
VAMO: Towards a Fully Automated

Malware Clustering Validity Analysis

Roberto Perdisci
Dept. of Computer Science

University of Georgia
Athens, GA 30602

perdisci@cs.uga.edu

ManChon U
Dept. of Computer Science

University of Georgia
Athens, GA 30602

manchonu@cs.uga.edu

ABSTRACT

Malware clustering is commonly applied by malware analysts to
cope with the increasingly growing number of distinct malware
variants collected every day from the Internet. While malware clus-
tering systems can be useful for a variety of applications, assess-
ing the quality of their results is intrinsically hard. In fact, clus-
tering can be viewed as an unsupervised learning process over a
dataset for which the complete ground truth is usually not available.
Previous studies propose to evaluate malware clustering results by
leveraging the labels assigned to the malware samples by multiple
anti-virus scanners (AVs). However, the methods proposed thus far
require a (semi-)manual adjustment and mapping between labels
generated by different AVs, and are limited to selecting a reference
sub-set of samples for which an agreement regarding their labels
can be reached across a majority of AVs. This approach may bias
the reference set towards “easy to cluster” malware samples, thus
potentially resulting in an overoptimistic estimate of the accuracy
of the malware clustering results.

In this paper we propose VAMO, a system that provides a fully
automated quantitative analysis of the validity of malware cluster-
ing results. Unlike previous work, VAMO does not seek a majority
voting-based consensus across different AV labels, and does not
discard the malware samples for which such a consensus cannot
be reached. Rather, VAMO explicitly deals with the inconsisten-
cies typical of multiple AV labels to build a more representative
reference set, compared to majority voting-based approaches. Fur-
thermore, VAMO avoids the need of a (semi-)manual mapping be-
tween AV labels from different scanners that was required in previ-
ous work. Through an extensive evaluation in a controlled setting
and a real-world application, we show that VAMO outperforms ma-
jority voting-based approaches, and provides a better way for mal-
ware analysts to automatically assess the quality of their malware
clustering results.

1. INTRODUCTION

Due to the extensive use of packing and other code obfuscation
techniques [6], the number of new malware samples collected by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

anti-virus1 (AV) vendors has grown enormously in recent years,
reaching tens or even hundreds of thousand of new malware sam-
ples collected per day (e.g., in 2010 Symantec collected 286 mil-
lion distinct malware variants [19]). To cope with this increasingly
growing number of malware samples and boost the scalability and
effectiveness of current malware analysis infrastructures, a number
of malware clustering and automatic malware categorization sys-
tems have been recently proposed [1, 2, 3, 8, 11, 15, 18].

The main objective of malware clustering systems is to group
malware samples into families, whereby samples that are similar to
each other can be considered as variants of the same malware fam-
ily. Intuitively, malware clustering results can be useful in several
ways. For example, new malware samples that are clustered with
known malware variants of a given family f may be also catego-
rized as belonging to f . In turn, these newly discovered variants
may be used to derive more generic malware detection signatures
that have a better chance to match future variants of the same fam-
ily [15]. In addition, malware clustering results may make it easier
to identify new, previously unknown malware families [2], or may
be used to perform malware triage [11], thus allowing malware ex-
perts to select only a small number of variants of a given malware
family for manual analysis.

To take full advantage of the above mentioned benefits, malware
clustering systems clearly need to be accurate. Unfortunately, it is
very challenging to quantitatively assess the accuracy of malware
clustering results, because of the lack of reliable ground truth. A
common approach to validating the quality of malware clustering
results is to compare them to a reference clustering obtained by
leveraging family labels assigned to the samples by multiple AV
scanners [2, 11]. To compensate for inconsistencies in the AV la-
bels, both [2, 18] and [11] use a majority voting approach to select
the samples for which an agreement regarding their AV family la-
bel can be reached. Therefore, a cluster in the reference clustering
will include all samples belonging to the same AV family. How-
ever, while this approach may appear as a natural choice in absence
of complete ground truth, Li et al. [12] have suggested that it may
result in an overoptimistic estimate of the malware clustering ac-
curacy. In particular, limiting the reference clustering to samples
for which a majority voting-based consensus on the family label
can be reached, and discarding the remaining ones, may reduce the
reference clusters to only include “easy to cluster” malware sam-
ples (i.e., clear-cut cases of malware samples that are very similar
to each other) [12], thus potentially causing the accuracy of the
malware clustering results to be largely overestimated. In fact, the

1While “anti-malware” is probably a more appropriate term, we
use “anti-virus” because that is the way in which many vendors of
malware scanners and defense solutions still advertise their prod-
ucts.

experiments reported in [2] state that among 14,212 malware sam-
ples, a majority voting-based consensus could be reached only for
2,658 cases. That is, more than 80% of the samples in the clustering
results had to be excluded from the cluster validity analysis.

In this paper we propose VAMO2, a system that enables an au-
tomatic quantitative analysis of the validity of malware clustering
results. Like previous work, VAMO leverages the labels assigned
to malware samples by multiple AV scanners to construct a refer-
ence clustering. However, unlike previous work, VAMO does not
seek a majority voting-based consensus, and does not discard the
samples for which such a consensus cannot be reached. Rather,
VAMO explicitly deals with (and aims to mitigate the effect of) the
inconsistencies typical of the AV labels to build a more representa-
tive reference clustering. Furthermore, VAMO avoids the need of
a (semi) manual mapping between AV labels from different scan-
ners that was required in previous work (notice that while some
efforts exist to standardize the “language” used to assign the AV
labels (e.g., http://maec.mitre.org), so far they have not
been successful). Also, we would like to emphasize that while AV
labels suffer from some limitations, as we discuss more in detail
in Section 7, they are used as a reference by many researchers be-
cause it is hard to obtain a more accurate ground truth for datasets
containing tens of thousands of malware samples.

VAMO leverages historic malware archives and the related mul-
tiple AV labels to learn an AV Label Graph (see Figure 1). An AV
Label Graph (see Section 5.1) is defined as an undirected weighted
graph, which aims to: (1) automatically learn the mapping between
malware family names assigned by different AVs, thus avoiding the
need to manually build or adjust such mappings; (2) identify cases
in which one (or more) AV scanners tend to inconsistently use sev-
eral family names to label samples that belong to the same family
according to other competitors’ scanners; (3) learn the level of sim-
ilarity between AV labels assigned by different AV scanners, by
looking at the number of times that certain malware family labels
are jointly assigned to the same samples. While the concept of AV
Label Graph was first introduced in [15], here we refine its defini-
tion and use it in the context of our novel VAMO system. Also, it
is worth noting that the AV Label Graph is only one component of
the entire VAMO system.

Learning the AV Label Graph enables us to measure the similar-
ity between malware samples in a dataset based purely on their AV
labels (see Section 5.1 for details). As shown in Figure 1, given
a malware dataset M and the related multiple AV labels assigned
to its malware samples, we can (a) apply a third-party malware
clustering algorithm (e.g., [2, 11, 15, 18]) on M to partition it in
a number of malware clusters, (b) use VAMO to build a reference
clustering for M using similarities among its samples measured ac-
cording to their AV labels, and (c) compute the level of agreement
between VAMO’s reference clustering and the third-party malware
clustering results, thus quantitatively assessing their quality.

