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Abstract

We presentSpectrogram, a machine learning based
statistical anomaly detection (AD) sensor for defense
against web-layer code-injection attacks. These attacks
include PHP file inclusion, SQL-injection and cross-site-
scripting; memory-layer exploits such as buffer overflows
are addressed as well. Statistical AD sensors offer the ad-
vantage of being driven by the data that is being protected
and not by malcode samples captured in the wild. While
models using higher order statistics can often improve ac-
curacy, trade-offs with false-positive rates and model ef-
ficiency remain a limiting usability factor. This paper
presents a new model and sensor framework that offers a fa-
vorable balance under this constraint and demonstrates im-
provement over some existing approaches.Spectrogram
is a network situated sensor that dynamically assembles
packets to reconstruct content flows and learns to recog-
nize legitimate web-layer script input. We describe an effi-
cient model for this task in the form of a mixture of Markov-
chains and derive the corresponding training algorithm.
Our evaluations show significant detection results on an ar-
ray of real world web layer attacks, comparing favorably
against other AD approaches.

1 Introduction

Today’s internet environment is seeing usability out pace
security at unprecedented rates. Web-layer code-injections
target web applications and take advantage of programming
flaws to manipulate the programs behavior, allowing the at-
tacker to manipulate code and data on the target. Whereas
traditional software exploits are often used to compromise
specific hosts or to launch worms, web-layer attacks operate
under a slightly different paradigm, as recent trends show.
While the server is victim of the code injection, the targets

often include the viewers of that server as well. Compro-
mised websites often discover embedded malcode silently
redirecting their viewers to malicious destinations where
they are exposed to further exploits. The most common vec-
tors for this class of attacks can be roughly categorized as:
cross-site-scripting (XSS), PHP local/remote file-inclusion
(L/RFI) andSQL-injection, all of which target port
80. Since memory-layer overflows against server processes
also pass through this port, a successful anomaly detection
framework for this protocol set would address a range of se-
curity concerns. In this paper, we presentSpectrogram,
a machine learning based sensor designed to construct sta-
tistical models for acceptable port-80 input and detect at-
tacks as anomalies.

To put the problem into perspective, a recent SANS sur-
vey [26] found that attempted attacks on large web-hosting
farms in 2007 numbered in the range from hundreds of
thousands to millionseach day. The same source reports
PHP L/RFI attacks to have peaked at 120,000 distinct
sources in that year with over4000 unique vulnerabilities
discovered. This number is orders of magnitude higher
than those seen in shellcode based software exploitation
vectors. A Sophos 2008 security report [31] indicates that
one compromised website is discovered every five seconds,
or roughly 16,000 compromised sites per day. Many in-
stances can be attributed to automated web vulnerability
scanners and exploitation engines, which are now widely
used. RunningSpectrogram on our university networks,
we discovered between one to ten thousand web-layer code-
injection attempts per day, from up to one thousand distinct
sources; typicallyiframe andSQL injections which try to
redirect users to drive-by-download sites and file-stealing
attempts. These attacks range from crude to rather sophis-
ticated – in one instance, we noticed an attempt to inject a
web-shell, written in 2000 lines of PHP, into our server.

Proper coding has been the best defense against code-
injection but relying on every programmer to demonstrate



the required level of scrutiny has never been a fully re-
liable security practice. Intrusion detection sensors com-
plement this strategy by adding specialized layers of input
validation. IDS typically falls into two categories: detect-
ing known malcode or detecting legitimate input. Malcode-
signature detection solutions, such asSnort [29], are ef-
fective at filtering known exploits but in a web environ-
ment where hundreds of thousands of unique attacks are
generated each day and polymorphism is standard practice,
the usefulness of signatures is limited. Recently, anomaly
detection approaches showed success by modeling accept-
able input using statistical models and detecting exploits
as anomalies. These approaches though, with some excep-
tions, have thus far been limited to network layer, protocol-
agnostic modeling which are constrained in scope and vul-
nerable to packet fragmentation and blending attacks. Un-
like shellcode and worm traffic, web-layer injections use
higher level interpreted code and do not require corruption
of the server’s control flow at the memory layer. Web layer
exploits are smaller, more dynamic and far less complex
than shellcode, making them both easier to write and to
disguise, by comparison through various obfuscation tech-
niques. Tools such as Metasploit’s eVade O’Matic Module
(VoMM) [21] andMPack [24] are seeing widespread use in
the obfuscation and automation of web-layer attacks. The
latter utilizes invisibleiframe injections and was respon-
sible for the recent hijackings of thousands of domains.

As an AD sensor,Spectrogram allows the defender
to focus on learning models customized for the protected
server, where training data is available, rather than attempt-
ing to predict what the attacker is capable of sending. The
method with which to model legitimate content, however,
remains an open problem.N -gram modeling has been
a promising direction, as shown by the work of Wanget
al. [12] but for larger gram sizes, the problem quickly be-
comes ill-posed, which means that small deviations in the
training data can lead to large deviations in the performance.
This is intuitive given that the sample-space grows exponen-
tially, causing under-fitting problems. Another sensor from
our lab,Anagram [12], compensates by trading some gen-
eralization ability with efficient hashes of known legitimate
input. This approach is fast and efficient but begins to suf-
fer when the input space becomes highly dynamic, as in the
web-layer context. This article presents the derivations for
a new machine learning based probabilistic model that of-
fers more flexibility in the model structure that previous AD
approaches and offers a more favorable trade-off between
accuracy, generalization ability and speed. Our approach is
based on modeling higher order collocations with mixtures
of Markov-chains and is designed specifically to capture a
representation for not only content but also the structure of
script argument strings by learning a proper distribution on
the overlappingn-grams.

As a full sensor, Spectrogram offers the following bene-
fits:

1. The introduction of a new Markov-chain factorization
that makesn-gram modeling with large gram sizes
tractable and algorithmically efficient.

2. A model that captures both the higher order statistical
structure as well as content of legitimate requests.

3. A network situated posture to allow monitoring of lo-
cal and remote hosts as well as log files.

4. Utilization of dynamic packet re-assembly, operating
at the web layer to see what the target application sees.

5. Being HTTP protocol-aware, adding white-list flexi-
bility and providing resistance against blending.

We evaluated Spectrogram against a range of web attacks
and demonstrate strong performance in detecting many real
world exploits. Spectrogram achieves a 97% detection rate
on all but one attack vector in unbiased datasets, which
use unique samples, and achieves false positive (FP) rates
at five orders of magnitude less when evaluated on the full
datasets. The only dataset that did not yield high detection
accuracy was the one which did not require actual malcode,
as explained in later sections.

Organization

This paper is structured as follows: section 2 describes
related work in this area. Section 3 describes the architec-
tural design of Spectrogram while section 4 describes the
derivations for the Markov mixture-model that lay at the
core of our classifier. We describe our experiments and re-
sults in section 5 and present discussions on usability in sec-
tion 5.3, followed by concluding remarks in section 6.

