can detect malware-control domains, compared to
malware domain blacklists. To this end, we selected four
consecutive days of data from either of the two ISP networks (8
days of traffic, overall). For each day, we trained Segugio and
set the detection threshold to obtain ≤ 0.1% false positives.
We then tested the classifier on all domains that on that day
were still labeled as unknown. Finally, we checked if the
new malware-control domains we detected appeared in our
blacklists in the following 35 days. During the four days of
monitoring, we found 38 domains that later appeared in the
blacklist. A large fraction of these newly discovered domains
were added to the blacklist many days after they were detected
by Segugio, as shown in Figure 11.
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Fig. 11: Early detection results: histogram of the time gap between Segugio’s
discovery of new malware-control domains and the time when they first
appeared on the blacklist.

G. Segugio’s Performance (Efficiency)

Segugio is able to efficiently learn the behavior-based
classifier from an entire day of ISP-level DNS traffic, and
can classify all (yet unknown) domains seen in a network
in a matter of a few minutes. To show this, we computed
the average training and test time for Segugio across the 8
days of traffic used to perform the early detection experiments
discussed in Section IV-F. In average the learning phase
took about 60 minutes, for building the graph, annotating
and labeling the nodes, pruning the graph, and training the

behavior-based classifier. The feature measurement and testing
of all unknown domains required only about 3 minutes.

V. COMPARISON WITH NOTOS

In this section, we aim to compare our Segugio system
to Notos [3], a recently proposed domain reputation system.
As mentioned in Section I, Notos’ goal is somewhat different
from ours, because domain reputation systems aim to detect
malicious domains in general, which include phishing and
spam domains, for example. On the other hand, we focus on
a behavior-based approach for accurately detecting malware-
control domains, namely “malware-only” domains through
which attackers provide control functionalities to already in-
fected machines. Nonetheless, Notos could be also used to
detect malware-control domains, and therefore here we aim to
compare the two systems.

Experimental setup. We have obtained access to a version of
Notos built by the original authors of that system. The version
of Notos available to us was trained using a very large blacklist
of malicious domains, and a whitelist consisting of the top
100K most popular domains according to Alexa. We were able
to verify that the blacklist they used to train Notos was a proper
superset of the blacklist of malware-control domains we used
to train Segugio. In addition, we made sure to train Segugio
using only the top 100K Alexa domains, as done by Notos, thus
allowing for a balanced comparison between the two systems.

To compute the false positives, we used the whitelist
detailed in Section III (domains that were consistently very
popular for at least one year), from which we removed the
top 100K Alexa domains used during the training of Notos
and Segugio. As mentioned earlier, we acknowledge that our
whitelist may contain some small amount of noise. Later in this
section we discuss how we further aggressively reduce such
noise to obtain a more precise estimate of the false positives.

The version of Notos to which we were given access was
trained on October 8, 2013, which we refer to as ttrain.
Therefore, we trained Segugio on traffic from the very same
day ttrain, and labeled malware domains using our blacklist
updated until that same day. In other words, both Notos
and Segugio were trained using only ground truth gathered
before ttrain. Then, we tested both Notos and Segugio on
the two ISP networks, using one entire day of traffic from
November 1, 2013, which we refer to as ttest. To compute the
true positives, we considered as ground truth only those new
confirmed malware-control domains that were added to our
blacklist between days (ttrain + 1) and ttest. Overall, during
that period we had 44 and 36 new blacklisted malware-control
domains that appeared (i.e., were queried) in ISP1 and ISP2,
respectively.

Results. Figure 12 shows the detection results for the two
systems. In particular, Figure 12a shows that the detection
threshold on Notos’s output score needs to be increased
significantly, before the new malware-control domains (i.e., the
ones blacklisted after ttrain) are detected. Unfortunately, this
causes a fairly high false positive rate (16.23% and 21.11%,
respectively, for ISP1 and ISP2). In addition, only less than
56% of the newly blacklisted domains are detected in the best
case (ISP1 in Figure 12a). Notice that the version of Notos
given to us employed a “reject option” whereby the system



may avoid classifying an input domain, if not enough historic
evidence about its reputation could be collected. This explains
why Notos is not able to detect all malware-control domains
even at the highest FP rates.

According to Figure 12b (where FPs are in [0, 0.03]),
Segugio was able to detect respectively 90.9% and 75% of new
malware-control domains with less than 0.7% of false positives
in ISP1 and ISP2. This shows that Segugio outperforms
Notos, even considering that we had 24 days of gap between
the training and test phases.
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Fig. 12: Comparison between Notos and Segugio (notice that the range of
FPs for Notos is [0, 1.0], while for Segugio FPs are in [0, 0.03])