In summary, this paper makes the following contributions:

• We propose a novel system, called VAMO, that enables a
fully automated malware clustering validity analysis.

• We perform an extensive evaluation of how different types
of AV label inconsistencies may negatively impact a valid-
ity analysis performed via majority voting-based approaches,
and show the advantages that VAMO brings over previous
work.

• We perform experiments with real-world malware archives,
and demonstrate how VAMO can be applied in practice to

2Validity Analysis of Malware-clustering Outputs.

assess the quality of malware clustering results over large
malware datasets.

2. RELATED WORK

Cluster Validity Analysis Besides the clustering validity indexes
reported in Halkidi et al.’s survey [7], which we summarize in Sec-
tion 3.2, a number of alternative validity indexes have been pro-
posed. In [17], Rendon et al. present a comparison of internal and
external clustering validity indexes, while Meilă [14] and Pfitzner
et al. [16] introduce a number of new metrics to compare two differ-
ent clusterings. In [5], Fowlkes and Mallows introduce a measure
of similarity between two hierarchical clusterings obtained by cut-
ting the two dendrograms at heights h1 and h2, respectively, which
yield the same number of clusters k. Than, for each value of k, the
number of matching entries from the two different clusterings are
counted to obtain a measure of comparison. Our approach to clus-
ter validity analysis (Section 5) is inspired by [5]. However, our
method does not focus on comparing different hierarchical cluster-
ings. Rather, VAMO leverages hierarchical clustering to generate
a reference clustering dendrogram, and compares third-party clus-
tering results to this dendrogram by finding the cut height h that
yields the maximum agreement between the third-party results and
VAMO’s reference clustering.

Malware Clustering Bailey et al. [1] presented one of the first
studies on behavior-based malware clustering. Furthermore, in [1]
the authors presented a quantitative analysis of the inconsistency in
the labels assigned by different AVs. Bayer et al. [2] introduced a
much more scalable way to perform behavior-based malware clus-
tering. In addition, they proposed to validate their clustering re-
sults by comparing them against a clustering obtained using a ma-
jority voting-based approach over multiple malware family labels
assigned to the samples by six different AVs [2]. A similar valida-
tion approach was used in [18]. In [8], Hu et al. perform malware
clustering using static analysis, instead of behavior-based features,
by leveraging function-call graphs, while [11] introduces a system
called BitShred that aims to improve scalability in malware cluster-
ing systems.

In [12], Li et al. discuss a number of challenges related to the
evaluation of results generated by malware clustering systems. In
particular, by using plagiarism detection algorithms to measure the
similarity between malware samples, they show that a factor con-
tributing to the strong results reported in [2] might be that the 2,658
validation instances selected via majority voting on multiple AVs
are simply easy to classify. However, no complete solution is of-
fered on how to perform a better malware clustering validity anal-
ysis. Our work is a step forward towards such a solution.

While most malware clustering systems are based on system-
level behavior or static-analysis-based features, [15] proposed a
malware clustering system that focuses on the network behavior
of malware and introduced the concept of AV Label Graph, which
we refine and use in this paper in the context of VAMO. It is worth
noting that the use of AV Label Graphs in [15] is significantly dif-
ferent from this paper. Previous work did not present a comprehen-
sive malware clustering validity analysis system, and the cohesion
and separation validity indexes used in [15] were mainly internal
validity indexes that required a significant amount of interpretation
through manual analysis. On the other hand, VAMO introduces a
comprehensive, fully automated malware clustering validity analy-
sis process that can more readily be used to select the parameters of
a malware clustering system, or to compare results obtained using
different clustering algorithms.

AV1 AV2 AV3 AV4

Detected samples 590,341 825,766 702,124 1,030,354
Detection rate (%) 53.3% 74.5% 63.4% 93.0%
Distinct AV labels 20,217 15,138 2,208 175,333
Distinct family labels 3,330 4,729 1,710 3,520
Distinct first variants 20,217 13,851 2,199 51,732

Table 1: AV labels for a dataset of 1,108,289 distinct malware

samples.

3. BACKGROUND

In this Section, we first provide quantitative information regard-
ing the inconsistency typical of multiple AV labels. Then, we dis-
cuss the background concepts that we will use to perform auto-
mated clustering validity analysis.

3.1 Measuring Inconsistency in AV Labels

In this Section, we aim to quantify the “inconsistency” typical of
multiple AV labels that has been qualitatively discussed in previ-
ous work [2, 15, 18], and analyzed more in details in [1, 13]. Our
main goal is to suggest that (semi-) manually creating a mapping
between malware family labels and correct the inconsistent (or er-
roneous) labels, which was required in previous work to perform
malware cluster validity analysis (e.g., in [2]), is in fact a fairly
difficult task. In addition, we show that in a large number of cases
no majority voting-based consensus can be reached. Our results
confirm previous findings [1] by using a more recent and much
larger malware dataset.

To this end, we performed a number of measurements over a
large dataset of AV labels assigned by four different major AV ven-
dors (namely, Symantec, McAffee, Avira, and Trend Micro) to a
set of 1,108,289 distinct malware samples3. These malware sam-
ples were collected from different sources over the course of one
entire year, from 2011-01-01 to 2011-12-31 (it is worth noting that
we only consider malware samples that were detected as such by at
least one out of the four AV scanners). The AVs used to scan the
samples were updated daily, and each malware sample was scanned
with each AV once a day for 30 days4, starting from the day in
which the sample was collected. In the following, we will refer to
the four AV scanners, in no particular order, as AV1, AV2, AV3, and
AV4. We intentionally mask the specific AV vendor names, when
reporting the results, to avoid controversy (the results we report
may be seen as damaging to one or more vendors, due to their low
detection rate). After all, we do not intend to establish what vendor
performs the best over our malware dataset. Rather, we focus on
the inconsistencies in the malware labels, both within a given AV
vendor as well as across vendors.

3.1.1 Overview
Table 1 summarizes our AV label dataset. As we can see, the de-

tection rate, number of distinct (complete) labels, and the number
of distinct malware family labels varies greatly across the differ-
ent AV scanners. For example, AV3 assigned a label to 702,124
(63.4%) malware samples, but the number of distinct labels was
only 2,208. This means that, in average, the same label was as-
signed to 317 different samples. This behavior is very different

3This dataset was kindly provided by a well-known security com-
pany.
4If an AV scanner AVi detected a sample m and assigned it a label
on day d < 30, the data collector would stop scanning m with AVi
for the remaining days, but continued scanning the sample with the
other AVs until they also assigned a label or d > 30.

from the other AVs, and in particular from AV4 for which in av-
erage the same label was assigned to (approximately) six samples.
In addition, among the 1,108,289 distinct malware samples, only
420,920 (38%) were labeled (i.e., detected) by more than two dif-
ferent AVs. This suggests that because a majority voting approach
would require three out of four AVs to agree on the labels (two
out of four would only represent a tie), in our example scenario
no majority voting-based consensus can be reached on the correct
malware family label for at least 38% of the samples. This prob-
lem is exacerbated by the fact that even in the cases in which three
or more labels are available, the AVs may not agree on the family
those samples belong to, as we discuss in Section 3.1.2

3.1.2 Family Labels
We now focus on malware family names, rather than considering

full AV labels. We will consider the malware cluster Clust. 1 shown
below as an example, to explain how we derive the malware family
names. This malware cluster was obtained using [15]. In Clust. 1,
each row represents a malware sample (indexed by the last four
bytes of its MD5 sum), and reports the labels assigned to the sample
by three different AVs, namely McAfee (M), Avira (A), and Trend
Micro (T).