2 Related Work

The main lines of research in network IDS include the
following: signature based detection which attempt to ex-
tract artifacts from malicious code, anomaly detection (AD)
which learns models for acceptable input and detect de-
viations, emulator based execution of the input to detect
code, dynamic vulnerability discovery and tainted data-flow
analysis techniques which try to detect role-violations such
as when network traffic reaches certain restricted areas of
memory. Hybrids of these approaches have also been inves-
tigated. Other passive defensive measures operate at the ap-
plication and operating systems layer and include address-
space and instruction-set randomization, stack and other
memory protection schemes. Spectrogram falls into net-
work layer AD category; by modeling legitimate content



on port 80, it detects both script and memory layer exploit
attempts. This section briefly discusses some representa-
tive examples from this range of IDS and related security
frameworks.

Snort [29] is a well known, signature based network
IDS sensor that scans through packets and searches for
strings known to be associated with malcode. A great deal
of research has been focused on the problem of how to gen-
erate signatures automatically from available data. Kimet
al. [13] presented one approach, as did Singhet al. who
showed how to extract signatures from worm traffic [28].
ThePolygraph [22] engine presented by Newsomeet al.
focused on discovering salient artifacts within differentin-
stances of network based attacks. Other notable works in
this area include [18, 36, 35]. Hybrid approaches, as pre-
viously mentioned, includeFLIPS [20] which filters traffic
through an instrumented version of the protected applica-
tion – if an attack is confirmed, the malcode is dissected
to dynamically generate a signature. Cuiet al. introduced
ShieldGen [7] uses an instrumented host to discover vul-
nerabilities and automatically generate patches. Statistical
content anomaly detection approaches include thePayL
sensor [34] which models1-gram distributions for normal
traffic and uses the Mahalanobis distance as a metric to
score the normality of incoming packets. Anagram [12]
stores portions of legitimate traffic in the form ofN -grams
into an efficient hash maps, allowing it to efficiently detect
unfamiliarN -grams in incoming traffic.

Other approaches include treating all data as potentially
executable code and dynamically executing them. Abstract
Payload Execution (APE) [32] is a representative exam-
ple of this line of research.APE examines network traffic
and treats packet content as machine instructions, aiming to
identify NOP-sleds which might be indicative of a shellcode
payload. Krugelet al. [17] detect polymorphic worms by
automatically learning a control flow graph for worm bina-
ries. Anagnostakiset al. [1] proposed an architecture called
a “shadow honeypot” which is an instrumented replica of
the host that fully shares state with the production applica-
tion and receives copies of messages sent to the protected
application — messages that a network anomaly detection
component deems abnormal. If the shadow confirms the at-
tack, it creates a network filter to drop future instances of
that attack as well as provides positive confirmation for an
anomaly detector.

The usefulness of signature based defenses are under de-
bate. Recent work calls into question the ultimate utility
of exploit-based signatures [33]. Songet al. [30] recently
presented a study on the efficacy of modern polymorphic
techniques and the potential impact on signature and sta-
tistical modeling based sensors. An alternative approach
based on vulnerability specific protection schemes have be
studied [5, 3, 11]. These methods along with dynamic taint

analysis [4, 23] explore techniques for defeating exploits
despite differences between instances of their encoded form
by attempting to recognize the vulnerabilities themselves.
Brumley et al. [3] supply an initial exploration of some
of the theoretical foundations of vulnerability-based signa-
tures. Such signatures help classify an entire set of ex-
ploit inputs rather than a particular instance. The previ-
ously mentioned approaches are mainly dedicated to defeat-
ing memory corruption/code-injectionbased attacks such as
buffer-overflow and heap-corruption. Web attacks, on the
other hand, exploit web-layer scripts and do not require cor-
ruptions of the server application’s control-flow – at least
not at the memory layer.

On the offensive side of web-layer security, Metasploit
has introduced the eVade O’Matic Module (VoMM) [21]
which obfuscates web exploits. The features of this poly-
morphic engine include white-space randomization, string
obfuscation/encoding, variables and function randomiza-
tion and an array of other techniques. Van Gundyet al.
explored the design of a polymorphic PHP worm [10].
MPack [24], sold within the attacker underground, is an
automated browser exploitation tool which injects invisible
iframes into target servers which in turn silently redirects
viewers to exploit-laden websites that customize the attack
based on the user’s browser. These engines thwart signa-
ture based methods by injecting high degrees of obfusca-
tion into the exploit code. On the defensive side, Reiset
al. introducedBrowserShield [25] which extends the
earlier work of Shield [33] to browser protection against ex-
ploits hidden in dynamic HTML. Wanget al. introduced a
content abstraction architecture for separation of execution
contexts in browsers. These solutions aim at protecting the
user from malicious servers. In the reversed role, of protect-
ing the web-server, the previously mentioned PayL [34] and
Anagram [12] sensors have been introduced. Spectator [19]
was introduced by Livshitset al. as a taint-analysis based
approach which tags scripts to prevent Javascript cross-site-
scripting worms. Kruegelet al. also explored a statistical
AD framework for web traffic [15, 16] based on modeling
inputs. We elaborate on the similarities between our method
and the latter work in section 3.

3 Spectrogram

Spectrogram examines individual HTTP requests
and models the content and structure of script inputs. In
some ways it is analogous to an AD version of theSnort
sensor, focusing on port 80. This layout offers the flexi-
bility needed to monitor both local and remote hosts, as
well as multiple hosts simultaneously. Since the data is
modeled at the application layer,Spectrogram uses dy-
namic packet re-assembly to reconstruct the content flow as
it would be seen by web applications and, at the same time,



(a) http://www.vulnerable.com/retrieve.php?paperID=302
(b) http://www.vulnerable.com/retrieve.php?paperID={${include($bbb)}}{${exit()}}&bbb=http://www.haxx.org/exploit.txt?
(c) http://www.vulnerable.com/retrieve.php?paperID=../../../../etc/passwd
(d) http://www.vulnerable.com/retrieve.php?paperID=<scriptlanguage=javascript>alert(“Our website is moving!

Please re-login at our new location: www.vulnerable2.com to access the fileserver!”);</script>
(e) http://www.vulnerable.com/retrieve.php?paperID=<iframe src=”http://www.haxx.org/exploit.html”></iframe>
(f) http://www.vulnerable.com/retrieve.asp?paperID=’/**/union/**/select/**/0,concat(username,0x3a,password)/**/from/**/users/*

Figure 1. Exploitation vectors for scripts which do not prop erly handle input data. (a) A common
script. (b) Remote-file inclusion attack, “exploit.txt” is actually another php script which hijacks the
execution of “retrieve.php.” (c) Local-file inclusion, the attacker grabs the password file. (d) A victim,
tricked into clicking such a link, would see a fake alert re-d irecting him to a phishing site. (e) iframe
injection, silent redirection. (f) SQL-injection.

resist tcp-fragmentation attacks. An offline mode which op-
erates on packet-capture (libpcap) data and Apache log
files is also available. This section describes the nature of
the attacks we are concerned with and the mechanics of
the sensor. Details regarding the statistical model we use
for the classification engine are described in the next sec-
tion. In brief, Spectrogram learns to recognize short
strings accurately. Similar to the waySnort performs
matching with lexical grammars specified by human ex-
perts,Spectrogram automatically learns a probabilistic
representation for legitimate input from the training data.