Braking down the FPs. To better understand why Notos
produced a high false positive rate, we investigated the possible
reasons why many of our whitelisted domains were assigned
a low reputation (see Table IV). After adjusting the detection
threshold so that Notos could detect the blacklisted domains
(i.e., produce the true positives), Notos classified as malicious
13,432 of the whitelisted domains that were “visible” in the
ISP1 traffic on day ttest (see Figure 12a). Among these, 1,826
domain names (or 13.6% of the FPs) were related to adult
content, and probably hosted in what we could consider as
“dirty” networks. For other 234 domain names (1.7% of the
FPs), we have evidence that they were queried at least once
by malware samples executed in a sandboxed environment. We
know that malware samples often query also popular benign
domains. However, a domain queried by malware may be
considered as “suspicious”, and that is probably why Notos
assigns them a low reputation, though it does not necessarily
mean that these domains are malware-related. Another 2,011
domain names (or 15% of the FPs) resolved to IP addresses
that were contacted directly by malware samples in the past.
Overall 7,341 domains (54.7% of FPs) resolved into a /24
network which hosted IPs contacted by at least one malware
sample in the past. Finally, we are left with 2,020 domains (or
15% of the FPs) for which no evidence is available to infer

why Notos classified them as malicious.

To summarize, this means that potentially the actual num-
ber of “reputation-based” false positives could be less than
15% of the 13,432 domains that Notos classified as malicious,
which correspond to 2.94% of all whitelisted test domains.
In other words, even considering these filtered results, Notos
would still generate 2.94% FPs. Therefore, overall our exper-
iments show that, on the task of discovering new malware-
control domains, Segugio clearly outperforms Notos.

TABLE IV: Break-down of Notos’s FPs
All Notos’s FPs 13,432
Explicit evidence
Suspicious content 1,826 (13.6%)
Domains queried by malware 234 (1.7%)
Domains with IPs previously contacted by malware 2,011 (15%)
Implicit evidence
Domain names in /24 networks used by malware 7,341 (54.7%)
No evidence
Potential reputation FPs 2,020 (15%)

VI. LIMITATIONS AND DISCUSSION

Segugio requires preliminary ground truth to label a set of
“seed” known malware and benign nodes. Fortunately, some
level of ground truth is often openly available, like in the case
of public C&C blacklists and popular domain whitelists, or can
be obtained for a fee from current security providers (in the
case of commercial blacklists). In Section IV-E we show that
even using only ground truth collected from public sources,
Segugio can still detect new malware-control domains. Notice
also that while the ground truth may contain some level of
noise, it is possible to apply some filtering steps to reduce its
impact (see discussion in Section III, for example).

Because Segugio focuses on detecting “malware-only” do-
mains, an attacker may attempt to evade Segugio by somehow
operating a malware-control channel under a legitimate and
popular domain name. For example, the malware owner may
build a C&C channel within some social network profile or by
posting apparently legitimate blog comments on a popular blog
site. While this is possible, popular sites are often patrolled
for security flaws, which exposes the C&C channel to a
potentially more prompt takedown. This is one of the reasons
why attackers often prefer to point their C&C domains to
servers within “bullet proof” hosting providers.

A possible limitation of Segugio is that a malware-control
domain that is never queried by any of the previously known
malware-infected machines is more difficult to detect. How-
ever, in Section IV-C we showed that by combining the
machine behavior features (defined in Section II-A3) to the
domain activity and IP abuse features, Segugio is still able to
detect many such new domains.

Another possible challenge is represented by networks that
have a high DHCP churn, if source IP addresses are used
as the machine identifiers. High DHCP churn may cause
some inflation in the number of machines that query a given
(potentially malware-related) domain. However, we should
consider that Segugio can independently be deployed by each
ISP. Therefore, for deployments similar to ours, the ISP’s
network administrators may be able to correlate the DHCP
logs with the DNS traffic, to obtain unique machine identifiers
that can be used for building the machine-domain graphs.



Segugio’s detection reports are generated after a given
observation time window (one day, in our experiments). There-
fore, malware operators may try to change their malware C&C
domains more frequently than the observation window, so that
if the discovered domains are deployed into a blacklist, they
may be of less help for enumerating the infected machines in
a network. However, it is worth noting that Segugio can detect
both malware-control domains and the infected machines that
query them at the same time. Therefore, infections can still be
enumerated, thus allowing network administrators to track and
remediate the compromised machines.

Some ISP networks may host clients that run security tools
that attempt to continuously “probe” a large list of malware-
related domains, for example to actively keep track of their ac-
tivities (e.g., whether they are locally blacklisted, what is their
list of resolved IPs, their name server names, etc.). Such clients
may introduce noise into our bipartite machine-domain graph,
potentially degrading Segugio’s accuracy and performance.
During our experiments, we used a set of heuristics to verify
that our filtered graphs (obtained after pruning, as explained in
Section II) did not seem to contain such “anomalous” clients.

VII. RELATED WORK

In Section I we have discussed the main differences with
recent previous work on detecting malicious domains, such
as [3]–[6]. In this section, we discuss the differences between
Segugio and other related works.

