v &

Recurity Labs

b il

_ Vulnerability Extrapolation
USENIX'WOOT 2011 |

tl..“i il L‘Lnﬁ. jh-_‘.dr-“ o h"h" *-i‘l-h‘ l-‘l

Fabi an o6fabs6 Yamapg
Recurity Labs GmbH, Germany

Agenda

A Patterns you find when auditing code

A Exploiting these patterns:
Vulnerability Extrapolation

A Using machine learning to get there

A A method to assist in manual code audits
based on this idea

A The method in practice
A A showcase

Exploring:a new code base

ALi ke an area of mat hemat

Altds not completely dif
mathematics you already know.

A But there are secrets specific to this area:
A Vocabulary

A Reoccurring patterns in argumentation
A Weird tricks used in proofs

A Understanding the specifics of the area makes it
a lot easier to reason about it.

Another Example: libTIFF
CVE -2006 -3459 | CVE ' -2010 -2067

Static int
TIFFFetchShortPair (TIFF* tif, TIFFDirEntry * dir)

(

switch (dir-> tdir_type) {
case TIFF_BYTE:
case TIFF_SBYTE:
{
uint8 v[4];
return TIFFFetchByteArray (tif, dir, v)
&& TIFFSetField (tif, dir-> tdir_tag , v[O0], v[1]);
}
case TIFF_SHORT:
case TIFF_SSHORT:
{
uintlé v[2];
return TIFFFetchShortArray (tif, dir, v)
&& TIFFSetField (tif, dir-> tdir_tag , v[0], v[1]);
}
default
return 0;

Another Example: libTIFF
CVE -2006°-3459 | CVE -2010-2067

Static int
TIFFFetchSubjectDistance (TIFF* tif, TIFFDirEntry * dir)
Static int (
TIFFFetchShortPair (TIFH uint32 I[21;
| float v;
int ok = 0;
switch (dir-> tdir |
case TIFF_B
case TIFF_S _
i if (TIFFFetchData (tif, dir, (char *) I)
uint8 v & & cvtRational (tif, dir, I[0], I[1], &v)) {
return I*
& * XXX: Numerator OXFFFFFFFF means that we have infinite
} * distance. Indicate that with a negative floating point
case TIFF_S * SubjectDistance value.
case TIFF_S x)
L y ok = TIFFSetField (tif, dir-> tdir_tag |
uint
(I[O0] '= OxFFFFFFFF) ? v : -v);
return
g }
}
default - return ok;
return b

LIDTIFF: Bug Analysis

[

A TIFFFetchShortArray is actually a wrapper
around TIFFFetchData.

A The two are pretty much synonyms.

A These functions are part of an API local to
iIbTIFF.

A Badly designed API: the amount of data to be
copied into the buffer is passed in one of the
flelds of the dir-structure and not explicitly!

ADevel opers missed this
hard to blame them.

The ti mes of ngrep Or
over. But that does not mean patterns of

API use that lead to vulnerabllities no

longer exist!

Vulnerability Extrapolation

A Given a function known to be vulnerable,
determine functions similar to this one In
terms of application-specific APl usage
patterns.

A Vulnerability Extrapolation exploits the
iInformation leak you get every time a
vulnerabillity Is disclosed!

What needs to be done

A We need to be able to determine how
ANsi mi |l aro functi ons ¢
programming patterns.

A We need to find a way to extract these
programming patterns from a code-base in
the first place.

A How do we do that?

.|

in

} |

1.5

1.0

0.5

0.0 |-

Similarity

o - J Jff' - "‘“HJ..L J’J

Signal + Noise

460 500

Decomposition into
shape and rotation:
If rotation is just a
detail, these are
pretty similar.

o0 A decomposition

r— __r*.l.} .“-‘J_J}'l# |-ﬂ'

In Face-Recognition,
faces are decomposed

Signal Processing: Decomposition into
components of different frequencies: Noise is
suspected to be of high frequency while the
signal is of lower frequency.

into weighted sums of
commonly found patterns
+ a noise-term.

Increasing level of detail/frequency

((((((
FFF

Decreasing dominance of pattern

Usage Usage
Pattern Pattern

Linear approximation of each function by the most dominant APl usage
patterns of the code-base it is contained in!