3.1 Environment and Threat Model

Figure 2. Spectrogram is a network situated
sensor which operates at the web layer.

Web-layer code-injection attacks manipulate the execu-
tion flow of web applications. The attacker takes advan-
tage of programming flaws to inject his own code into
the execution context of the target and a successful attack
yields a range of results, from data extraction to code ex-
ecution. As a simple example, consider a script which re-
trieves PDF files from an archive and writes them to the user
while recording the transaction, a common feature of many
archival sites. Figure (1) shows some exploits which might
succeed if there is no data sanitization (visible parameters

in the URL indicate these areGET requests). “paperID”
is a variable name for this script and takes an integer input
value. Without input sanitization, the attacker may injecthis
own PHP code into the execution context as shown in Fig-
ure (1)(b). This attack is known as a “remote file inclusion”
and take advantage of PHP’s remote library inclusion fea-
ture. The attacker may try to steal a file from the server, as
shown in Figure (1)(c), in a “local file inclusion” attack. If
the server echoes the request back in some unsafe way with
an error message such as “paperID: xxx not found” where
“xxx” reflects the input then cross-site-scripting (XSS) at-
tacks are possible, as shown in Figure (1)(d). This attack
tricks other viewers into visiting foreign malicious sites.
The XSS attack makes the injected code appear as if it orig-
inated from the victim’s site. Figure (1)(e) shows the same
XSS goal accomplished more stealthily with aniframe
injection. Typically, the foreign site would host additional
browser exploits to further compromise the viewers. Fi-
nally, Figure (1)(f) Shows a standard SQL-injection that at-
tempts to print the elements of a restricted table. If HTTP
POST requests were used as the submission method then
the XSS victim would never see the injected attack string in
the URL as it would remain hidden in the HTTP message
body. Memory-layer attacks against the server process it-
self, such as theIIS Media exploit and theCode Red
worm insert very large strings into theGET request field
as well. By learning to recognize legitimate strings within
HTTP web requestsSpectrogram attempts to simultane-
ously address many issues related web-application defense.

3.2 Architecture Design

Spectrogram was designed to be a passive IDS sen-
sor. By default, it will only issue alerts for suspected attacks
and does not attempt to intercept them. False positives (FP)
are a burden on all statistics based IDS solutions and while
Spectrogram does achieve very low FP rates, as this pa-
per demonstrates, we feel that is most effective when used



as a filter to sieve through potentially millions of web re-
quests (online or offline) in order to find the small subset
of interesting attack traffic to bring to a human expert’s at-
tention. Such information serves to identify interesting at-
tacks, attack patterns, previously unseen exploits as wellas
potential vulnerabilities. Being situated at the network layer
means that only a port-mirror is needed for the sensor in or-
der to monitor remote hosts or deployment at a proxy junc-
tion. Runtime results in this paper illustrate the capacity
for real-time detection in such settings. Unlike other NIDS,
Spectrogram operatesabove the packet layer, at the
web/CGI-layer, and was designed specifically to be HTTP-
protocol aware. Dynamic re-assembly is used to reconstruct
the full HTTP requests as they would be seen by the targeted
web application, this yields the side-benefit of resistance
against fragmentation attacks since the sensor explicitlyre-
construct all fragments. Related sensors [29, 34, 12] which
operate at the network layer and perform per-packet inspec-
tion can, to certain degrees, be frustrated by evasion tactics
such asoverlaying-reassembly [27] if left in their
naive setting. All HTTP requests are parsed to isolate the
script argument strings and drop irrelevant content which
might skew the anomaly score. Details on the runtime these
operations entail are presented in Section 5.

Protocol-aware parsing for HTTP requests is imple-
mented to provide a more detailed level of analysis and to
trim out irrelevant features and isolate only the script argu-
ments. Statistical “blending” attacks on AD sensors would
be possible if no parsing is used. A trivial example of such
an attack is the insertion of legitimate content in the un-
used protocol fields, this would skew the anomaly score
if the entire request is modeled holistically; good content,
which does not effect the exploit, is being inserted in ad-
dition to malicious code.Spectrogram, by default, does
not model individual protocol fields such as thereferrer
or user-agent strings since these fields have no influ-
ence on web-layer code-injection attacks. Software layer
attacks against the server applications is an issue but many
of these attacks can be detected by the content of the URL
strings. If protocol sanitization is required then modeling
this field can be turned on as well since these fields accept
simple string data as well, though there is arguably little use
in modeling such fields for IDS purposes. For further dis-
cussion on blending attacks, we refer the reader to Fogla
et al. [14]. Spectrogram examines bothGET andPOST
requests. ForGET, we look in the URL to obtain the ar-
gument string; forPOST, the message body. If the server
allows input in other ways, such as custom Apache mod-
ules, then only new parsers would be needed to extend the
framework. The script argument string is also unescaped
and normalized before being passed into the AD module
for classification. These steps are elaborated in the follow-
ing section.

Spectrogram is built on top oftcpflow [9], an effi-
cient content flow re-assembly engine for TCP traffic which
utilizes hash tables to reconstruct each flow. The script ar-
gument string for each request is extracted for processing
— this includes both variable names and corresponding ar-
gument values. The combination of the two elements in-
duces a third important feature, characteristic of web-layer
requests:structure. Script arguments strings within HTTP
requests are structured by placing variable name and their
respective arguments in pairs, with each pair placed from
left to right within the argument string. By examining entire
strings, one can capture not only what the contents of the ar-
guments should be but also how they should be positioned.
This structure is standard for HTTP and is important as it
admits string models for anomaly detection, and is the pri-
mary reason whySpectrogram utilizes Markov chains.
The Markov model we use expands upon earlier works by
Kruegelet al.[15, 16] whose AD sensor contained a compo-
nent which modeled content using single-gram transitions
and operated on Apache log files. The model we present is
a multi-step Markov chain which examines multiple gram-
transitions. Furthermore,Spectrogram utilizes a mix-
ture of such chains for improved accuracy, designed un-
der machine learning (ML) principles. An ML algorithm
which recovers the optimal parameters for this model from
the data is offered in this paper, constructed under a su-
pervised learning framework. The previously mentioned
sensors [15, 16, 34, 12] use unsupervised algorithms. The
distinction is important — while unsupervised approaches
eliminates the need for labeled training data, they are guar-
anteed to find only statistical anomalies — inputs not fre-
quently seen but not necessarily malicious. Trade-offs be-
tween FP rates and accuracy are more difficult to address for
these sensors and are driven primarily by model complexity.
The next section elaborates on these issues and describes the
mathematical details of our model.