Botnet/Malware detection: Pleiades [11] is a recently pro-
posed system that aims to detect machines infected with
malware that makes use of domain generation algorithms
(DGAs). While Pleiades monitors the DNS traffic between
the network users and their local DNS resolver, as we do, it
focuses on monitoring non-existent (NX) domains, which are
a side-effect of DGA-based malware. Our work is different,
because we do not focus on DGA-based malware. In fact,
Segugio only monitors “active” domain names, and aims to
detect malware-control domains in general, rather than being
limited to detecting only DGA-generated domains.

Studies such as [12]–[16] focus on detecting bot-
compromised machines. For example, BotSniffer [13] and Bot-
Miner [14] look for similar network behavior across network
hosts. The intuitions is that compromised hosts belonging to
the same botnet share common C&C communication patterns.
These systems typically require to monitor all network traffic
(possibly at different granularities) and are therefore unlikely
to scale well to very large ISP networks. Our work is different,
because we focus on a more lightweight approach to detecting
malware-control domains by monitoring DNS traffic in large
ISP networks.

A large body of work has focused on detecting malware
files. One work related to ours is Polonium [17], which aims
to detect malware files using graphical models. Our work
is different from Polonium in many respects. We focus on
detecting new malware-control domains, rather than malware
files. In addition, Polonium employs a very expensive loopy
belief propagation algorithm on a graph with no annotations.
Furthermore, through pilot experiments using GraphLab [8]
we found that the inference approach used in Polonium would

result in a significantly lower accuracy for Segugio with a huge
negative impact on performance.

Malware C&C modeling and tracking. Wurzinger et al. [18]
propose to first detect malicious network activities (e.g., scan-
ning, spamming, etc.) generated by malware executed in a con-
trolled environment (see [19]), and then to analyze the network
traffic “backwards” to find what communication could have
carried the command that initiated the malicious activities.
Jackstraws [20], executes malware in an instrumented sandbox
to generate “behavior graphs” for system calls related to
network communications. These system-level behavior graphs
are then compared to C&C graph templates to find new C&C
communications. Our work is different, because we don’t
rely on performing detailed malware dynamic analysis in a
controlled environment. Rather, we focus on detecting new
malware-control domains via passive DNS traffic analysis in
live ISP networks.

In [21], Sato et al. performed a preliminary study of
unknown domains that frequently co-occur with DNS queries
to known C&C domains. While the co-occurrence used in [21]
has some resemblance to Segugio’s machine behavior features,
our work is different from [21]. For example the system
presented in [21] suffers from a large number of false positives,
even at a fairly low true positive rate. Furthermore, unlike
Segugio, [21] is not able to detect new C&C domains that
have low or no co-occurrence with known malicious domains.
Importantly, [21] has been evaluated only at a very small scale.
In contracts, we performed a thorough evaluation of Segugio
in many different settings, including cross-validation, cross-
day and cross-network tests, feature analysis, performance
evaluation, and direct comparison with Notos [3]. All our
experiments were conducted at large scale, via a deployment
in multiple real-world ISP networks hosting millions of users.

Signature-based C&C detection. Researchers have recently
proposed a number of studies that focus on a signature-based
approach to detect malware C&C communications, and the re-
lated malware C&C domains. For example, Perdisci et al. [22]
proposed a system for clustering malware that request similar
sets of URLs, and to extract token-subsequences signatures
that may be used to detect infected hosts. ExecScent [23] is a
new signature-based C&C detection system that builds control
protocol templates (CPT) of known C&C communications,
which are later used to detect new C&C domains. Another
recent signature generation system, called FIRMA [24], can be
used to detect C&C communications and the related malware-
control domains.

These signature-based approaches typically require access
to all TCP traffic crossing a network, to enable the detection
of C&C communications. Instead, our system is based on a
much more lightweight monitoring of DNS traffic only.

Other related work. Karagiannis et al. consider who is
talking to whom to discover communities among hosts for flow
classification purposes [25]. In a related study [26], Xu et al.
use a bipartite graph of machine-to-machine communications.
They use spectral clustering to identify groups of hosts with
similar network behaviors. Coskun et al. [27] use a graph-
based approach to discover peer nodes in peer-to-peer botnets.
While we also leverage bipartite graphs, our work is very
different from [25]–[27] in both the goals and approach.



Felegyhazi et al. [28] take a proactive blacklisting approach
to detect likely new malicious domains by leveraging domain
registration information. Our work is different in that Segugio
mainly focuses on detecting new malware-control domains
based on who is querying what. While we use information
such as domain activity, Segugio does not rely on domain
registration records.

VIII. CONCLUSION

In this paper, we presented Segugio, a novel defense system
that is able of efficiently discover new malware-control domain
names by passively monitoring the DNS traffic of large ISP
networks.

We deployed Segugio in two large ISP networks, and we
showed that Segugio can achieve a true positive rate above
94% at less than 0.1% false positives. In addition, we showed
that Segugio can detect control domains related to previously
unseen malware families, and that it outperforms Notos [3], a
recently proposed domain reputation systems.
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