Clust. 1 Malware cluster with inconsistent AV labels.
b1b6da81 M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

ec34ca31 M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

c2276216 M=W32/Virut.gen A=W32/Virut.E.dam T=PE_VIRUT.NS-4

089ae4f5 M=W32/Virut.gen A=W32/Virut.AX T=PE_VIRUT.D-1

8ba552c9 M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

8cb0ab6c M=W32/Virut.gen A=WORM/Korgo.U T=PE_VIRUT.D-4

b0b75f70 M=W32/Virut.gen A=W32/Virut.X T=PE_VIRUT.XO-1

a306b4e7 M=W32/Virut.gen A=W32/Virut.Gen T=PE_VIRUT.D-1

337a2cf4 M=W32/Virut.gen A=W32/Virut.Gen T=PE_VIRUT.D-1

62d18c7e M=W32/Virut.gen A=W32/Virut.Gen T=PE_VIRUT.D-1

8dbca633 M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

ac433383 M=W32/Virut.n A=W32/Virut.Gen T=PE_VIRUX.A-3

cae61d9e M=W32/Virut.gen A=W32/Virut.X T=PE_VIRUT.XO-2

7cc795f1 M=W32/Virut.gen A=W32/Virut.Gen T=PE_VIRUT.D-1

8de5214b M=W32/Virut.gen.a A=W32/Virut.AM T=PE_VIRUT.XY

4d26cb0a M=W32/Virut.gen A=W32/Virut.Gen T=PE_VIRUT.D-1

9fb75631 M=W32/Virut.n A=W32/Virut.Gen T=PE_VIRUX.A-3

229004b9 M=W32/Virut.gen A=W32/Virut.X T=PE_VIRUT.XO-1

28a85d8a M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

663c5f6c M=W32/Virut.d A=W32/Virut.Z T=PE_VIRUT.GEN-2

de6f1e00 M= A=W32/Virut.Gen T=PE_VIRUT.D-4

1ff43bca M= A=W32/Virut.X T=PE_VIRUT.XO-4

ea580f6d M=W32/Virut.n A=W32/Virut.Gen T=PE_VIRUX.A-3

a844eeff M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

4f8613fd M=W32/Virut.gen A=TR/Drop.VB.DU.1 T=PE_VIRUT.XO-1

To derive the malware family name, we split each label into sub-
strings divided by the ‘.’ symbol, and we extract the first substring.
For example, W32/Virut.gen becomes W32/Virut (Syman-
tec uses a slightly different notation, compared to the other AV
vendors. To extract the family label from Symantec’s labels, we
consider the first two substrings obtained by splitting the labels by
the ‘.’ symbol. For example, W32.Sality.AE would become
W32.Sality).

As we can see from Clust. 1, in this case both McAfee and Trend
Micro are very consistent, because they label the vast majority of
the samples as belonging to the Virut malware family, with the ex-
ception of two samples that were missed by McAfee and three sam-
ples that are labeled as PE_VIRUX (rather than PE_VIRUT) by
Trend Micro. On the other hand, Avira is much less consistent, be-
cause it assigned three different family names to the samples (i.e.,
TR/Drop, W32/Virut, WORM/Korgo).

Table 1 reports the total number, per AV, of distinct family names
obtained from all labels in our datasets. Also, Table 1 reports the
total number, per AV, of distinct “first variant” labels, i.e., labels
obtained by combining the first two label substrings (the first three,
in case of Symantec). Again, there is a relatively large difference
between the numbers obtained from different AVs.

To measure the number of common family names per sample

across different AVs, we further normalized the family names, for
example by cutting the label prefix (e.g., W32/, PE_, etc.) and
reducing all labels to lower case. For example, the first sample in
Clust. 1 would be labeled as {virut, drop, virut}. This was
done to maximize the number of common family names we could
find for a given sample across different AVs. Even after this nor-
malization, we could find a common family label across at least
three out of four AVs for only 2.4% of the samples, and a common
label across at least two out of four AVs for only 5.6% of the sam-
ples. Performing a manual mapping between the labels to mitigate
the effect of different “terminology” used by different AVs may
improve on these results. However, even after such manual map-
ping a majority voting-based consensus between the AVs cannot be
reached for the vast majority of the samples. This findings are con-
sistent with the experiments conducted in [2], in which a majority
voting-based consensus could be reached only for less than 20% of
the samples. Therefore, a reference clustering generated via ma-
jority voting may miss to represent a large portion of the malware
dataset, causing a potential overestimate of the clustering quality,
as also suggested in [12].

3.2 Validity Indexes

Clustering can be viewed as an unsupervised learning process
over a dataset for which the complete ground truth is usually not
available. Therefore, unlike in supervised learning settings, ana-
lyzing the validity of the clustering results is intrinsically hard. The
assessment of the quality of clustering results often involves the use
of subjective criteria of optimality [10], which are typically applica-
tion specific, and commonly involves extensive manual analysis by
domain experts. To aid the clustering validation process, a number
of methods and quality indexes have been proposed [7, 9]. Halkidi
et al. [7] provide a survey of cluster validity analysis techniques,
which aim to evaluate the clustering results to find the partitioning
that best fits the underlying data.

Three main cluster validity approaches are described [7]: (1) ex-
ternal criteria evaluate the clustering results by comparing them to
a pre-specified structure, or reference clustering; (2) internal cri-
teria rely solely on quantities derived from the data vectors in the
clustered dataset (e.g., using a proximity matrix, and computing
quantities such as inter- and intra-cluster distances); (3) relative
criteria compare clustering results obtained using the same cluster-
ing algorithm with different parameter settings, to identify the best
parameter configuration.

External validation criteria are particular attractive, because they
offer a quantitative way to measure the level of agreement between
the obtained clustering results and a reference clustering that is con-
sidered to be the ground truth [7, 16]. However, the main problem is
exactly how to construct the reference clustering in the first place.
This is one of the problems we address in this paper: building a
reference clustering that can be used for validating the results of
malware clustering systems.

Assuming a reference clustering is available, different external
validity indexes can be used for measuring the quality of the clus-
tering results. We briefly describe some of them below. Let M be
our dataset, Rc = {Rc1, .., Rcs} be the set of s reference clusters,
and C = {C1, .., Cn} be our clustering results over M. Given a
pair of data samples (m1,m2), with m1,m2 ∈ M, we can com-
pute the following quantities:

• a is the number of pairs (m1,m2) for which if both samples
belong to the same reference cluster Rci, they also belong to
the same cluster Cj .

• b is the number of pairs (m1,m2) for which both samples

belong to the same reference cluster Rci, but are assigned to
two different clusters Ck and Ch.