4 The Spectrogram Model

As previously mentioned,Spectrogram is a string
model, designed specifically to recognize the distribution
of content and structure present within web-layer script in-
put strings. Higher order statistics is used for improved ca-
pacity and the ill-posed nature of modeling such short dy-
namic strings is offset with a Markov-chain relaxation in
the dependency assumptions. The Markov-chain structure
is appropriate for this problem given the default ordering
of content within web-layer inputs. From a statistics per-
spective, the relaxation induces a more flexible interpola-
tion between thei.d. and i.i.d extremes that characterize
previous models [34, 12]. Figure (3) shows the portion
of the request thatSpectrogram examines — parame-
ter names, their respective inputs, as well as their layout



GET /path/script.php?val1=bleh&val2=blah&val3=... HTTP/1.1
Host: vulnerable.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; ...
Accept-Language: en-us,en;q=0.5
Referrer: http://somesite.net
...

Figure 3. Sample HTTP request. Bold, under-
lined text indicates the portion of the request
that is modeled by the sensor. In a GET re-
quest, the URL string is parsed; in a POST,
the message body.

with respect to each other, are modeled jointly. The sensor
is required to infer the likelihood that the input string is le-
gitimate; that not only are the substrings “bleh” and “val1”
valid but their order is also valid and that “val2” should fol-
low these substrings. For this purpose, the inference model
tracks then-gram level transitionswithin a string, resolv-
ing the likelihood of each observedn-gram given the pre-
cedingn-gram:p(’al1=bleh&’|’val1=bleh’). Capturing this
structure infers that “bleh” is an argument for the variable
“val1”; if “val1” is followed by another sequence of un-
recognized characters, it would be considered anomalous.
The transition-based conditional probability model is anal-
ogous to a sliding window that shifts by a single charac-
ter, with eachn-gram sized window dependent upon on the
previous. It is intuitive to see then that sufficiently large
sizedn-grams must be used to obtain an reliable estimate.
However, the problem of modelingn-grams is ill-posed as
mentioned previously, this means that small deviations in
the training data could yield large deviations in the per-
formance. Spectrogram compensates by factoring the
n-gram distribution into aproductof n − 1 pair-wise con-
ditional dependency models. Each character within ann-
gram is conditioned on the previousn− 1 characters. This
factorization reduces the problem from exponential to lin-
ear complexity and takes advantages of the overlapping na-
ture of then-grams within an input string — we only need
to calculate the likelihood of each character within a string
once, though that character may contribute to multiple over-
lappingn-grams. This explained in more detail in the fol-
lowing section.

Within the Spectrogram model, a single Markov
chain recovers the likelihood of any given string by calcu-
lating the likelihood of each character and then recovering
thegeometric meanof the individual likelihoods. Multiple
Markov-chains are used in a linear mixture to obtain the
final likelihood score. The only parameters to set within
Spectrogram’s inference model are the gram sizeN and
the number of mixturesM , these parameters are specified

during training. The following sub-sections illustrate the
n-gram modeling problem in extended detail and derives
the mixture of Markov-chains model step-by-step. In sec-
tion 4.4 and the appendix, we derive a learning algorithm
which automatically learns the model parameters based on
the training data.

4.1 N -Grams and the Curse of Dimensionality

N -gram based models have been successfully utilized in
recent years for AD roles. Given a string “http://”, 2-gram
tokens would be “ht”, “tt”, “tp”, etc. One seeks to recover
an accurate estimation of the distribution of these grams.
An example of such a sensor isAnagram, introduced by
Wang et al. [12]. The optimal way to model such a dis-
tribution, however, remains an open question. Given ann-
gram, if independence between the individual characters is
assumed, the sufficient parameters of the model would en-
compass the frequency of each individual character, inde-
pendently. This approach requires256 numbers (valid byte
range) and is what thePayL [34] sensor uses in its naive
setting. If we were to modeln-grams jointly to recover
an estimate for the distribution of alln-sized token, such
as “http://”, then estimation of2567 individual parameters
would be required. In general256N numbers are required
for gram sizeN . This approach, to some degree, is what the
Anagram sensor utilizes. For largen, however, we would
never see enough training data to properly fit a fulln-gram
distribution, making this anill-posedproblem. For exam-
ple, if “val1=AAA&val2=” was seen in the training data but
“val1=BBB&val2=” was not, the latter would be flagged as
anomalous though it might be a legitimate request. This
model suffers from the curse of dimensionality when we at-
tempt to increase its capacity by increasing gram-size. Con-
versely, when modeling grams independently, as inPayL,
if three “B”’s were observed anywhere in the training sam-
ples then it would be considered normal for them to be any-
where else in the input string, thus throwing away structure
information. An effective attack is simply to adding three
“B”’s to the end of the attack string to make the request
seem more legitimate.Anagram addresses the problem
with a trade-off between speed and generalization-ability,
using hash collisions on subsets of specificn-grams. This
allows fast classification and recognition of deviations in
static content, such as protocol violation, but can become
unstable for small dynamic string content modeling in the
web-layer domain, as results in this paper will demonstrate.

In contrast,Spectrogram models strings by relaxing
the exponentially growingn-gram distribution into ann-
step Markov-chain, as an interpolation between the the two
previously explored extremes. Ann-gram’s normality, in
this factorization, is conditioned on then − 1 preceding
grams: given a5-gram model and input string “http:/”, we



condition the normality of the character “/” on the frequency
that “:” was observed in the previous position during train-
ing, that “p” was observed two positions prior, “t” three
positions prioretc. Upon examining “val1=BBB&val2=”,
“BBB” is unrecognized but “val1=” and “&val2=” are rec-
ognized. Moreover, they are recognized to be in the cor-
rect positions with respect to each other, thus the string ap-
pears onlyslightly anomalous due to “BBB”’s presence, as
desired.Spectrogram also detects padding by immedi-
ately flagging strings larger than three standard deviations
above the average input length. This acts as a fast ad hoc
heuristic filter and should be adjusted per host. These ef-
forts combine to resists statistical blending attacks: if an
attacker were to attempt to blend malcode into legitimate
traffic, he would need to insert normal content, in the same
n-gram distribution as a legitimate request, as well as en-
sure correct structure, while remaining within the accept-
able length, at which point he would be sending a legiti-
mate request and not an attack. WhereasPayL requires256
numbers andAnagram, o(256N), a Markov-chain model
requires2562× (n− 1) numbers at then-gram level. Since
Spectrogram is a mixture of Markov-chains (with mix-
ing weights),M × (2562 × (n − 1)) + M numbers are
required per model for a mixture ofM -Markov chains.
M controls the capacity of the model and correlates with
the number ofclusterswithin the data. Given the depen-
dency structure, the clusters in this case capture the multi-
step transitions between alphanumeric characters that en-
code content and structure, the linkage of certain symbols
such as “&”, “=”, and their overall distributions. In prac-
tice, cross-validation can be used to determine the optimal
setting forM . The following sub-sections explore the math-
ematics of this model.

4.2 FactorizedN -Gram Markov Models

As previously mentioned, modelingn-grams entails
estimating a distribution over an exponentially growing
sample-space, making the problem ill-posed. A Markov-
chain, on the other hand, leverages the structure of web-
requests to reduce the complexity into a linearly grow-
ing space. For example, a2-gram model reduces to a
model on1-gram transitions. Rather than explicitly mod-
eling the likelihood of observing any two characters, the
model tracks the likelihood of observing the second char-
acter given the first. This conditional model is denoted
by p(xi|xi−1), wherexi denotes theith character within
a string andxi−1 denotes the(i − 1)th character. Extend-
ing this concept, the likelihood of ann-gram is driven by
the likelihood ofxn and is conditioned on then − 1 pre-
ceding characters,p(xn|xn−1, xn−2, .., x1). The Markov
chain approach decouples the precedingn − 1 characters
from each other given thenth character, that is (xi⊥xj |xn,

where i, j < n), and the joint likelihood is then reset
as theproductof these pair-wise conditionals. A5-gram
model, for example, takes the formp(x5|x4, .., x1) =
p(x5|x4)p(x5|x3)p(x5|x2)p(x5|x1). We introduce the vari-
ableG to indicate the gram size and Equations (1) and (2)
shows the interaction of the likelihood values within the
larger chain structure:

pG(xi|xi−1, .., xi−G+1) =

G−1
∏

j=1

p(xi|xi−j) (1)

pG(x1, ..., xN ) =

N
∏

i=G

G−1
∏

j=i

p(xi|xi−j) (2)

For the joint likelihood of the entire script argument string,
such as the example displayed in Figure (3), we need the
product of the individual likelihood values. This is repre-
sented in Equation (2) where capitalN is used to denote the
length of the entire string. The inner product indicates the
shifting G-sized window across the largerN -sized string.
With this factorization,n − 1 transition matrices, each of
dimensionality256× 256, needs to be kept in memory; this
algorithm has complexity growth inO(n). Also notice that
since this model is a continuous product of likelihood val-
ues, each of which is valued between0 and1, it becomes ap-
parent that longer strings will yield lower total likelihoods
which is not a desired effect since input length and intent are
not strongly coupled. A more appropriate form is ameanof
likelihood values. The interaction is a product ofN values,
therefore theN th root is needed,i.e. we need to solve for
the geometric mean.

pG(x1, ..., xN ) =





N
∏

i=G

G−1
∏

j=i

p(xi|xi−j)





1/N

(3)

Equation (3) calculates the likelihood value for each input
string. The capacity of this model can be improved by plac-
ing this Markov-chain within a mixture model framework
— in the final model,M chains contribute to the final score,
with each chain’s score weighed appropriately by a scalar
mixing coefficient. This model is more general since a mix-
ture model withM = 1 represents a single chain. The
use of multiple-chains improve upon the capacity of this
model by explicitly capturing subclasses of information in
a K-means like approach to better capture the potentially
many subclasses of input encountered. In fact, the training
method we use,EM, can be considered as a ”‘soft”’ ver-
sion ofK-means. Since each Markov chain tracks the tran-
sitional structure within subclasses of input strings, these
clusters correlate more with different types of input struc-
tures. For instance, strings with many numerical transitions,
strings using many non-alphanumeric characters,etc.



4.3 Mixture of Markov Models

Construction of this mixture model follows from stan-
dard machine learning procedure of introducing “hidden”
states in a weighted-summation mix of all individual chains.
Each submodel has the form shown in Equation (3). New
input samples would be evaluated overM chains and their
values combined in a linear function. Though they share
identical structure, these chains have distinct – and inde-
pendent – model parameters which are recovered from the
data. We useθi to denote the parameter variable for the
ith chain andΘ = {θ1, θ2, .., θM} to denote a set of pa-
rameters forM chains. To clarify, when using models with
gram-sizeG, eachθi consists ofG − 1 transition matrices.
p(xi|xj) is the likelihood of a transition from one charac-
ter to another and is a single value within one of these ma-
trices, indexed by the two characters. The scalar mixing
value for a particular chain indexed bys is denoted byπs.
Summing over these submodels with their appropriate mix-
ing weights,{π1, π2, , .., πM}, yields the final Spectrogram
likelihood value:

pG(x1, .., xN |Θ) =

M
∑

s=1

πs





N
∏

i=G

G−1
∏

j=i

p(xi|xi−j ; θs)





1/N

(4)

Equation (4) represents theM -state mixture model that de-
fines the core classification engine withinSpectrogram;
a subscriptG is used to denote aG-gram sliding win-
dow. Variables indicates the hidden state index of the
Markov-chains. The mixing proportions all sum to1:
∑M

s=1
πs = 1. Likewise, the transition likelihoods also sum

to 1:
∑

i p(xi|xj) = 1 for all j, which means that the like-
lihoods must be normalized.

4.4 Training the Spectrogram Model

Training this model means estimating the optimalΘ for
Equation (4) and is not as straight forward as training a
single Markov-chain since multiple chains are interacting
when attemping to fit the data. For a single submodel, the
likelihood function is concave in the data and parameters,
indicating that a single optimal solution for the parameter
settingθ exists. This solution can be recovered by setting
the first order derivatives of the likelihood function to zero
and solving and resolves to simply counting the number of
gram-to-gram transitions within the data then normalizing
the matrices so that each row sums to 1. This was done
previously for single-gram transition models [15, 16]. The
likelihood space for a mixture of Markov-chains, however,
is not concave in the parameters and data – a linear mixture
of concave functions does not preserve concavity. This re-

moves the single-optimal-solution property and makes solv-
ing for the optimal parameter setting more complex. To
train a mixture model, we utilize an ML procedure known
as Expectation Maximization (EM). The approach utilizes
a gradient ascent algorithm to iteratively maximize a lower
bound on the likelihood function until no improvement is
noted with respect to the estimated parameters.