• c is the number of pairs (m1,m2) for which both samples
belong to the same cluster Ci, but are assigned to two differ-
ent reference clusters Rck and Rch.

• d is the number of pairs (m1,m2) for which if the samples
belong to two different reference clusters Rci and Rcj , they
also belong to different clusters Cl and Cm.

Based on the above definitions, we can compute the following
external cluster validity indexes [7]:

• Rand Statistic. RS = a+d

a+b+c+d
= a+d

|M|

• Jaccard Coefficient. JC = a

a+b+c

• Folkes and Mallows Index. FM = a√
(a+b)(a+c)

For all three indexes above, which take values in [0, 1], higher val-
ues indicate a closer similarity between the clustering C and the
reference clustering Rc.

The authors of [2, 18], proposed to use different indexes, based
on precision and recall, to measure the level of agreement between
behavior-based malware clustering results C and a (semi-)manually
generated reference clustering Rc derived by using majority voting
over multiple AV labels. In this setting, precision and recall, and
the related F1 index, are defined as follows:

• Precision. Prec = 1/n ·
�

n

j=1 maxk=1,..,s(|Cj ∩Rck|)

• Recall. Rec = 1/s ·
�

s

k=1 maxj=1,..,n(|Cj ∩Rck|)

• F1 Index. F1 = 2 Prec·Rrec

Prec+Rrec

In the remainder of the paper, we will often refer to the external
validity indexes defined above.

4. SYSTEM OVERVIEW

Figure 1 provides a high-level overview of VAMO. We assume
that a third-party has employed a malware clustering system, for
example one of the systems proposed in [2, 11, 15], to partition a
malware dataset M into a set of clusters C = {C1, C2, .., Cx},
with

�
x

i=1 Ci = M. VAMO’s objective is to validate the qual-
ity of C (i.e., the malware clustering results). We now provide a
description of VAMO’s components shown in Figure 1.

AV Label Dataset Given a large historic archive dataset of
malware samples A (which is different from M), we first collect
the set of family labels assigned by multiple AV scanners to each of
the malware samples mk ∈ A. The resulting AV labels dataset can
be represented as a set of tuples L = {(lk,1, lk,2, .., lk,ν)}k=1..n,
where lk,i is the malware family label assigned by the i-th of ν AV
scanners to malware sample mk, with k = 1, .., n, and n = |A|.
If an AV scanner misses to detect a malware sample, the related
label in the set L will be assigned a unique placeholder “unknown”
family label. It is worth noting that the malware dataset A need
not contain actual executable malware samples. In fact, A may
simply contain a list of hashes (e.g., md5 or sha1) computed by a
third party (e.g., the owner of a large malware dataset who cannot
share the malware itself) over known malware samples. In this
case, the label dataset L may be obtained by querying a service
such as virustotal.com to obtain, for each hash, the related
malware family labels from multiple AV scanners.

Malware
Archive

AV Label Graph

Malware
Dataset

Build
Reference
Clustering

Validity
Analysis

Malware
Clustering
Process

Clustering
Results

Clustering
Quality
Indexes

VAMO

AV scan AV scan

Third-party malware clustering systemA

AV Label
Dataset

T

M C

L

LM

Figure 1: VAMO System Overview

AV Label Graph VAMO uses the label dataset L to learn an AV
Label Graph (defined formally in Section 5.). Basically, a node in
the graph represents a malware family name attributed by a certain
AV scanner (or AV, for short) to one or more malware samples in A.
For example, assuming the i-th AV assigned the label family_x
to at least one malware sample, the AV Label Graph will contain a
node called AVi_family_x. Two nodes, say AVi_family_x
and AVj_family_y, will be connected by an undirected edge if
there exists at least one malware sample mk ∈ A that has been
assigned label family_x by the i-th AV, and family_y by the
j-th AV, respectively. Each edge is assigned a weight that depends
on the number of times that the connected nodes (i.e., the connected
labels) were assigned to a same malware sample. Notice that if
the i-th AV missed to detect a given malware sample, the related
missing label will be replace by a label such as AVi_unknown_U,
where U is a unique identifier.

Reference Clustering Similarly to what we did with A, given
the malware dataset M (i.e., the input to the third-party cluster-
ing system), we first collect the set of labels assigned by ν dif-
ferent AVs to each of the malware samples mk ∈ M, thus ob-
taining a dataset LM consisting of a tuple (or vector) of family
labels Lk = (lk,1, lk,2, .., lk,ν) per each sample mk. At this point,
we leverage the previously learned AV Label Graph to measure
the dissimilarity (or distance) between samples in M according
to their malware family labels. Specifically, we measure the dis-
tance between two malware samples mi,mj ∈ M by measuring
the distance between their respective label vectors Li and Lj in the
graph. We give a formal definition of label-based distance between
malware samples in Section 5.1. At a high level, we compute the
distance between two samples mi,mj by computing the median
among the shortest paths in the AV Label Graph between all paris
of labels lk, lh, with lk ∈ Li and lh ∈ Lj . This allows us to
compute an r × r distance matrix D, where r = |M| and ele-
ment D[i, j] is the distance between samples mi,mj . The final
reference clustering is obtained by applying average-linkage hier-
archical clustering [9, 10] on the distance matrix D. The result
is not an actual partitioning of the malware dataset M. Rather,
the reference clustering is represented by a dendrogram [9], i.e.,
a tree-like data structure that expresses the “relationship” between
malware samples. Cutting this dendrogram at any particular height
would produce a partitioning of M according to the AV label-based
distances (see Section 5 for details).

Validity Analysis Let T be the reference clustering dendro-
gram output by the previous step. The Validity Analysis module
takes in input T and the set of malware clusters C output by the

third-party malware clustering system. At this point, VAMO ap-
plies the external validity indexes introduced in Section 3 to com-
pute the maximum level of agreement between C and all possible
reference clusterings obtained by cutting T at different heights. For
example, we can compute the maximum Jaccard coefficient Ĵ be-
tween all possible reference clusterings and C. The higher Ĵ , the
stronger the agreement between C and the AV label-based refer-
ence clustering.

Effectively, VAMO compares the third-party clustering results C
to a reference clustering obtained by partitioning the dataset M ac-
cording to the relationships among multiple AV labels learned from
the archive malware dataset A. It is worth noting that this process
has some similarities with the majority voting-based approach used
in previous work. In fact, the effect of the majority voting approach
is to group a subset of the malware in M according to the labels as-
signed by multiple AVs to the samples in the very same M dataset.
VAMO is different because (a) it automatically learns the relation-
ships among malware family labels assigned by different AVs, and
does not require any manual (or semi-manual) mapping between
them; (b) it introduces a measure of label-based distance between
malware samples that is not limited to the cases in which a ma-
jority voting-based consensus can be achieved; (c) it enables the
computation of well known external validity indexes over the en-
tirety of malware clustering results, rather than focusing only on
“easy-to-cluster” subset of the malware dataset. In Section 6.1 we
empirically show that building a reference clustering based on the
AV Label Graph and applying the validity analysis process outlined
above outperforms the majority voting-based cluster validation ap-
proach proposed in previous work.