Let p(D|Θ) denote the likelihood of observing a dataset
of independent training samples, represented asD. From
Bayes Theorem it’s known that the optimal setting for pa-
rameterΘ is the one that maximizes the joint likelihood of
the observation set. Ifp(D|θ) is concave in parameter space
then there is a unique optimal solution which can be recov-
ered by solving the gradient ofp(D|Θ) to zero and solving
for Θ. As previously mentioned, for a single Markov-chain,
this is simple.P (D|Θ) for mixture of Markov-chains, how-
ever, isnot concave in the joint parameter and data space
– the hidden states, while increasing model capacity, also
remove the concavity property since summations over con-
cave functions do not preserve concavity. This removes
the guarantee of the existence of a unique optimal solution.
To train this mixture model, we must instead make use of
an alternative machine learning procedure known as Ex-
pectation Maximization (EM). EM is a popular parameter
estimation technique that was first introduced in the sim-
pler form by Dempsteret. al. [8] in 1977. It is a proce-
dure for optimizing non-concave functions through gradi-
ent ascent and contains two core steps: theExpectation
step (E-step) calculates the joint likelihood of observingthe
training set given current estimates of model parametersΘ
and theMaximization step (M-step) finds the gradient
of a concave lower-bound on the likelihood function and
moves the parameter estimate in that direction. At each
steps, the model estimates areupdatedin the direction of
the gradient thus maximizingP (D|θ) in an iterative proce-
dure. These two steps guarantee monotonic convergence to
a local-maximum forP (D|θ) and can be alternated until no
likelihood-gain is achieved. The EM update rules must be
derived on a per model basis. We describe the EM update
rules for theSpectrogrammixture model below:

E-STEP: In the E-step, we need to solveP (D|Θ) for
our mixture of Markov-chains model. The likelihood of ob-
servingD is the product of the likelihoods of the individual
samples:

pG(D|Θ) =

|D|
∏

d=1

pG(xd|Θ) (5)

The bold faced variablexd denotes a string of arbitrary
length in D. Next, a lower bound on the expected
value is needed. This can be recovered withJensen’s
inequality which states that given a concave function
f(x), we have the identityf(

∑

x) ≥ ∑

f(x). Using log



for f(x), instead of solving for Equation (5) directly, we

can solvelog
(

∏|D|
d=1

pG(xd|Θ)
)

. This makes finding the

gradient more tractable. Since logarithms are monotonic
transformations, the optimalΘ is equivalent for both func-
tions:

argmax
Θ

log pG(D|Θ) = arg max
Θ

pG(D|Θ)

This means that maximizing the equation in log-space
yields the same solution as in the original space. Next, we
plug Equation (3) into Equation (5) and solve for the new
likelihood function.

log pG(D|Θ) = log

|D|
∏

d=1

pG(xd|Θ) (6)

=

|D|
∑

d=1

log







M
∑

s=1

πs





N
∏

i=G

G−1
∏

j=i

p(xi|xi−j ; θs)





1/N





(7)

≥
|D|
∑

d=1





M
∑

s=1

log πs +
1

N

N
∑

i=G

G−1
∑

j=i

log p(xd,i|xd,i−j ; θs)





(8)

Equation (8) describes the new lower bound on the likeli-
hood functions which we have to maximize. The variable
xd,i indicates theith character of sample stringd. To reiter-
ate,p(xi|xj , θs) is a single value within then− 1 matrices
of thesth chain – we are never doing more than retrieving
elements from multiple matrices and combining them. With
Equation (8), we conclude the derivations for the E-step of
the training algorithm.

M-STEP: The maximization step requires solving the
gradient of Equation (8) with respect toΘ and the mixing
weights{π1, .., πM}. Given the previously mentioned con-
straints on the transition matrix, that the rows need to sum to
1,

∑

i p(xi|xj) = 1 for all j as well as the constraints on the
mixing weights

∑

s πs = 1, we need to use Lagrange mul-
tipliers to find the stationary points under these constraints.
For brevity, we provide the final solutions in this paper, the
full steps, including further discussions on how to improve
the model, will be made available at a later time on our web-
site.1 The M-STEP proceeds as follows: letτd,s denote the
log-likelihood of observing stringxd given modelθs.

τd,s =
1

N

N
∑

i=G

G−1
∑

j=i

log p(xd,i|xd,i−j ; θs) (9)

Each iteration of the EM algorithm shiftsΘ in the direction
that improvesp(D|Θ) the most. We usedπ† to denote how

1http://www.cs.columbia.edu/ids/

to update the mixing weights andθ† for the parameters of
the chains.

π
†
i =

∏|D|
d=1

πiτd,s
∑M

j=1

∏|D|
d=1

πjτd,s

(10)

p†(xi|xj ; θs) =
p(xi|xj , θs) +

∑|D|
d=1

τd,s
∑256

j=1

(

p(xi|xj , θs) +
∑|D|

d=1
τd,s

) (11)

The entire training algorithm for Spectrogram’s statistical
model is to alternate between these two E and M steps.
The training algorithm is given below. Figure (4) shows

function train-spectrogram (D, G, M )
1 {π1, π2, .., πM}, Θ = {θ1, .., θM} ← randomly-initialize
2 Z1 ← Equation (8)
3 for i = 2 to ITER-LIMIT
4 Update{π1, .., πM} using Equation (9)
5 UpdateΘ using Equation (10)
6 Zi ← Equation (8)
7 if(Zi − Zi−1) < T then break
8 done
return {π1, π2, .., πM , Θ}

Figure 4. Spectrogram training with thresh-
old T . The inputs are D – the dataset, G –
the desired gram size and M – the number of
Markov-chains to use.

the pseudo-code for the training algorithm. The algorithm
accepts as input, the training datasetD, the gram-sizeG
and the number of Markov-chainsM to use and the out-
put is the full mixture of Markov chains model. Recall
thatG andM control the capacity/power of the model; in-
creasing their values allows the model to fit the data more
tightly. The optimal settings should be recovered through
cross-validation.

5 Evaluation

We evaluatedSpectrogram on two of our university’s
web-servers. One of the machines hosts our departmental
homepage and includes scripts for services such as a gate-
way to a tech-report database, student and faculty direc-
tory, search-engines, pages for department hosted confer-
ences, faculty homepages and their accompanying scripts
and content that one can typically associate with a com-
puter science department’s public facing web server. The
second server is a gateway to the homepages of several hun-
dred M.Sc and Ph.D students. We estimate at least several
dozen, if not a hundred different scripts running between the
two. In our experiments, a singleSpectrogram mixture-
model is trained per server. Two approaches for evaluation
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(a) Student server - SQL-Injection. (b) Dept. server - SQL-Injection.

Figure 5. ROC - Spectrogram performance in defending two university servers against SQ L injec-
tions. In all tables, earlier works [15, 16] are partially re presented by the 2-gram model. In this
case, small gram sizes worked well given that simple non-obf uscated SQL injection use many non-
alphanumeric characters.

are explored. Withunbiased sampling, we extract only
the uniquerequests within our dataset. This is so we are
measuring the capacity of the classifier and are not influ-
enced by thedistribution of the requests themselves. For
example, if a particular request can be classified correctly
and that request contributes to the majority of the observed
samples, then the FP rate would be biased in our favor and
vise-versa. Withfull sampling, we evaluate Spectrogram
using the complete dataset of requests seen, giving us a
look at the raw FP rate over the entire content stream; all
of the attack samples used in our experiments are unique.
Spectrogram does not use any attack samples in its train-
ing; only normal, legitimate input. The detections described
in this paper are over completely unseen attack code. When
evaluating FP rates, we also useunseenlegitimate requests
given that, with unbiased sampling, each instance of a legit-
imate request is distinct. We split the dataset into disjoint
training and testing sets, thus for normal content, the sets
are disjoint as well. Since unique samples are used, the sen-
sor must infer structure and content normality and general-
ize to unseen samples by looking at subsets of acceptable
requests; in order to avoid false positives. Every experi-
ment result reported in this paper is derived from an average
of five independent trials where the datasets are completely
randomized between tests. For each trial, the dataset of nor-
mal requests is randomly split into 95% training and 5%
testing disjoint unique sets. All of the attack code is used
for each trial.

5.1 Evaluation Dataset

Our dataset includes roughly6.85 million requests, col-
lected over the period of one month. To generate the train-
ing set, we normalized the strings in the manner described
in Section (5.3) and extracted only the unique samples. This
reduced the dataset to15, 927 samples for the student server
and 3, 292 for the department server. We manually ex-
amined the data to ensure that it was free of recognizable
attacks (data sanitization is discussed later). The attack
dataset included:637 PHP local and remote file inclusion
attacks,103 Javascript XSS attacks,309 SQL-injection at-
tacks. We further generated another2000 unique shellcode
samples using four of the strongest polymorphic engines
from theMetasploit framework, determined using pre-
viously published methods [30].

In addition, we passed these samples through
ShellForge’s [2] ASCII encryption engine to gen-
erate2000 additional samples. Finally, we added four
port-80 worms which we had access to:Code-Red,
Code-Red II, IISMedia and IISWebdav. These
worms propagate through the URI and message body and
attack web-servers at the memory layer. Roughly half
of the samples forL/RFI were actual captured attacks
against our servers, the same for roughly a quarter of the
SQL-injection attacks. We collected the remaining
samples from sites that host web-exploit code2. As
previously mentioned, every instance is unique.

2milw0rm.com, xssed.com, databasesecurity.com
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(a) Student server - File-Inclusion. (b) Dept. server - File-Inclusion.

Figure 6. ROC - The only poor performance case was the PHP file i nclusion attack, due to the fact that
this particular class of attack does not require actual malc ode, rather only the addressof the malcode;
making them much harder to detect. Notice that increasing gr am size makes a big difference.

Attack (S) PayL (S) SG-5 (D) PayL (D) SG-5
L/RFI 5% 78% 5% 74%
JS XSS 11% 99% 9% 99%
SQL-Inj. 76% 98% 75% 97%
Shellcode 100% 100% 100% 100%
ASCII Shc. 100% 100% 100% 100%
Code-Red

√ √ √ √

Code-Red II
√ √ √ √

IIS-Media
√ √ √ √

IIS-Webdav
√ √ √ √

Table 1. Accuracy comparison with FP rate
held at 1%. Unique samples used to unbias
the data distribution. In all tables, (S) denotes
the student server and (D) denotes the depart-
ment server. Compare with Anagram shown
in Table (2). See Table (3) for FP rates on the
full datasets.

Anagram L/RFI XSS SQL (S) FP (D) FP
2-Gram 14% 96% 98% 14% 75%
3-Gram 96% 99% 100% 96% 95%
4-Gram 99% 100% 100% 98% 97%
5-Gram 100% 100% 100% 99% 98%

Table 2. Results for Anagram; all worms were
detected. The high FP is expected since
the input is short and dynamic. Compare
with Spectrogram (SG-5) which achieves the
same level of detection at 1% FP.

Server Total Requests False Positives
Department 2,652,262 118

Student 4,206,176 287

Table 3. FP rates for the full dataset of re-
quests collected over one month. The sev-
eral orders of magnitude between Tables (1)
and (2) (1% vs 0.00006%) is due to the distri-
butionof the data. The overwhelming majority
of web-requests are easy to classify correctly
and using unique samples is needed to accu-
rately evaluate the capacity of the classifier
without bias from the sample distribution.

Table (1) shows our accuracy results forSpectrogram
with a mixture of five Markov chains and gram size10,
abbreviated asSG-5. This setting of the sensor was cho-
sen for a good balance in empirical accuracy and perfor-
mance speed. Our split ratios yields roughly15, 131 train-
ing and796 distinct testing samples for the student server,
and3, 127 training and165 testing samples for the depart-
ment server. In each experiment the datasets are random-
ized at this ratio and the average of five trials are reported.
TheAnagram results highlight the main problem of under-
fitting when we increase gram-sizes to increase the power
of the classifier. The results show that Anagram is detecting
the attacks with higher accuracy when we use larger grams
but at the same time it can no longer generalize well. In con-
trast,Spectrogram’s Markov-chain factorization admits
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(a) Student server - Javascript XSS. (b) Dept. server - Javascript XSS.

Figure 7. ROC - Detection of Javascript XSS.

much higher gram sizes while maintaining low FP rates on
the unbiased dataset. In raw numbers, this 1% false positive
rate translated to roughly 8 false positives on average on the
student server dataset and for the department server, 2 FPs.
The different sensors were all evaluated in the same man-
ner. Good results were noted in all of the experiments ex-
cept theL/RFI attacks. This is because PHP file inclusion
attacks do not require actual attack code, just theaddressof
the code since the nature of the exploit allows remote code
fetching and execution. Due to this fact, detection is much
harder but still possible asSpectrogram, to some degree,
learns that URL inputs into PHP scripts are not legitimate
as results show (also c.f. our discussion on evasion tactics).
Figures (5,6,7,8) show the ROC curves forSG-5, evalu-
ated over a range of attack datasets and gram sizes. These
curves demonstrate accuracy for the spectrum of FP rates.
Here we can partially compare with the works of Kruegel
et al. [15, 16]. The 2-gram curvespartially represent their
sensor. We say partially because 2-grams is only one part of
their framework. At the same time, our tests used2-grams
in a mixture model while they did not. Their sensor also op-
erates on Apache log files so an exact comparison is not pos-
sible. The 2-gram plots are included to drive the point that
larger gram-sizes improves performance. Figure (6) and (8)
show continued improvement (larger accuracy at the same
FP rate) as we increase the gram size. Note that while the FP
rate forAnagram jumped into the 90’s with only 3-grams
on the unbiased dataset,Spectrogram showed continued
improvements in accuracy, in most cases, even beyond 10-
grams. In practice, the optimal gram size can be estimated
through cross-validation and by generating the same ROC
plots as those shown in this paper to find the favorable pa-
rameter settings.

5.2 Runtime

Table 4 shows the run-times forSpectrogram at vari-
ous gram sizes when running on 15,927 samples. Note that
training time will depend on the data since we’re using a
gradient ascent learning algorithm. The convergence rate
is a factor and it may take longer with different choices of
model parameters, as can be seen from the table – a 2-gram
model took longer to train because that the model did not fit
the data well and thus the training took longer to stabilize.
The cost of reconstructing content flow from network layer
packets is greatly reduced with the use of thetcpflow [9]
library, which is capable of reconstructing nearly 40,000 re-
quests per second on a 3Ghz machine.