5. VALIDITY ANALYSIS

In this Section, we provide more details on how VAMO builds
the reference clustering by leveraging multiple AV labels, and how
the clustering validity indexes are computed to compare third-party
malware clustering results to VAMO’s reference clustering.

5.1 Building a Reference Clustering

As mentioned in Section 4, the first step to obtaining the ref-
erence clustering is to build an AV Labels Graph. This graph ex-
presses the “relationships” between different AV labels, and auto-
matically learns the likelihood that different labels from different
AVs will be assigned to the same malware sample, based on historic
observations.

Assume M is the malware dataset used as input to a third-party
(e.g., behavior-based) malware clustering system, as shown in Fig-

A_WORM/Korgo

T_PE_VIRUT

0 . 9 5 5

M_unknown1 M_unknown2

A_TR/Drop

M_W32/Virut

0 . 6 9 6

0 . 9 5 5 0 . 9 5 5

0 . 6 8 2

0 . 1 3

A_W32/Virut

0 . 3 6 4

0 . 9 5 7

T_PE_VIRUX

0 . 8 7

0 . 3 4 8

0 . 8 2 4

0 . 9 4 1 0 . 9 4 1

Figure 2: AV Label Graph for Clust.1 (see Section 3.1)

ure 1. Also, let A be a large historic malware archive contain-
ing, for example, malware samples collected during the past several
months, and that M ⊂ A (i.e., A contains all the “current” samples
collected in M, plus a large set of malware samples collected in the
past). We define an AV Label Graph learned from A as follows.

DEFINITION 1. - AV Label Graph. An AV Label Graph is an
undirected weighted graph. Given an archive of n malware sam-
ples A = {mi}i=1..n, let L = {L1 = (l1, .., lν)1, .., Ln =
(l1, .., lν)n} be a set of label vectors, where a label vector Lh =
(l1, .., lν)h is an ordered set of malware family labels assigned by
ν different AV scanners to malware mh ∈ A. The AV Label Graph
G = {Vk, Ek1,k2}k=1..l is constructed by adding a node Vk for
each distinct label lk ∈ L. Two nodes Vk1 and Vk2 are connected
by a weighted edge Ek1,k2 if the labels lk1 and lk2 related to the
two nodes appear at least once in the same label vector Lh ∈ L
(that is, if they are both assigned to a malware sample mh). Each
edge Ek1,k2 is assigned a weight w = 1 − m

max (n1,n2)
, where n1

is the number of label vectors Lh ∈ L that contain lk1 , n2 is the
number of vectors that contain lk2 , and m is equal to the number
of vectors containing both lk1 and lk2 .

For example, assume A contains all (and only) the samples shown
in Clust. 1 (shown in Section 3). In this case, the related AV Label
Graph is shown in Figure 2. Notice that in reality A will typically
contain thousands of samples, and that the graph in Figure 2 is re-
ported simply to provide an example of how the AV Label Graph is
computed. Also, notice that the missing labels were replaced with
unique “unknown” identifiers.

Once the AV Label Graph is computed, we build a reference clus-
tering dendrogram as follows (notice that a dendrogram is a tree-
like data structure generated by hierarchical clustering [9]). Given
any two samples mi,mj ∈ M we first “map” each sample onto the
graph, and then compute the distance di,j between mi,mj on the
graph, thus obtaining a distance matrix D in which D[i, j] = di,j .
A more formal definition of graph-based distance between malware
samples is given below.

DEFINITION 2. - Graph-based Distance. Let mi ∈ M be a
malware sample, and Li = (l1, .., lν)i be its label vector. By def-
inition, each label lh,i ∈ Li corresponds to a node Vh,i in the
AV Label Graph, with h = 1, .., ν. Therefore, sample mi can be

mapped to a list Vi = (V1,i, .., Vν,i) of ν nodes in the graph.
Now, let Vi and Vj be the lists of nodes related to mi and mj ,
respectively. To compute the distance di,j between mi,mj , we first
compute the length of the shortest path pk among a pair of nodes
(Vk,i,Vk,j), for each k = 1, .., ν. Then, we compute di,j as the
median among all pk, with k = 1, .., ν.

After computing the distance matrix D, we apply average-linkage
hierarchical clustering, which outputs a dedrogram T that expresses
the “relationship” between the malware samples in M according to
their AV labels. Section 5.2 explains in details how the reference
clustering dendrogram T can be used to validate third-party clus-
tering results.

5.2 Computing the Validity Indexes

As mentioned above, by cutting the reference clustering dendro-
gram T at a given height h, we obtain an actual partitioning of the
dataset M into a set of reference clusters Rc = {Rc1, .., Rcw}.
Then, the level of agreement between Rc and the third-party clus-
tering results C = {C1, C2, .., Cx} can be computed using the
external validity indexes introduced in Section 3.2. Naturally, dif-
ferent values of h will produce a different set of reference clusters,
and therefore the values of these validity indexes will also differ.
Therefore, to decide where exactly to cut the dendrogram T we
proceed as follows. Let Rc(h) be the set of reference clusters ob-
tained by cutting T at height h. Also, assume I(Rc(h),C) is an
external validity index computed over the clusterings Rc(h) and
C (e.g., I(·) could be equal to the Jaccard index, or one of the
other indexes outlined in Section 3.2). We then cut T at height
h∗ = argmax

h
{I(Rc(h),C)}, so that h∗ is the cut at which the

level of agreement between C and the VAMO’s reference cluster-
ing is maximum.

In summary, we perform hierarchical clustering of the malware
samples in M according to similarities in their AV labels by lever-
aging the previously learned AV Label Graph, and then we find the
set of reference clusters Rc(h∗) that best explains (or agrees with)
the third-party clustering results C. This is useful because given
two different third-party results C1 and C2 (e.g., given by the
same behavior-based malware clustering systems configured with
different parameter values, or given by different malware cluster-
ing systems), VAMO allows us to establish which of them has the
highest level of agreement with the underlying multiple AV labels.

6. EVALUATION

6.1 VAMO v.s. Majority Voting

In this Section, we present a set of experiments performed in
a controlled setting. Our objective is to show that, when faced
with noisy AV labels, VAMO outperforms majority voting-based
approaches. Namely, in the vast majority of cases VAMO pro-
duces an AV label-based reference clustering that better explains
(or agrees with) the true malware clusters. To this end, we use the
following high-level approach. We simulate a controlled dataset of
malware samples for which we know exactly what samples should
belong to what malware cluster, and first assume that all samples
are perfectly (i.e., correctly) labeled by multiple AVs. Then, we
gradually introduce more and more noise into the AV labels, thus
simulating the inconsistent labeling typical of real-world AVs (see
Section 3.1). For each noise increase, we apply both VAMO and
a majority voting-based approach to obtain an AV label-based ref-
erence clustering, and the obtained results show that VAMO’s ref-
erence clustering yields validity indexes that offer a higher level of

agreement with the true malware clusters, compared to using ma-
jority voting.