5.3 Discussion

Data Normalization: A reduction in the amount of un-
useful features within the data is helpful to improve the
signal-to-noise ratio. This procedure is mostly ad hoc and
should be customized for each server. Methods which we
found effective include: un-escaping each string, remov-
ing white-space and numbers, and reduction into lower-
case. These operations serve to make the input space tighter,
by making samples from different sub-classes of legitimate
content appear as similar to each other as possible. It also
serves to to mitigate the efficacy of some obfuscation meth-
ods. Stability is the ultimate goal of this procedure and
in deployment, normalization should be tweaked depending
on the type of data the monitored web-server(s) observe.

Mixture and gram sizes: As we can see from the ROC
curves, there is an obvious benefit to be gained from using
larger gram sizes. Clear improvements are observable over
the 2-gram model previously studied. The ability to model
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(a) Student server - Ascii Shellcode. (b) Dept. server - Ascii Shellcode.

Figure 8. ROC - ASCII encoded shellcode hide binary x86 instructions as printable characters and
can potentially frustrate statistical sensors. When small gram sizes are used, the sensors lock on
only to character distributions and not content. In the smal l FP range, gram size makes a noticeable
difference in discrimination ability.

Gram-Level Train Time (Matlab) Sensor Speed (C++) Model Size
2-Gram 50.3 s 17,094 req/s 3.1 Mb
3-Gram 35.5 s 12,195 req/s 4.6 Mb
5-Gram 54.8 s 7262 req/s 7.7 Mb
7-Gram 69.4 s 4721 req/s 11 Mb
15-Gram 89.8 s 1960 req/s 23 Mb

Request-reassembly 39,000 req/s

Table 4. Run-times for SG-5 on a 3Ghz machine (off-line tests). Training is done in MATLA B and the
final sensor is implemented in C++. Training time will depend on data and convergence rate. 15, 927
samples were used and an average of five trials is reported. Pa cket-reassembly is done using the
tcpflow library.

large gram sizes without under-fitting highlights the benefit
of the proposed Markov-chain factorization. In practice, the
appropriate gram and mixture size will depend on the type
of data observed by the monitored server. More dynamic
content would require larger mixture sizes while more com-
plex structure/input would require larger gram sizes. The
optimal settings for these parameters should be recovered
through cross-validation. Methods and tools to automate
the cross-validation process are being developed and will
be made available. The threshold setting can be automati-
cally adjusted based on the false positive rate on the training
datae.g.finding the threshold that yields 0.0011% FP.

Training : Spectrogram is a supervised learning sen-
sor. In our experiments, we monitored remote hosts and
manually labeled legitimate requests. With judicious use
of the unix commands:tr, grep, sort, uniq and

manual examination, we were able to generate a clean
dataset of unique requests from over 6 Million samples
within a couple of hours. More optimal ways to generate la-
beled data is under investigation. Since only unique samples
of legitimate requests are needed, one possibilility is for
the script writers to generate samples of legitimate requests,
which they would already do when testing their code. We
also refer the reader to the work by Cretuet al. [6] on au-
tomated data-sanitization and labeling.Spectrogram’s
model does not admit online/continuous training. How-
ever, as we have shown, training using over 15,000 samples
requires only a few minutes. Automated nightly or even
hourly re-training is not unreasonable to deal with script
updates. False positives identified within the logs can be
reinserted into the training set so they are recognized in the
future. Individual models can also be trained at different



intervals based on the update-frequency of different hosts.
SinceSpectrogram outputs a normality score for each
request, it is possible to rank alerts to generate short-lists
for human analysis.

Scalability and Forensics: Two main issues concerning
scalability are speed and model-capacity. With regard to the
former, our results demonstrate that the sensor can perform
at sufficient speeds to keep up with thousands of requests
per second but it is also possible to deploy several sensors
on the network in parallel to monitor different subnets or
even individual hosts, as would be the case when protect-
ing large data-centers. Since the sensors are driven by the
content of the legitimate data, there is no need to keep in-
dividual sensors consistent with each other if the content
does not overlap. Further improvement in speed is also pos-
sible if implemented on-host, without packet-reassembly.
Regarding model-capacity, using larger settings forM and
N during training automatically increases the level of de-
tails with whichSpectrogram models the content. This
feature addresses highly dynamic content within a specific
service. In our experiments using two independent sensors
was sufficient for all of our department websites. In prac-
tice, if the content stream being modeled is highly dynamic,
improved data-normalization procedures can also be intro-
duced to add stability to the model. One potential approach
is to incorporate some domain knowledge to filter the con-
tent into symbol streams and haveSpectrogram model
operate over these transitions instead.

White-listing : Spectrogram is protocol-aware and
script-aware and contains a white-listing feature based on
the script names and request types. This allows false posi-
tive reduction by white-listing scripts with highly dynamic
inpute.g.POST with binary content.

Evasion tactics: Spectrogram is designed to resist
common evasion tactics. Network-layer sensors and cer-
tain firewall configurations can be bypassed by fragmen-
tation attacks;Spectrogram dynamically re-assembles
requests to reconstruct the attack, to see what the target
script sees. Polymorphism frustrate signature based sen-
sors;Spectrogram utilizes anomaly detection and never
trains using malicious content therefore polymorphism has
little effect. Some counting-features based statistical AD
sensors can have their scoring skewed by attacks crafted to
appear like normal requests;Spectrogram uses higher
order statistics in addition to length. If an attacker were to
craft a blending attack to evade this sensor, he would need
to insert content and structure that is statistically consistent
with normal requests at then-gram level, while remain-
ing within the acceptable input length, at which point he
would be sending a legitimate request. However, if the pro-
tected scripts legitimately reads data from foreign sources,
with only destination addresses exposed, additional data-
sanitization must exist.

6 Conclusions

As the web-exploit threat continues to expand and sig-
nature based approaches wane in their usefulness, statis-
tics based IDS solutions which offer more natural resis-
tance against these threats deserve further investigation.
Spectrogram represents another step in this direction,
offering some improvements over previous sensors by de-
signing a model specific for web-layer inputs, as well as
an architecture that offers the flexibility needed in a usable
NIDS solution, in terms of speed and deployment require-
ments. This paper studied the AD problem in the context
of n-gram modeling, discussed the ill-posed nature of the
problem and derived a relaxation of the task into a more
tractable linear form through the use of Markov-chains. Our
experiments highlight the beneficial effect of these changes.
A parameter estimation technique to train this model is
offered. Spectrogram has two adjustable parameters: the
mixture-size and the gram-size and the optimal settings for
both can be found by cross-validation to obtain the desired
trade-off between speed and accuracy.
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