6.1.1 Controlled Datasets
We create a synthetic dataset to simulate a scenario in which we

have a historic archive A consisting of 3,000 distinct malware sam-
ples and the related dataset L of labels assigned by three different
AV scanners to each of these 3,000 samples. Furthermore, we cre-
ate a dataset M containing 300 distinct samples, with M ⊂ A (i.e.,
M is a proper subset of A). Therefore, the label dataset LM con-
taining the AV labels for the malware samples in M can be directly
obtained from L (since M ⊂ A, then LM ⊂ L). It is worth noting
that we named these datasets following the same terminology that
we used in Section 4 and in Figure 1.

At first, we assume to have perfect knowledge (i.e., perfect ground
truth) regarding the malware family each sample belongs to. Specif-
ically, we construct the datasets so that the samples in A (and the
related malware labels in L) belong to 15 different malware fam-
ilies, with 200 samples per family, and that each of the three AVs
consistently assigns the correct malware family name to the sam-
ples in A, and therefore also to the samples in M. In practice,
to obtain M we simply randomly (uniformly) select 300 samples
from A. Also, since we know exactly what malware belong to
what family, we can precisely partition the dataset M into a set of
15 malware clusters C = {C1, C2, ..., Cs}, with s = 15.

It is worth noting that in this idealized scenario we also assume
the AVs use the very same family names for the malware family
labels. In other words, we assume the AVs all agree on using the
same terminology or notation. This means that no manual mapping
between family names assigned by different AVs is needed, and a
majority voting-based approach can be applied directly. This typi-
cally does not hold in practice, in which case we would need to ob-
tain the name mapping before being able to apply majority voting.
On the other hand, VAMO is agnostic to differences in the termi-
nology that the AVs use to assign malware family names, because
VAMO will automatically learn the relationships between different
malware family names through the AV Label Graph construction,
as discussed in Section 4 and Section 5.

6.1.2 Simulating Inconsistency in the AV Labels
To simulate inconsistency in the AV labels, we proceed as fol-

lows. We start from the label dataset L described above, and we
progressively inject more and more noise into the labels. Specifi-
cally we inject the following two types of noise:

• Label Flips Given a malware mk ∈ A, and its label vector
Lk = (l1,k, l2,k, l3,k) ∈ L, with probability p�f we replace
label lν,k with a different label l�ν,k chosen among the 14
other possible malware family labels, where the probability
p�f is a preset “probability of flip”.

• Missing Labels Similarly, given a malware mk ∈ A, and
its label vector Lk = (l1,k, l2,k, l3,k) ∈ L, with probability
p�m we drop label lν,k to simulate the case in which the ν-th
AV missed to detect mk, where the probability p�m is a preset
“probability of missed detection”.

These two types of noise can affect, with different preselected
probabilities, either one, two, or three AVs. To better explain this,
let n = [pf , pm; p1, p2, p3] be a “noise vector” whose elements ex-
press the following probabilities: pf is the overall probability that a
malware sample m will be affected by a label flip, while pm is the
overall probability that a sample will be affected by a missing label;
on the other hand, px (with x =1,2, or 3) represents the probability

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

R
S

Noise Index

(a) Rand

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

J
C

Noise Index

(b) Jaccard

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

F
M

Noise Index

(c) FM

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

F
1

Noise Index

(d) F1
Figure 3: VAMO, absolute values of cluster validity indexes.

0 500 1000
−0.02

0

0.02

0.04

0.06

0.08

∆
R

S
Noise Index

(a) Rand

0 500 1000
−0.2

0

0.2

0.4

0.6

0.8

∆
J
C

Noise Index

(b) Jaccard

0 500 1000
−0.2

0

0.2

0.4

0.6

0.8

∆
F

M

Noise Index

(c) FM

0 500 1000
−0.2

0

0.2

0.4

0.6

0.8

∆
F

1

Noise Index

(d) F1
Figure 4: VAMO vs. Majority Voting (index “deltas”).

that the noise (through label flips and/or missing labels) will affect
exactly x out of the three AVs, for a given malware sample. Notice
that p1+p2+p3 = 1, and pf +pm ≤ 1. Namely, with probability
1− (pf + pm) a sample will not be affected by any noise (i.e., the
sample remains perfectly labeled).

6.1.3 Building a Reference Clustering via Majority
Voting

Intuitively, the majority voting-based approach to construct a ref-
erence clustering works as follows. Given a malware sample mi ∈
M, and the label vector Li = (l1,i, l2,i, l3,i) ∈ LM containing the
malware family labels assigned to mi by the three AVs, mi is as-
signed to malware cluster Rj if the majority of labels in Li indicate
that mi belongs to family fj . If no majority-based consensus can
be reached (i.e., the majority of AVs disagree on the family name
attributed to mi), then the sample mi is assigned to a singleton
cluster, namely a cluster that contains only mi. Following this ap-
proach, we can partition the dataset M into a set of majority voting-
based reference clusters RcMV = {RcMV

1 , RMV
2 , ..., RMV

q }.
Then, given RcMV and the ground truth clusters C = {C1, ..., Cs}
(which are derived before injecting the noise into the AV labels), we
can compute the four external validity indexes described in Sec-
tion 3.2.

6.1.4 Computing the Validity Indexes
Let n be a particular noise vector, with a given combination of

values for the probabilities pf , pm, p1, p2, and p3. Applying the
noise injection approach described above results in a noisy label
dataset L(n). In turn, if from L(n) we only consider the labels
related to the malware samples in M, we can obtain a (noisy) la-
bel dataset LM (n) (notice that because M ⊂ A, then LM (n) ⊂
L(n)).

Given L(n) and LM (n), we apply VAMO to compute four va-
lidity indexes (see Figure 1), thus essentially measuring the level of
agreement (see Section 4) between the reference clustering derived
from the AV Label Graph learned from L(n), and the ground truth
clusters C = {C1, C2, ..., Cs} in which M was originally parti-
tioned (i.e., before any noise was applied). Let RSV AMO(n) be the
resulting Rand statistic, JCV AMO(n) be the Jaccard coefficient,
FMV AMO(n) be the Folkes-Mallows index, and F1V AMO(n) be
the F1 index that combines precision and recall (see Section 3.2).

We similarly compute these four external cluster validity indexes
by first applying the majority voting-based approach described in
Section 6.1.3 over M(n) to obtain a reference clustering RcMV (n),
and then comparing this reference clustering to C. Let RSMV (n)
be the resulting Rand statistic, JCMV (n) be the Jaccard coeffi-
cient, FMMV (n) be the Folkes-Mallows index, and F1MV (n) be
the F1 index. Now, for each value of n we compute the difference
between the validity indexes obtained using VAMO and the ones
based on the majority voting approach. For example, we compute
∆RS(n) = RSV AMO(n) − RSMV (n), and in a similar way we
also compute ∆JC(n), ∆FM(n), and ∆F1(n).

6.1.5 Results
Figure 3 reports the absolute values of the cluster validty indexes

obtained using VAMO, while Figure 4 plots the difference between
the four external validity indexes produced by the comparison be-
tween VAMO’s results and the majority voting approach, as ex-
plained above. In Figure 3, the y axis reports the absolute value of
the indexes, while in Figure 4 it reports the “deltas”. In both cases,
the x axis is simply the index of the experiment round, with the
noise increasing per each experiment 5. Specifically, we use 1,320
different noise configurations (i.e., different values of the elements
of the noise vector n), with the only constraint that pf +pm ≤ 0.5,
i.e., at most 50% of the malware samples will be affected by some
noise in their AV labels. It is also worth noting that the y axis for
∆RS varies in [−0.02, 0.08], while all other “deltas” graphs have
values on the y axis in [−0.2, 0.8].

Figure 4(a) shows that the difference between RSV AMO and
RSMV are relatively small, and ∆RS varies between −0.02 and
0.06. However, the three remaining validity indexes (Figure 4(b)
through Figure 4(d)) clearly show that VAMO’s reference cluster-
ing agrees more closely with the underlying true clustering C, com-
pared to the majority voting-based reference clustering. In fact, in
all four indexes the “deltas” are positive for the vast majority of the
noise combinations, meaning that the quality indexes obtained by
VAMO show a better agreement with the true clustering, compared
to the quality indexes obtained via majority voting.

To better analyze the effect of the noisy AV labels, Figure 5
through Figure 8 present the validity index “deltas” considering all
noise vectors n for which: (a) at least two AVs are affected by
noise, i.e., p1 = 0; (b) the only type of noise affecting the labels is
the “label flips”, i.e., pm = 0 (no missing labels, which means that
all the AVs assign a malware family label to all samples); (c) the

5The experiment rounds are ordered according to a summary noise
level computed as nl = (0.6pf +0.4pm) ·(0.1p1+0.3p2+0.6p3).

l clusters Rand Jaccard Folkes-Mallows F1

0.10 674 0.8767 0.2086 0.4494 0.7100
0.20 451 0.9172 0.5438 0.7308 0.7918
0.30 313 0.9205 0.5777 0.7482 0.7948
0.31 301 0.9792 0.8924 0.9434 0.8436
0.32 291 0.9790 0.8916 0.9430 0.8431
0.33 288 0.9759 0.8782 0.9357 0.8501

0.34 286 0.9759 0.8782 0.9357 0.8496
0.35 280 0.9758 0.8775 0.9353 0.8479
0.36 274 0.9757 0.8772 0.9352 0.8467
0.37 261 0.9721 0.8614 0.9265 0.8433
0.38 255 0.9721 0.8613 0.9265 0.8424
0.39 248 0.9722 0.8623 0.9270 0.8421
0.40 241 0.9721 0.8617 0.9268 0.8401
0.50 187 0.9585 0.8081 0.8971 0.7937
0.60 142 0.9260 0.7070 0.8366 0.7489
0.70 113 0.8527 0.5614 0.7354 0.7260
0.80 85 0.7789 0.4659 0.6656 0.7124

Table 2: Application of VAMO to behavior-based malware clus-

tering results.

only type of noise is “missing labels”, i.e., pf = 0 (no label flips).
As we can see, whenever the label noise (or inconsistencies) affects
a majority of AVs (case (a)), or when any AV misses to detect some
malware samples (case (c)), VAMO clearly outperforms the major-
ity voting-based approach, because VAMO’s reference clustering
more closely agrees with the true malware clusters. While the “la-
bel flips” (i.e., case (b), which simulates the scenario in which AVs
assign the incorrect malware family name) have a more negative
effect on VAMO because they more heavily affect the edges (and
their weights) learned through the AV Label Graph, VAMO per-
forms comparably to majority voting, as shown by the very small
negative “deltas”.

6.2 Real-World Application

In this Section, we discuss how VAMO can be applied in prac-
tice to assess the quality of the results produced by malware clus-
tering systems. Specifically, we apply VAMO to the results that
the behavior-based malware clustering system presented in [2] pro-
duced over a real-world malware dataset M containing 2,026 dis-
tinct malware samples collected in February 2009. To obtained
the behavior-based clustering we proceeded as follows. We pro-
vided all malware samples in M to the authors of [2], who kindly
agreed to analyze them and provide us a distance matrix D contain-
ing the pair-wise distances between the samples computed based
on their system-level behavioral features. Given, D, we applied
precise average-linkage hierarchical clustering (this step is slightly
different from [2], in which the authors applied an approximate hi-
erarchical clustering algorithm), and obtained a dendrogram, which
we will refer to as Y in the following. As usual, the dendrogram Y
can be cut at a given height to obtain a partitioning of dataset M
into a number of malware clusters (see discussion below).

To generate VAMO’s AV Label Graph, we used a dataset A con-
sisting of 998,104 real-world distinct malware samples collected
between August 2008 and August 2009. All of these 998,104 sam-
ples were scanned using four different popular AVs, in a way anal-
ogous to the malware dataset we discussed in Section 3.1, to obtain
the label dataset L. Each sample in this dataset was assigned at
least one AV label. Also, L contained the labels for most of the
2,026 samples in M. Specifically, L included at least one label
for 1,985 samples in M, while the remaining 41 samples were not
represented in L, and therefore remained unlabeled.

Taking the labeled dataset A and the labels for the samples in
dataset M (including the placeholder “unknown” labels for the 41
samples that remained undetected) as input, we applied VAMO to
produce a reference clustering, following the procedure outlined in

0 50 100 150 200 250
−0.02

0

0.02

0.04

0.06

0.08

∆
R

S

Noise Index

(a) F & M (> 1 AV)

0 100 200 300
−0.02

0

0.02

0.04

0.06

0.08

∆
R

S

Noise Index

(b) Only Flips

0 100 200 300
−0.02

0

0.02

0.04

0.06

0.08

∆
R

S

Noise Index

(c) Only Missing
Figure 5: VAMO vs. Maj. Voting: Rand Statistic.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

∆
J
C

Noise Index

(a) F & M (> 1 AV)

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
J
C

Noise Index

(b) Only Flips

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
J
C

Noise Index

(c) Only Missing
Figure 6: VAMO vs. Maj. Voting: Jaccard Coefficient.

Section 4 and Section 5. Then, given the dendrogram Y obtained
from the third-party malware clustering system [2], we cut Y at
different heights l1, l2, .., ln, thus obtaining a sequence of different
clusterings C(l1),C(l2), ..,C(ln). For each of these clustering
results, we used VAMO to compute a set of validity indexes (see
Section 5). Table 2 summarizes our results. The first column in
Table 2 reports the value of the hight l at which Y is cut, while the
second column reports the related number of clusters that was ob-
tained from M. For example, by cutting Y at height l = 0.5, M
is partitioned into 187 clusters. The remaining columns represent
the values of five different external cluster validity indexes (Sec-
tion 3.2) measured by comparing the obtained malware clusters to
VAMO’s reference clustering, as explained in Section 5. We varied
l ∈ [0, 1] at steps equal to 0.01 (in practice, we excluded the ex-
treme values l = 0 and l > 0.8, because they result either into one
malware per cluster or into artificially large clusters, respectively).
In the interest of space, because the maximum value of the valid-
ity indexes is located between l = 0.3 and l = 0.4, we report the
results at steps of 0.01 only within that range.

As we can see from Table 2, the best value of the cut l is equal
to 0.31, because that is the cut hight at which three out of four
external validity indexes express the fact that there is maximum
agreement between the behavior-based clusters and the AV labels
generated by four different AV scanners. Put another way, VAMO’s
results indicate that the AV labels provide the best explanation of
the underlying malware dataset M when M is partitioned into 301
clusters by cutting Y at l = 0.31.

It is worth noting that the F1 index is the only external validity
index that is not maximum at l = 0.31. However, the value of
0.8436 obtained at l = 0.31 is quite close to the maximum value
of 0.8502 reached at l = 0.33. This result suggests that to find the
best configuration parameters for the third-party malware cluster-
ing system, it may be better to consider multiple validity indexes,
rather than focusing only on analyzing precision and recall (and the
related F1 index), as proposed in previous work [2, 11].

7. DISCUSSION

Using AV labels to build a reference clustering has some poten-
tial limitations, even though the label inconsistencies can be mit-
igated using VAMO. First, we need to take into account that the

features used by the AVs to characterize malware samples and as-
sign them to a given malware family may be different from the
features used by a third-party malware clustering system to mea-
sure the similarity among samples. For example, AV vendors of-
ten base their malware categorization process on features extracted
from reverse engineering the malware binaries. On the other hand,
behavior-based malware clustering systems leverage features re-
lated to the malware’s system [2] or network activities [15], for ex-
ample. Naturally, different features may highlight different types of
similarities in the samples. Therefore, while the AV labels clearly
represent a valuable point of reference, especially in absence of a
more perfect ground truth, the comparison between behavior-based
malware clustering results and AV family labels should be taken
with a grain of salt. A similar argument is made in [4], in which
the authors outline the potential pitfalls of using labeled datasets
meant for training and testing of supervised learning algorithms
for evaluating the effectiveness of (unsupervised) clustering algo-
rithms. Nonetheless, AV label-based cluster validity analysis, espe-
cially when fully automated such as in VAMO, is certainly a valu-
able tool that can assist malware analysts in the analysis of their
malaware clustering results.

Another factor to consider is the fact that AV labels evolve in
time. That is, a malware sample m assigned by an AV to family
fi at time t0, may be “renamed” by the same AV as belonging to
a different family fj at a future time t1 > t0. This is due to the
fact that AV signatures are sometimes refined by the AV vendors to
reduce possible false positives and more specifically characterize
the malware samples (e.g., by assigning a sample previously la-
beled as “generic” to a more specific malware family). To take this
into account, the historic archive of malware labels used by VAMO
should be kept updated. This may be done by either periodically re-
scanning the malware dataset, or by querying online services such
as virustotal.com.

8. CONCLUSION

In this paper, we presented a novel system, called VAMO, that
provides a fully automated assessment of the quality of malware
clustering results. Previous studies propose to evaluate malware
clustering results by leveraging the labels assigned to the malware
samples by multiple AVs. However, they require a manual mapping

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

∆
F

M

Noise Index

(a) F & M (> 1 AV)

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
F

M

Noise Index

(b) Only Flips

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
F

M

Noise Index

(c) Only Missing
Figure 7: VAMO vs. Maj. Voting: Folkes-Mallows.

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

∆
F

1

Noise Index

(a) F & M (> 1 AV)

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
F

1

Noise Index

(b) Only Flips

0 100 200 300
−0.2

0

0.2

0.4

0.6

0.8

∆
F

1

Noise Index

(c) Only Missing
Figure 8: VAMO vs. Maj. Voting: F1 Index.

between labels assigned by different AV vendors, and are limited
to selecting a reference sub-set of samples for which an agreement
regarding their labels can be reached across a majority of AVs.

Unlike previous work, VAMO does not require a manual map-
ping between malware family labels output by different AV scan-
ners. Furthermore, VAMO does not discard malware samples for
which a majority voting-based consensus cannot be reached. In-
stead, VAMO explicitly deals with the inconsistencies typical of
multiple AV labels to build a more representative reference set. Our
evaluation, which includes extensive experiments in a controlled
setting and a real-world application, show that VAMO performs
better then majority voting-based approaches, and provides a way
for malware analysts to automatically assess the quality of their
malware clustering results.

Acknowledgments

This material is based in part upon work supported by the National
Science Foundation under Grant No. CNS-1149051. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

[1] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario. Automated classification and analysis of in-
ternet malware. In Recent Advances in Intrusion Detection,
2007.

[2] U. Bayer, P. Milani Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, behavior-based malware clustering. In
Network and Distributed System Security Symposium, 2009.

[3] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifi-
cations of malicious behavior. In ACM SIGSOFT symposium
on the foundations of software engineering, ESEC-FSE ’07,
2007.

[4] I. Färber, S. Günnemann, H. Kriegel, P. Kröger, E. Müller,
E. Schubert, T. Seidl, and A. Zimek. On using class-labels
in evaluation of clusterings. In MultiClust: 1st International
Workshop on Discovering, Summarizing and Using Multiple
Clusterings Held in Conjunction with KDD, 2010.

[5] E. B. Fowlkes and C. L. Mallows. A method for comparing
two hierarchical clusterings. Journal of the American Statis-
tical Association, 78(383):553–569, 1983.

[6] F. Guo, P. Ferrie, and T. Chiueh. A study of the packer prob-
lem and its solutions. In Recent Advances in Intrusion Detec-
tion, 2008.

[7] M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clustering
validation techniques. J. Intell. Inf. Syst., 17(2-3):107–145,
2001.

[8] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale malware in-
dexing using function-call graphs. In Proceedings of the 16th
ACM conference on Computer and communications security,
CCS ’09, 2009.

[9] A. K. Jain and R. C. Dubes. Algorithms for clustering data.
Prentice-Hall, Inc., 1988.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a
review. ACM Comput. Surv., 31(3):264–323, 1999.

[11] J. Jang, D. Brumley, and S. Venkataraman. Bitshred: feature
hashing malware for scalable triage and semantic analysis. In
Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, 2011.

[12] P. Li, L. Liu, D. Gao, and M. K. Reiter. On challenges in
evaluating malware clustering. In Proceedings of the 13th
international conference on Recent advances in intrusion de-
tection, RAID’10, 2010.

[13] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero. Finding
non-trivial malware naming inconsistencies. In International
Conference on Information Systems Security, ICISS’11, 2011.

[14] M. Meilă. Comparing clusterings—an information based dis-
tance. J. Multivar. Anal., 98(5):873–895, May 2007.

[15] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of
http-based malware and signature generation using malicious
network traces. In Proceedings of the 7th USENIX Symposium
on Networked Systems Design and Implementation, NSDI’10,
2010.

[16] D. Pfitzner, R. Leibbrandt, and D. Powers. Characterization
and evaluation of similarity measures for pairs of clusterings.
Knowl. Inf. Syst., 19(3):361–394, May 2009.

[17] E. RendŮn, I. Abundez, A. Arizmendi, and E. M. Quiroz.
Internal versus external cluster validation indexes. university-
pressorguk, 5(1), 2011.

[18] K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic anal-
ysis of malware behavior using machine learning. J. Comput.
Secur., 19(4):639–668, Dec. 2011.

[19] Symantec. Symantec internet security threat report, trends for
2010, April 2011.

